Volume 24 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
GUAN Chengyao, ZHAO Guochun, BAI Xiangdong, et al., 2018. REVIEW OF CATEGORY AND DEVELOPMENT CONTEXT OF FAULT MECHANICS. Journal of Geomechanics, 24 (4): 555-586. DOI: 10.12090/j.issn.1006-6616.2018.24.04.058
Citation: GUAN Chengyao, ZHAO Guochun, BAI Xiangdong, et al., 2018. REVIEW OF CATEGORY AND DEVELOPMENT CONTEXT OF FAULT MECHANICS. Journal of Geomechanics, 24 (4): 555-586. DOI: 10.12090/j.issn.1006-6616.2018.24.04.058

REVIEW OF CATEGORY AND DEVELOPMENT CONTEXT OF FAULT MECHANICS

doi: 10.12090/j.issn.1006-6616.2018.24.04.058
More Information
  • Received: 2018-01-08
  • Revised: 2018-06-29
  • Published: 2018-08-01
  • In order to reveal the whole-theory of fault mechanics, this paper reviews the development of fault mechanics, the due system, the lack of frame and summarizes the differences of academic concerns and research contents. The results show that there are scale differences and target differences in the correlation field of fault mechanics. Fault mechanics is a link in multi-disciplinary fields, yet it is still a zone no one to manage. There are differences in size and deformation velocity between rock cracks and faults with internal structures. The centennial development trajectory of fault research from external forces to fault-tectonic stress field and then to slip-line-field is a simplified and practical way, which hinders the development of quantitative theory. "Mohr paradigm" is the support, with practical and simplified features, which also hinders the development of fault mechanics towards mechanism and quantification. There are two kinds of methods in fault research, forward modeling and inversion. Forward modeling mainly includes experimental fault mechanics and theoretical fault mechanics. The combination of forward modeling and inversion is the future development direction. In accordance with the "unified law of mechanics", "geomechanics" embodies the spatial relation and mechanical relation of faults and belongs to the category of "generalized fault mechanics". The "generalized fault mechanics" system is applicable to the development of "unified development, concern and connection", while the "narrow sense mechanics" system is applicable to the development of "decentralized development, individual achieve". The pre-rift always controlling the secondary fault and influencing the stress distribution and the "theory of stress restriction" is an important direction in the future. "fault rheological tribology" and the "fault rock fabric tribology" will emerge as two directions in the future, and the "fault rock fabric tribology" should be integrated micro-tectonics, the stability of rock fabric characteristics, the rheological characteristics, generalized friction characteristic and so on. The microscopic structural phenomenology theory needs to be promoted to the large-scale fault mechanics theory, and rock fabric needs to be introduced to the rock mechanics experiment. Different scales have different concerns, different theories and different parameters, which aggravate the isolation of research groups. The mud-particles in faults can be migrated, resulting in "The theory of fault mud-particles transport". The concept of fault-locking needs to be reconsidered, and future research should be based on the "slow strain" and "large-scale" frictional extension mechanics of fault.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    Scholz C H. 地震与断层力学[M]. 马胜利, 译. 地震出版社, 1996: 1~471.

    Scholz C H. The Mechanics of Earthquakes and Faulting[M]. MA Shengli, trans. Beijing: China Earthquake Press, 1996: 1~471. (in Chinese)
    [2]
    Anderson E M. The Dynamics of Faulting and Dike Formation with Application to Britain[M]. 2nd ed. Edingburgh:Oliver and Boyd, 1951:1~206.
    [3]
    Richter C F. Elementary Seismology[M]. San Francisco:W H Freeman, 1958:1~768.
    [4]
    黄福明.断层力学概论[M].北京:地震出版社, 2013:1~332.

    HUANG Fuming. Introduction to Fault Mechanicas[M]. Beijing:China Earthquake Press, 2013:1~332. (in Chinese)
    [5]
    陶振宇.节理与断层岩石力学[M].北京:中国地质大学出版社, 1992:1~279.

    TAO Zhenyu. Mechanics of Joints and Faults[M]. Beijing:China University of Geoscience Press, 1992:1~279. (in Chinese)
    [6]
    B K阿特金森. 岩石断裂力学[M]. 尹祥础, 译. 北京: 地震出版社, 1992: 1~595.

    Atkinson B K. Fracture Mechanics of Rock[M]. YIN Xiangchu, trans. Beijing: China Earthquake Press, 1992: 1~595. (in Chinese)
    [7]
    湛文武. 断层岩的工程性质与环境效应[D]. 兰州: 兰州大学, 2004: 1~188. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y605732

    ZHAN Wenwu. Engineering properties of fault rocks and environment effect[D]. Lanzhou: Lanchou University, 2004: 1~188. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y605732
    [8]
    李兴唐.活动断裂研究与工程评价[M].北京:地质出版社, 1991:1~288.

    LI Xingtang. Activity Faults Research and Engineering Evaluation[M]. Beijing:China Geology Press, 1991:1~288. (in Chinese)
    [9]
    马胜利, 马瑾.我国实验岩石力学与构造物理学研究的若干新进展[J].地震学报, 2003, 25(5):528~534. http://www.cqvip.com/qk/93548X/200305

    MA Shengli, MA Jin. Recent progress in studies of experimental rock mechanics and tectonophysics in China[J]. Acta Seismologica Sinica, 2003, 25(5):528~534. (in Chinese) http://www.cqvip.com/qk/93548X/200305
    [10]
    HE Changrong, WANG Zeli, YAO Wenming. Frictional sliding of gabbro gouge under hydrothermal conditions[J]. Tectonophysics, 2007, 445(3~4):353~362. http://www.sciencedirect.com/science/article/pii/S0040195107003150
    [11]
    丁文镜.地震预报的力学问题[M].北京:清华大学出版社, 2012:1~96.

    DING Wenjing. Mechanical Problems in Earthquake Prediction[M]. Beijing:Tsinghua University Press, 2012:1~96. (in Chinese)
    [12]
    邵顺妹.断层泥研究的现状和进展[J].高原地震, 1994, 6(3):51~56. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm

    SHAO Shunmei. Present condition and progress of fault gouge research[J]. Earthquake Research in Plateau, 1994, 6(3):51~56. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm
    [13]
    马瑾, Moore D E, Summers R, 等.温度压力孔隙压力对断层泥强度及滑动性质的影响[J].地震地质, 1985, 7(1):15~24. http://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ199811000.htm

    MA Jin, Moore D E, Summers R, et al. The effect of temperature, pressure and pore pressure on the strength and sliding behavior of the gouges[J]. Seismology and Geology, 1985, 7(1):15~24. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ199811000.htm
    [14]
    周永胜, 蒋海昆, 何昌荣.不同温压条件下居庸关花岗岩脆塑性转化与失稳型式的实验研究[J].中国地震, 2002, 18(4):389~400. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgzd200204009&dbname=CJFD&dbcode=CJFQ

    ZHOU Yongsheng, JIANG Haikun, HE Changrong. Experiments of brittle-plastic transition, modes of instability of Juyongguan granite at different T-P condition[J]. Earthquake Research in China, 2002, 18(4):389~400. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgzd200204009&dbname=CJFD&dbcode=CJFQ
    [15]
    缪阿丽. 几种模拟断层泥摩擦滑动速度依赖性转换的实验研究[D]. 北京: 中国地震局地质研究所, 2011: 1~81. http://cdmd.cnki.com.cn/Article/CDMD-85402-1012266143.htm

    MIU Ali. Experimental study on velocity-dependence transition of friction for simulated fault gouges[D]. Beijing: Institute of Geology, China Earthquake Administration, 2011: 1~81. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-85402-1012266143.htm
    [16]
    Ramsay J G. 岩石的褶皱作用和断裂作用[M]. 单文琅, 译. 北京: 地质出版社, 1985: 1~387.

    Ramsay J G. Folding and Fracturing of Rocks[M]. SHAN Wenliang, trans. Beijing: China Geology Press, 1985: 1~387. (in Chinese).
    [17]
    B雅罗谢夫斯基. 断裂与褶曲构造学[M]. 李树菁, 译. 北京: 地震出版社, 1987: 1~233.

    Ярошевскйй B. Petrotectoic of Faults and Folds[M]. LI Shuqing, trans. Beijing: Earthquake Press, 1987: 1~233. (in Chinese)
    [18]
    马杏垣.解析构造学[M].北京:地质出版社, 2004:1~463.

    MA Xingyuan. Analytical Structural Geology[M]. Beijing:China Geology Press, 2004:1~463. (in Chinese)
    [19]
    李四光.地质力学方法[M].北京:科学出版社, 1976:1~259.

    LI Siguang. Introduction to Geomechanics[M]. Beijing:Science Press, 1976:1~259(in Chinese)
    [20]
    张文佑.断块构造导论[M].北京:石油工业出版社, 1984:1~385.

    ZHANG Wenyou. Introduction to Fault-Block Structural Geology[M]. Beijing:Petroleum Industry Press, 1984:1~385. (in Chinese)
    [21]
    童亨茂.岩石圈脆性断层作用力学模型[J].自然杂志, 2013, 35(1):56~63. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1620441

    TONG Hengmao. Mechanical model of brittle faulting in lithosphere[J]. Chinese Journal of Nature, 2013, 35(1):56~63. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1620441
    [22]
    巴晶.岩石物理学进展与评述[M].北京:清华大学出版社, 2013:1~384.

    BA Jing. Progress and Review of Rock Physics[M]. Beijing:Tsinghua University Press, 2013:1~384. (in Chinese)
    [23]
    Koestler A G. Hydrocarbon Seal Quantification[M]. Amsterdam:Elsevier, 2002:1~253.
    [24]
    Nollet S. Fracture Sealing Processes in Sedimentary Basins:A Mutli-Scale Approach[M]. Aachen:Sharker Verlag, 2006:1~116.
    [25]
    席道瑛, 徐松林.岩石物理学基础[M].合肥:中国科学技术大学出版社, 2012:1~350.

    XI Daoying, XU Songlin. Rock Physics[M]. Hefei:Press of University of Science and Technology of China, 2012:1~350. (in Chinese)
    [26]
    马瑾.构造物理学概论[M].北京:地震出版社, 1987:1~394.

    MA Jin. Outline of the Tectonophysics[M]. Beijing:Seismological Press, 1987:1~394. (in Chinese)
    [27]
    马胜利, 马瑾.岩石的流变性质与断层模型[J].地球物理学进展, 1995, 10(3):21~42. http://www.cqvip.com/QK/98047X/199503/1654055.html

    MA Shengli, MA Jin. Rheology of rocks and fault models[J]. Progress in Geophysics, 1995, 10(3):21~42. (in Chinese) http://www.cqvip.com/QK/98047X/199503/1654055.html
    [28]
    高祥林.地震断层力学的多尺度问题[J].地学前缘, 2005, 12(2):187~188. http://www.oalib.com/paper/4876955

    GAO Xianglin. Multiscale Problems in earthquake fault mechanics[J]. Earth Science Frontiers, 2005, 12(2):187~188. (in Chinese) http://www.oalib.com/paper/4876955
    [29]
    郭本禹.科恩的科学范式论与心理科学革命[J].南京师大学报(社会科学版), 1993, (3):60~63. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2509741

    GUO Benyu. On Cohen's scientific paradigm and psychological science revolution[J]. Acta Nanjing Normal University (Social Science Edition), 1993, (3):60~63. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2509741
    [30]
    Nádai A. Theory of Flow and Fracture of Solids[M]. New York:McGraw-hill, 1950:1~572
    [31]
    Parry R H G. Mohr Circles, Stress Paths and Geotechnics[M]. New York:Spon Press, 2004:264.
    [32]
    阮怀宁.滑移线场理论与断层力学研究进展[J].河海科技进展, 1993, 13(1):22~28. http://www.oalib.com/paper/4876955

    YUAN Huaining. Progress in slip line field theory and fault mechanics[J]. Technology Advances in Rivers and Sea, 1993, 13(1):22~28. (in Chinese) http://www.oalib.com/paper/4876955
    [33]
    Hafner W. Stress distributions and faulting[J]. GSA Bulletin, 1951, 62(4):373~398. doi: 10.1130/0016-7606(1951)62[373:SDAF]2.0.CO;2
    [34]
    安欧.构造应力场[M].北京:地震出版社. 1992:1~747.

    An Ou. Tectonic Stress Field[M]. Beijing:Seismological Press, 1992:1~747. (in Chinese)
    [35]
    Prandtl, L. "Vber die Härte plastischer Körper. " Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen[C]. Mathematisch-physikalische Klasse aus dem Jahre. Berlin. 1920: 74~85.
    [36]
    郑颖人, 邓楚键, 王敬林.基于非关联流动法则的滑移线场及上限法研究[J].中国工程科学, 2010, 12(8):56~69. https://www.wenkuxiazai.com/doc/98cf5577580216fc700afd99.html

    ZHENG Yingren, DENG Chujian, WANG Jinglin. The study of slip line field and upper bound method based on the non-associated flow rule[J]. Engineering Science, 2010, 12(8):56~69. (in Chinese) https://www.wenkuxiazai.com/doc/98cf5577580216fc700afd99.html
    [37]
    俞茂宏, 杨松岩, 刘春阳, 等.统一平面应变滑移线场理论[J].土木工程学报, 1997, 30(2):14~26, 41. http://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200802018.htm

    YU Maohong, YANG Yansong, LIU Chunyang, et al. Unified plane-etrain slip line field theory system[J]. Journal of Civil Engineering, 1997, 30(2):14~26, 41. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200802018.htm
    [38]
    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611~616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [39]
    YIN An. Mechanics of wedge-shaped fault blocks. 1. an elastic solution for compressional wedges[J]. Journal of Geophysical Research, 1993, 98(B8):14245~14256. doi: 10.1029/93JB00555
    [40]
    Lohrmann J. Identification of parameters controlling the accretive and tectonically erosive mass-transfer mode at the South-Central and North Chilean Forearc using Scaled 2D sandbox Experiments[D]. Berlin: Berlin University, 2002: 1~233.
    [41]
    Kellner A. Different styles of deformation of the fore-arc wedge along the Chilean convergent margin: Insights from 3D numerical experiments[D]. Potsdam, Germany: University of Potsdam, 2007: 1~150.
    [42]
    Sanz P F, Borja R I, Pollard D D. Mechanical aspects of thrust faulting driven by far-field compression and their implications for fold geometry[J]. Acta Geotechnica, 2007, 2(1):17~31. doi: 10.1007%2Fs11440-007-0025-0
    [43]
    Ip K W. Bearing capacity for foundation near slope[D]. Concordia, Canada: Concordia University, 2005: 1~110. http://core.ac.uk/display/11079750
    [44]
    Deshpande A A. Improved understanding of metal cutting based on slip-line field theory[D]. Wichita: Wichita State University, 2012: 1~126. http://hdl.handle.net/10057/5576
    [45]
    Dundur S T. Slipline field analysis of deformation in metal machining with worn tool with adhesion friction in contact regions[D]. Deemed: Deemed University, 2001: 1~213. https://www.researchgate.net/publication/37394149_Slipline_Field_Analysis_of_Deformation_In_Metal_Machining_with_Worn_Tool_with_Adhesion_Friction_in_Contact_Regions
    [46]
    吕延防, 张发强, 吴春霞等.断层涂抹层分布规律的物理模拟实验研究[J].石油勘探与开发, 2001, 28(1):30~32. https://www.researchgate.net/profile/Qiu_Dengfeng2/publication/272826853_Numerical_Simulation_of_the_Tectonic_Stress_Field_in_the_Tazhong_Area/links/54f1195b0cf2f9e34efd5119.pdf?origin=publication_list

    LV Yanfang, ZHANG Faqiang, Wu Chunxia, et al. Simulation experiment on distribution of fault smear layer[J]. Petroleum Exploration and Development, 2001, 28(1):30~32. (in Chinese) https://www.researchgate.net/profile/Qiu_Dengfeng2/publication/272826853_Numerical_Simulation_of_the_Tectonic_Stress_Field_in_the_Tazhong_Area/links/54f1195b0cf2f9e34efd5119.pdf?origin=publication_list
    [47]
    Gudmundsson A, Simmenes T H, Larsen B, et al. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 2010, 32(11):1643~1655. doi: 10.1016/j.jsg.2009.08.013
    [48]
    Evans J P, Forster C B, Goddard J V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11):1393~1404. doi: 10.1016/S0191-8141(97)00057-6
    [49]
    Corti G. Evolution and characteristics of continental rifting:Analog modeling-inspired view and comparison with examples from the East African Rift System[J]. Tectonophysics, 2012, 522~523:1~33. https://www.sciencedirect.com/science/article/pii/S0040195111002265
    [50]
    童亨茂, 蔡东升, 吴永平, 等.非均匀变形域中先存构造活动性的判定[J].中国科学:地球科学, 2011, 41(2):158~168. http://www.oalib.com/paper/4152988

    TONG Hengmao, Cai Dongsheng, Wu Yongping, et al. Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J]. Chinese Science China Earth Sciences, 2010, 53(8):1115~1125. http://www.oalib.com/paper/4152988
    [51]
    Versfelt J, Rosendahl B R. Relationships between pre-rift structure and rift architecture in Lakes Tanganyika and Malawi, east Africa[J]. Nature, 1989, 337(6205):354~356 doi: 10.1038/337354a0
    [52]
    Morley C K, Haranya C, Phoosongsee W, et al. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style:Examples from the rifts of Thailand[J]. Journal of Structural Geology, 2004, 26(10):1803~1829. doi: 10.1016/j.jsg.2004.02.014
    [53]
    童亨茂, 聂金英, 孟令箭, 等.基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J].地学前缘, 2009, 16(4):97~104. http://mall.cnki.net/magazine/Article/DXQY200904012.htm

    TONG Hengmao, NIE Jinying, MENG Lingjian, et al. The law of basement pre-existing fabric controlling fault formation and evolution in rift basin[J]. Earth Science Frontiers, 2009, 16(4):97~104. (in Chinese) http://mall.cnki.net/magazine/Article/DXQY200904012.htm
    [54]
    Smith M, Mosley P. Crustal heterogeneity and basement influence on the development of the Kenya rift, east Africa[J]. Tectonics, 1993, 12(2):591~606. doi: 10.1029/92TC01710
    [55]
    童亨茂. "不协调伸展"作用下裂陷盆地断层的形成演化模式[J].地质通报, 2011, 29(11):1606~1613. doi: 10.3969/j.issn.1671-2552.2010.11.002

    TONG Hengmao. Fault formation and evolution model under uncoordinated extension in rift basin[J]. Geological Bulletin of China, 2010, 29(11):1606~1613. (in Chinese) doi: 10.3969/j.issn.1671-2552.2010.11.002
    [56]
    Morley C K. How successful are analogue models in addressing the influence of pre-existing fabrics on rift structure?[J]. Journal of Structural Geology, 1999, 21(8~9):1267~1274. https://www.sciencedirect.com/science/article/pii/S0191814199000759
    [57]
    Dunbar J A, Sawyer D S. Continental rifting at pre-existing lithosphere weaknesses[J]. Nature, 1988, 333(6172):450~452. doi: 10.1038/333450a0
    [58]
    TONG Hengmao, Koyi H, Huang S, et al. The effect of multiple pre-existing weaknesses on formation and evolution of faults in extended sandbox models[J]. Tectonophysics, 2014, 626:197~212. doi: 10.1016/j.tecto.2014.04.046
    [59]
    TONG Hengmao, AN Yin. Reactivation tendency analysis:A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 2011, 503(3~4):195~200. https://www.sciencedirect.com/science/article/pii/S0040195111000825
    [60]
    NIU Yaoling. Geological understanding of plate tectonics:Basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2014, 10(1):23~46. http://dro.dur.ac.uk/15761/
    [61]
    Akai K, Hayashi M, Nishimatsu Y. Weak Rock: Soft, Fractured and Weathered Rock[C]. Rotterdam: A. A. Balkema, 1981.
    [62]
    Withjack M O, Baum M S, Schlische R W. Influence of preexisting fault fabric on inversion-related deformation:A case study of the inverted Fundy rift basin, southeastern Canada[J]. Tectonics, 2010, 29(6):TC6004. doi: 10.1029/2010TC002744/full
    [63]
    Moir H, Lunn R J, Shipton Z K, et al. Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock[J]. Journal of Structural Geology, 2010, 32(11):1742~1753. doi: 10.1016/j.jsg.2009.08.016
    [64]
    李四光.旋捲构造及其他有关中国西北部大地构造体系复合问题[J].科学通报, 1955, (7):53~56, 85. http://www.cnki.com.cn/Article/CJFDTotal-DZXE197301004.htm

    LI Siguang. Coiling structure and other related issues related to the tectonic system in northwest China[J]. Scientific Bulletin, 1955, (7):53~56, 85. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DZXE197301004.htm
    [65]
    乐光禹, 杜思清, 黄继钧, 等.构造复合联合原理-川黔构造组合叠加分析[M].成都:成都科技大学出版社, 1996:1~281.

    YUE Guangyu, DU Siqing, HUANG Jijun, et al. Principle of Structural Compounding-Combine[M]. Chengdu:Chengdu University of Science and Technology Press, 1996:1~281. (in Chinese)
    [66]
    童亨茂, 王建君, 赵海涛, 等. "摩尔空间"及其在先存构造活动性预测中的应用[J].中国科学:地球科学, 2014, 44(9):1948~1957. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199002003.htm

    TONG Hengmao, WANG Jianjun, ZHAO Haitao, et al. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China Earth Sciences, 2014, 57(7):1595~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199002003.htm
    [67]
    童亨茂, 陈正乐, 刘瑞珣.广义剪切活动准则[J].自然杂志, 2015, 37(6):441~447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201506007

    TONG Hengmao, CHEN Zehngle, LIU Ruixun. Generalized shear activation criterion[J]. Chinese Journal of Nature, 2015, 37(6):441~447. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201506007
    [68]
    Engelder T, Fischer M P. Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in overpressured parts of sedimentary basins[J]. Geology, 1994, 22(10):949~952. doi: 10.1130/0091-7613(1994)022<0949:IOPBOT>2.3.CO;2
    [69]
    关成尧, 漆家福, 邱楠生, 等.应力比影响下的破裂角、闭锁角、摩擦系数及其耦合关系[J].岩土力学, 2012, 33(12):3570~3576. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201302012.htm

    GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. Crack angle, lock angle, friction coefficient under stress ratio affection and their coupling relationship in a compression-shear crack[J]. Rock and Soil Mechanics, 2012, 33(12):3570~3576. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201302012.htm
    [70]
    Byerlee J D. Friction of rocks[J]. Pure and Applied Geophysics Pageoph, 1978, 116(4):615~626. https://www.researchgate.net/publication/248786151_Time-Dependent_Friction_in_Rocks
    [71]
    Henza A A, Withjack M O, Schlische R W. How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension?[J]. Journal of Structural Geology, 2011, 33(9):1312~1324. doi: 10.1016/j.jsg.2011.06.010
    [72]
    Morley C K, Gabdi S, Seusutthiy K. Fault superimposition and linkage resulting from stress changes during rifting:Examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 2007, 29(4):646~663. doi: 10.1016/j.jsg.2006.11.005
    [73]
    Adam J, Klinkmüller M, Schreurs G, et al. Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation:Integration of X-ray computed tomography and digital volume correlation techniques[J]. Journal of Structural Geology, 2013, 55:127~149. doi: 10.1016/j.jsg.2013.07.011
    [74]
    Marques F O, Cobbold P R. Topography as a major factor in the development of arcuate thrust belts:insights from sandbox experiments[J]. Tectonophysics, 2002, 348(4):247~268. doi: 10.1016/S0040-1951(02)00077-X
    [75]
    钟嘉猷.实验构造地质学及其应用[M].北京:科学出版社, 1998.

    ZHONG Jiayou. Experimental Structural Geology and Its Applications[M]. Beijing:Science Press, 1998. (in Chinese)
    [76]
    周建勋, 周建生.渤海湾盆地新生代构造变形机制:物理模拟和讨论[J].中国科学D辑:地球科学, 2006, 36(6):507~519. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410066020.htm

    ZHOU Jianxun, ZHOU Jiansheng. Mechanisms of Cenozoic deformation in the Bohai Basin, Northeast China:Physical modelling and discussions[J]. Science in China Series D, 2006, 49(3):258~271. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410066020.htm
    [77]
    Cosgrove J W, Engelder T. The Initiation, Propagation, and Arrests of Joints and Other Fractures[M]. London:The Geological Society London, 2004:1~327.
    [78]
    Bahat D. Tectonofractography[M]. Berlin:Springer, 1991.
    [79]
    Price N J. Fault and Joint Development, in Brittle and Semi-Brittle Rock[M]. New York:Pergamon Press, 1966:1~176.
    [80]
    Rossmanith H R. Mechanics of Jointed and Faulted Rock[M]. Balkema:CRC Press, 1990.
    [81]
    Pollard D D, Aydin A. Progress in understanding jointing over the past century[J].Geological Society of America Bulltin.1988, 100:1181~1204. doi: 10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
    [82]
    Pollard D D, Bergbauer S, Mynatt I. Using differential geometry to characterize and analyse the morphology of joints[J]. Geological Society, London, Special Publications, 2004, 231:153~182. doi: 10.1144/GSL.SP.2004.231.01.10
    [83]
    Snow D T. Rock fracture spacings, openings, and porosities[J]. Journal of Soil Mechanics & Foundation Division, 1968, 94(SM1):73~91. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0015464
    [84]
    Bai T, Pollard D D. Closely spaced fracture in layered rocks:initiation mechanism and propagation kinematics[J]. Journal of structural geology.2000, 22:1409~1425. doi: 10.1016/S0191-8141(00)00062-6
    [85]
    Germanovich L N, Salganik R L, Dyskin A V, et al. Mechanisms of brittle fracture of rock with pre-existing cracks in compression[J]. Pure and Applied Physics, 1994, 143(1~3):117~149. doi: 10.1007%2FBF00874326
    [86]
    BAI Taixu, Pollard D D. Fracture spacing in layered rocks:a new explanation based on the stress transition[J]. Journal of Structural Geology, 2000, 22(1):43~57. doi: 10.1016/S0191-8141(99)00137-6
    [87]
    WU Haiqing, Pollard D D. An experimental study of the relationship between joint spacing and layer thickness[J]. Journal of Structural Geology, 1995, 17(6):887~905. doi: 10.1016/0191-8141(94)00099-L
    [88]
    Cross M R. The origin and spacing of cross joints:Examples from the Monterey formation, Santa Barbara coastline, California[J]. Journal of Structural Geology, 1993, 15(6):737~751. doi: 10.1016/0191-8141(93)90059-J
    [89]
    Sabljic D B, Wilkinson D S. Influence of a damage zone on high temperature crack growth in brittle materials[J]. Acta Metallurgica et Materialia, 1995, 43(11):3937~3945. doi: 10.1016/0956-7151(95)00095-D
    [90]
    Eichhubl P, Aydin A, Lore J. Opening-mode fracture in siliceous mudstone at high homologous temperature-effect of surface forces[J]. Geological Research Letters, 2001, 28(7):1299~1302. https://www.deepdyve.com/lp/elsevier/non-linear-growth-kinematics-of-opening-mode-fractures-V1alCGobNV
    [91]
    Holder J, Olson J E, Philip Z. Experimental determination of subcritical crack growth parameters in sedimentary rock[J]. Geological Research Letters, 2001, 28(4):599~602. doi: 10.1029/2000GL011918/full
    [92]
    Sheldon P. some observations and experiments on joint planes[J]. The Journal of Geology, 1912, 20(1):53~70. doi: 10.1086/621931
    [93]
    Sanderson D J, ZHANG Xing. Stress-controlled localization of deformation and fluid flow in fractured rocks[J]. Geological Society, London, Special Publications, 2004, 231:299~314. doi: 10.1144/GSL.SP.2004.231.01.18
    [94]
    Halls H C, Fahrig W F. Mafic Dyke Swarms[R]. The Geological Association of Canada, Special Papers 34, 1987.
    [95]
    Bahat D, Engelder T. Surface morphology on cross-fold joints of the Appalachian Plateau, New York and Pennsylvania[J]. Tectonophysics, 1984, 104(3~4):299~313. https://www.sciencedirect.com/science/article/pii/0040195184901288
    [96]
    Jolly R J H, Sanderson D J. A Mohr Circle construction for the opening of a pre-existing fracture[J]. Journal of Structural Geology, 1997, 19(6):887~892. doi: 10.1016/S0191-8141(97)00014-X
    [97]
    李先炜.岩块力学性质[M].北京:煤炭工业出版社, 1983:1~302.

    LI Xianwei. Mechanics Properties of Rock Bulk[M]. Beijing:Coal Industry Press, 1983:1~302. (in Chinese)
    [98]
    杨圣奇.裂隙岩石力学特性研究及时间效应分析[M].北京:科学出版社, 2011:1~338.

    YANG Shengqi. Fractured Rock Mechanical Properties and Time Effect[M]. Beijing:Science Press, 2011:1~338. (in Chinese)
    [99]
    Spyropoulos C, Griffith W J, Scholz C H, et al. Experimental evidence for different strain regimes of crack populations in a clay model[J]. Geophysical Research Letters, 1999, 26(8):1081~1084. doi: 10.1029/1999GL900175
    [100]
    Ackermann R V, Schlische R W, Withjack M O. The geometric and statistical evolution of normal fault systems:an experimental study of the effects of mechanical layer thickness on scaling laws[J]. Journal of Structural Geology, 2001, 23(11):1803~1819. doi: 10.1016/S0191-8141(01)00028-1
    [101]
    Bonnet E, Bour O, Odling N E, et al. Scaling of fracture systems in geological media[J]. Reviews of Geophysics, 2001, 39(3):347~383. doi: 10.1029/1999RG000074
    [102]
    Aydin A, Berryman J G. Analysis of the growth of strike-slip faults using effective medium theory[J]. Journal of Structural Geology, 2010, 32(11):1629~1642. doi: 10.1016/j.jsg.2009.11.007
    [103]
    Schultz R A, Klimczak C, Fossen H, et al. Statistical tests of scaling relationships for geologic structures[J]. Journal of Structural Geology, 2013, 48:85~94. doi: 10.1016/j.jsg.2012.12.005
    [104]
    周建勋, 漆家福, 童亨茂.盆地构造研究中的砂箱模拟实验方法[M].北京:地震出版社, 1999:1~123.

    ZHOU Jianxun, QI Jiafu, TONG Hengmao. Experimental Method of Sandbox Simulation in the Study of Basin Structure[M]. Beijing:Earthquake Publishing House, 1999:1~123. (in Chinese)
    [105]
    单家增.构造模拟实验在石油地质学中的应用[M].北京:石油工业出版社, 1996.

    SHAN Jiazeng. The Application of Structural Simulation Experiments in Petroleum Geology[M]. Beijing:Petroleum Industry Press, 1996. (in Chinese)
    [106]
    Hubbert M K. Theory of scale models as applied to the study of geologic structures[J]. GSA Bullitin, 1937, 48(10):1459~1520. doi: 10.1130/GSAB-48-1459
    [107]
    Hubbert M K. Mechanical basis for certain familiar geologic structures[J]. GSA Bullitin, 1951, 62(4):355~372. doi: 10.1130/0016-7606(1951)62[355:MBFCFG]2.0.CO;2
    [108]
    Buchanan et al., 1991. Sandbox experiments of inverted listric and planar fault systems[J].Tectonophysics, 188(1~2):97~115. https://www.sciencedirect.com/science/article/pii/004019519190317L
    [109]
    沈礼, 贾东, 尹宏伟, 等.构造物理模拟和PIV有限应变分析对构造裂缝预测的启示[J].高校地质学报, 2016, 22(1):171~182. http://www.cnki.com.cn/Article/CJFDTotal-GXDX201601017.htm

    SHEN Li, JIA Dong, YIN Hongwei, et al. Structural analogue modeling and PIV finite strain analysis:implications to tectonic fracture prediction[J]. Geological Journal of China Universities, 2016, 22(1):171~182. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GXDX201601017.htm
    [110]
    Adam J, Urai J L, Wieneke B, et al. Shear localisation and strain distribution during tectonic faulting——new insights from granular-flow experiments and high-resolution optical image correlation techniques[J]. Journal of Structural Geology, 2005, 27(2):283~301. doi: 10.1016/j.jsg.2004.08.008
    [111]
    孙其诚, 厚美瑛, 金峰.颗粒物质物理与力学[M].北京:科学出版社, 2011:191~193.

    SUN Qicheng, HOU Meiying, JIN Feng. Particle Physics and Mechanics[M]. Beijing:Science Press, 2011:191~193. (in Chinese)
    [112]
    关成尧, 漆家福, 邱楠生, 等.疏松砂岩层宏观弹性模量计算模型研究[J].武汉理工大学学报, 2013, 35(5):84~89, 139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201305017

    GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. Macroscopic Elastic Modulus model of particle packing sandstone[J]. Journal of Wuhan University of Technology, 2013, 35(5):84~89, 139. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201305017
    [113]
    Das S, Scholz C H. Theory of time-dependent rupture in the earth[J]. Journal of Geophysical Research, 1981, 86(B7):6039~6051. doi: 10.1029/JB086iB07p06039
    [114]
    Cowie P A, Sornette D, Vanneste C. Multifractal Scaling properties of a growing fault population[J]. Geophysical Journal International, 1995, 122(2):457~469. doi: 10.1111/gji.1995.122.issue-2
    [115]
    П И波卢欣. 塑性变形的物理基础[M]. 黄克琴, 译. 北京: 冶金工业出版社, 1989: 1~536.

    Полухин П И. Physical Basis of Plastic Deformation[M]. HUANG Keqin, trans. Beijing: Metallurgical Industry Press, 1989: 1~536. (in Chinese)
    [116]
    Houwink R, Decker H K. Elasticity, Plasticity and Structure of Matter[M]. Cambridge:Cambridge University Press, 1971.
    [117]
    孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报, 2007, 26(6):1081~1106. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y843338

    SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6):1081~1106. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y843338
    [118]
    孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999:1~715.

    SUN Jun. Geomaterials Evolution and Engineering Applications[M]. Beijing:China Building Industry Press, 1999:1~715. (in Chinese)
    [119]
    袁龙蔚, 智荣斌, 李之达.流变断裂学基础[M].北京:国防工业出版社, 1992:1~188.

    YUAN Longwei, ZHI Rongbin, LI Zhida. Fundamentals of Rheological Fracture[M]. Beijing:National Defense Industry Press, 1992:1~188. (in Chinese)
    [120]
    章根德, 何鲜, 朱维耀.岩石介质流变学[M].北京:科学出版社, 1999:1~378.

    ZHANG Gende, HE Xian, ZHU Weiyao. Rheology of Rock Media Materials[M]. Beijing:Science Press, 1999:1~378. (in Chinese)
    [121]
    袁龙蔚.流变力学[M].北京:科学出版社, 1986:1~738.

    YUAN Longwei. Rheological Mechanics[M]. Beijing:Science Press, 1986:1~738. (in Chinese)
    [122]
    Eirich F R. Rheology Theory and Application (Volume 1~Volume 5)[M]. London:Academic Press, 1956~1969:1~761.
    [123]
    黄克智, 余寿文.弹塑性断裂力学[M].北京:清华大学出版社, 1985:1~402.

    HUANG Kezhi, YU Shouwen. Plastic fracture mechanics. Beijing:Tsinghua University Press, 1985:1~402. (in Chinese)
    [124]
    Hirth J P, Lothe J. Theory of Dislocations[M]. New York:McGraw-Hill Press, 1968:1~780.
    [125]
    Barrett C S, Massalski T B. Structure of Metals:Crystallographic Methods, Principles and Data[M]. 3rd ed. Oxford:Pergamon Press, 1980:1~654.
    [126]
    Smith R A. Fatigue Crack Growth:30 Years of Progress[M]. Oxford:Pergamon Press, 1986:1~146.
    [127]
    冯端.金属物理学(第三卷):金属力学性质[M].北京:科学出版社, 1999:1~604.

    FENG Duan. Metal Physics (Vol. 3):Mechanical Properties of Metals[M]. Beijing:Science Press, 1999:1~604. (in Chinese)
    [128]
    Boyle J T, Spence J. Stress Analysis for Creep[M]. London:Butterworths Press, 1983:1~147.
    [129]
    葛庭燧.固体内耗理论基础:晶界弛豫与晶界结构[M].北京:科学出版社, 2000:1~688.

    GE Tingsui. Theoretical Basis of Solid Friction:The Grain Boundary Relaxation and Grain Boundary Structure[M]. Beijing:Science Press, 2000:1~688. (in Chinese)(未找到本条文献英文信息, 请核对)
    [130]
    Ugiansky G M, Payer J H. Stress Corrosion Cracking-The Slow Strain-Rate Technique[M]. Southampton:American Society of Testing and Materials, 1979:1~442.
    [131]
    Blenkinsop T G. Deformation Microstructures and Mechanisms in Minerals and Rocks[M]. New York:Kluwer Academic Publishers, 2002.
    [132]
    Ramsay J G. Shear zone geometry:a review[J]. Journal of Structural Geology, 1980, 2(1~2):83~89. https://www.sciencedirect.com/science/article/pii/0191814180900383
    [133]
    Paterson M S. Experimental Rock Deformation:The Brittle Field[M]. Berlin:Springer Verlag, 1978.
    [134]
    GAO Jianping, Luedtke W D, Gourdon D, et al. Frictional forces and Amonton's Law:from the molecular to the macroscopic scale[J]. The Journal of Physical Chemistry, 2004, 108(11):3410~3425. doi: 10.1021/jp036362l
    [135]
    Tse S T, Rice J R. Crustal earthquake instability in relation to the depth variation of frictional slip properties[J]. Journal of Geophysical Research, 1986, 91(B9):9452~9472. doi: 10.1029/JB091iB09p09452
    [136]
    Scholz C H. The Mechanics of Earthquakes and Faulting[J]. New York:Cambridge University Press, 1990. https://www.amazon.com/Mechanics-Earthquakes-Faulting-2nd/dp/0521655404
    [137]
    Meissner R, Strehlau J. Limits of stresses in continental crusts and their relation to the depth-frequency distribution of shallow earthquakes[J]. Tectonics, 1982, 1(1):73~89. doi: 10.1029/TC001i001p00073
    [138]
    Blenkinsop T G. Thickness-displacement relationships for deformation zones:Discussion[J]. Journal of Structural Geology, 1989, 11(8):1051~1053. doi: 10.1016/0191-8141(89)90056-4
    [139]
    Blenkinsop T G. Cataclasis and processes of particle size reduction[J]. Pure and Applied Geophysics, 1991, 136(1):59~86. doi: 10.1007/BF00878888
    [140]
    Paterson M S. Problems in the extrapolation of laboratory rheological data[J]. Tectonophysics, 1987, 133(1~2):33~43. https://www.sciencedirect.com/science/article/pii/0040195187902782
    [141]
    Passchier C W. The reliability of asymmetric c-axis fabrics of quartz to determine sense of vorticity[J]. Tectonophysics, 1983, 99(1):T9~T18. doi: 10.1016/0040-1951(83)90166-X
    [142]
    Carter N L, Officer C B, Drake C L. Dynamic deformation of quartz and feldspar:clues to causes of some natural crises[J]. Tectonophysics, 1990, 171(1~4):373~391. https://www.sciencedirect.com/science/article/pii/004019519090111K
    [143]
    Johnson S E, Vernon R H. Inferring the timing of porphyroblast growth in the absence of continuity between inclusion trails and matrix foliations:can it be reliably done?[J]. Journal of Structural Geology, 1995, 17(8):1203~1206. doi: 10.1016/0191-8141(95)00021-5
    [144]
    Borradaile J G, Bayly M B, Powell C M A. Atlas of Deformational and Metamorphic Rock Fabrics[M]. Berlin Heidelberg:Springer, 1982.
    [145]
    Hacker B R, Kirby S H. High-pressure deformation of calcite marble and its transformation to aragonite under non-hydrostatic conditions[J]. Journal of Structural Geology, 1993, 15(9~10):1207~1222. https://pubs.er.usgs.gov/publication/70017468
    [146]
    Park Y, Means W D. Direct observation of deformation processes in crystal mushes[J]. Journal of Structural Geology, 1996, 18(6):847~858. doi: 10.1016/S0191-8141(96)80017-4
    [147]
    Benn K, Allard B. Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros[J]. Journal of Petrology, 1989, 30(4):925~946. doi: 10.1093/petrology/30.4.925
    [148]
    Green Ⅱ H W, Burnley P C. A new self-organizing mechanism for deep-focus earthquakes[J]. Nature, 1989, 341(6244):733~737. doi: 10.1038/341733a0
    [149]
    Cox S F. Antitaxial crack-seal vein microstructures and their relationship to displacement paths[J]. Journal of Structural Geology, 1987, 9(7):779~787. doi: 10.1016/0191-8141(87)90079-4
    [150]
    Gilotti J A, Hull J M. Phenomenological superplasticity in rocks[J]. Geological Society, London, Special Publications, 1990, 54:229~240. doi: 10.1144/GSL.SP.1990.054.01.22
    [151]
    Rushmer T. An experimental deformation study of partially molten amphibolite:application to low-melt fraction segregation[J]. Journal of Geophysical Research, 1995, 100(B8):15681~15695. doi: 10.1029/95JB00077
    [152]
    Rutter E H, Neumann D H K. Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas[J]. Journal of Geophysical Research, 1995, 100(B8):15697~15715. doi: 10.1029/94JB03388
    [153]
    Mancktelow N S. On volume change and mass transport during the development of crenulation cleavage[J]. Journal of Structural Geology, 1994, 16(9):1217~1231. doi: 10.1016/0191-8141(94)90065-5
    [154]
    Erslev E A, Ward D J. Non-volatile element and volume flux in coalesced slaty cleavage[J]. Journal of Structural Geology, 1994, 16(4):531~553. doi: 10.1016/0191-8141(94)90096-5
    [155]
    Knipe R J. Deformation mechanisms-recognition from natural tectonites[J]. Journal of Structural Geology, 1989, 11(1~2):127~146. https://www.researchgate.net/publication/223180727_Deformation_mechanisms_Recognition_from_natural_tectonites
    [156]
    Lister G S, Snoke A W. S-C mylonites[J]. Journal of Structural Geology, 1984, 6(6):617~638. doi: 10.1016/0191-8141(84)90001-4
    [157]
    Burg J-P. Quartz shape fabric variations and c-axis fabrics in a ribbon-mylonite:arguments for an oscillating foliation[J]. Journal of Structural Geology, 1986, 8(2):123~131. doi: 10.1016/0191-8141(86)90103-3
    [158]
    Ten Brink C E, Passchier C W. Modelling of mantled porphyroclasts using non-Newtonian rock analogue materials[J]. Journal of Structural Geology, 1995, 17(1):131~146. doi: 10.1016/0191-8141(94)E0032-T
    [159]
    Wenk H-R, Christie J M. Comments on the interpretation of deformation textures in rocks[J]. Journal of Structural Geology, 1991, 13(10):1091~1110. doi: 10.1016/0191-8141(91)90071-P
    [160]
    Price N J, Cosgrove J W. Analysis of Geological Structures[M]. Cambridge:Cambridge University Press, 1990.
    [161]
    Durtsche J S. Sliding friction and fracture of rocks[D]. New Mexico: New Mexico Institute of Mining and Technology, 1973: 1~294.
    [162]
    Carpinteri A, Paggi M. Size-scale effects on the friction coefficient[J]. International Journal of Solids and Structures, 2005, 42(9~10):2901~2910. https://www.sciencedirect.com/science/article/pii/S0020768304005670
    [163]
    关成尧, 杜成旺, 刘广虎, 等.异质材料凸起切向变形动摩擦研究[J].科学技术与工程, 2018, (2):86~92. https://www.doc88.com/p-9731335461658.html

    GUAN Chengyao, DU Chengwang, LIU Guanghu, et al. Dynamic tribology of heterogeneous materials based on asperities tangential deformation[J]. Science Technology and Engineering, 2018, (2):86~92. (in Chinese) https://www.doc88.com/p-9731335461658.html
    [164]
    GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. The relationship between the friction coefficient and the asperities original inclination angle[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(11):1906~1910. doi: 10.19026/rjaset.6.3803
    [165]
    关成尧, 漆家福, 邱楠生, 等.裂缝三级摩擦因数及影响因素研究(以砂岩(颗粒胶结体)为例)[J].应用数学和力学, 2013, 34(2):209~216. http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=yysxhlx&yearIssue=2013_2

    GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. Three levels friction coefficients of cracks and their influencing factors-taking the sandstone (particle packing layers) as an example[J]. Applied Mathematics and Mechanics, 2013, 34(2):209~216. (in Chinese) http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=yysxhlx&yearIssue=2013_2
    [166]
    Johnson K J. Contact Mechanics[M]. Cambridge:Cambridge University Press, 1985:1~448.
    [167]
    Streit J E. Low frictional strength of upper crustal faults:A model[J]. Journal of Geophysical Research, 1997, 102(B11):24619~24626. doi: 10.1029/97JB01509
    [168]
    Sibson R H. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 1977, 133(3):191~213. doi: 10.1144/gsjgs.133.3.0191
    [169]
    G S乌帕达耶, R K杜布. 冶金热力学与动力学的应用计算[M]. 金宝忠, 阎庆甲, 译. 北京: 冶金工业出版社, 1981: 1~222.

    Upadhyaya G S, Dube R K. Problems in Metallurgical Thermodynamics and Kinetics[M]. JIN Baozhong, YAN Qingjia, trans. Beijing: Metallurgical Industry Press, 1981: 1~222. (in Chinese)
    [170]
    汪凌云.金属塑性变形力学[M].重庆:重庆出版社, 1986:1~339.

    WANG Lingyun. Metal Plastic Deformation Mechanics[M]. Chongqing:Chongqing Publishing House, 1986:1~339. (in Chinese)(未找到本条文献信息, 请核对)
    [171]
    葛世荣, 朱华.摩擦学中的分形[M].北京:机械工业出版社, 2005:1~338.

    GE Shirong, ZHU Hua. Fractal in Tribology[M]. Beijing:Machinery Industry Press, 2005:1~338. (in Chinese)
    [172]
    张秉良, 方仲景, 李建国, 等.根据断层泥的微观特征探讨断层的活动性[J].地质力学学报, 1996, 2(2):41~46. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19960219&journal_id=dzlxxb

    ZHANG Dingliang, FANG Zhongjing, LI Jianguo, et al. Activities of faults as determined from the microstructural features of the clay gouge[J]. Journal of Geomechanics, 1996, 2(2):41~46. (in Chinese) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19960219&journal_id=dzlxxb
    [173]
    杨主恩, 胡碧茹, 洪汉净.活断层中断层泥的石英碎砾的显微特征及其意义[J].科学通报, 1984, 29(8):484~486. http://www.oalib.com/paper/4344206

    YANG Zhu'an, HU Biru, HONG Hanjing. Microscopic characteristics of quartz gains in fault gouges from active faults and their implication[J]. Chinese Science Bulletin, 1984, 29(8):484~486. (in Chinese) http://www.oalib.com/paper/4344206
    [174]
    Mwabanwa L K. Brittle tectonics in the Lufilian fold-and-thrust belt and its foreland. An insight into the stress field record in relation to moving plates (Katanga, DRC)[D]. Katholieke: Katholieke Universiteit, 2013: 1~161.
    [175]
    Katz Y, Weinberger R, Aydin A. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah[J]. Journal of Structural Geology, 2004, 26(3):491~501. doi: 10.1016/j.jsg.2003.08.003
    [176]
    何昌荣, 陶青峰, 王泽利.高温高压条件下辉长岩的摩擦强度及其速率依赖性[J].地震地质, 2004, 26(3):450~460. http://www.cqvip.com/QK/95728X/200403/10648037.html

    HE Changrong, TAO Qingfeng, WANG Zeli. Frictional strength and rate dependence of gabbro gouge under elevated temperature and pressure[J]. Seismology and Geology, 2004, 26(3):450~460. (in Chinese) http://www.cqvip.com/QK/95728X/200403/10648037.html
    [177]
    唐户俊一. 流变与地球动力学[M]. 何昌荣, 译. 北京: 地震出版社, 2005: 6~14.

    Ichro K S. Rheology and Eodynamics[M]. HE Changrong, trans. Beijing: Seismological Press, 2005: 6~14. (in Chinese)
    [178]
    Mescall J, Weiss V. Material Behavior Under High Stress and Ultrahigh Loading Rates[M]. New York:Plenum Press, 1983:1~326.
    [179]
    Ahlgren S G. The nucleation and evolution of Riedel shear-zones as deformation bands in porous sandstone[J]. Journal of Structural Geology, 2001, 23(8):1203~1214. doi: 10.1016/S0191-8141(00)00183-8
    [180]
    姚孝新. 断层泥的研究动向[J]. 四川地震, 1985, (3): 26~27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt201206233

    YAO Xiaoxin. Research trend of fault gouge[J]. Sichuan Earthquake, 1985, (3): 26~27. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt201206233
    [181]
    皇甫岗, 马瑾. 非粘土断层泥带厚度与断层错距关系的实验研究[J]. 中国地震, 1990, 6(3): 62~69. http://www.cqvip.com/QK/95750X/199003/410655.html

    HUANG Fugang, MA Jin. Experimental study on the relationship of fault displacement to the thickness of non-clay gouge layer[J]. Earthquake Research in China, 1990, 6(3): 62~69. (in Chinese) http://www.cqvip.com/QK/95750X/199003/410655.html
    [182]
    皇甫岗, 马瑾. 断层泥极限粒度存在的可能机理及其意义[J]. 西北地震学报, 1990, 12(4): 30~35. http://www.cnki.com.cn/Article/CJFDTotal-SCHZ198801007.htm

    HUANG Fugang, Ma Jin. A Possible mechanism of fault gouge limit grain size and its significance[J]. Northwestern Seismological Journal, 1990, 12(4): 30~35. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SCHZ198801007.htm
    [183]
    Engelder J T. Cataclasis and the generation of fault gouge[J]. GSA Bulletin, 1974, 85(10): 1515~1522. doi: 10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2
    [184]
    刘泉声, 崔先泽, 张程远. 基于变孔隙率的多孔介质中悬浮颗粒沉积渗透率衰减模型研究[J]. 岩石力学与工程学报, 2016, 35(Z1): 3308~3314. http://www.cqvip.com/QK/96026X/2016A01/669168053.html

    LIU Quansheng, CUI Xianze, ZHANG Chengyuan. Permeability reduction model of particles deposit in porous medium considering changeable porosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Z1): 3308~3314. (in Chinese) http://www.cqvip.com/QK/96026X/2016A01/669168053.html
    [185]
    XU Peng, YU Boming. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74~81. doi: 10.1016/j.advwatres.2007.06.003
    [186]
    李琪. 悬浮微小颗粒在饱和多孔介质中运移特性的理论及试验研究[D]. 天津: 天津大学, 2014: 1~114. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D655272

    LI Qi. A theoretical and experimental study on the moving characteristics of suspended particles in saturated porous media[D]. Tianjin: Tianjin University, 2014: 1~114. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D655272
    [187]
    王路珍. 变质量破碎泥岩渗透性的加速试验研究[D]. 徐州: 中国矿业大学, 2014: 1~221. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D564064

    WANG Luzhen. Accelerated experimental study on permeability for broken mudstone with mass loss[D]. Xuzhou: China University of Mining and Technology, 2014: 1~221. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D564064
    [188]
    Bedrikovetsky P, Siqueira F D, Furtado C A, et al. Modified particle detachment model for colloidal transport in porous media[J]. Transport in Porous Media, 2011, 86(2): 353~383. doi: 10.1007/s11242-010-9626-4
    [189]
    陈星欣, 白冰, 蔡奇鹏. 饱和多孔介质中颗粒释放-迁移问题的理论求解[J]. 中国科学: 技术科学, 2014, 44(6): 610~618. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183368.htm

    CHEN XingXin, BAI Bing, CAI Qipeng. Theoretical solution of particle release-transport in saturated porous media[J]. Scientia Sinica (Technologica), 2014, 44(6): 610~618. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183368.htm
    [190]
    杨雯, 郝丹丹, 徐东昊, 等. 生物炭颗粒在饱和多孔介质中的迁移与滞留[J]. 土壤通报, 2017, 48(2): 304~312. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2608312

    YANG Wen, HAO Dandan, XU Donghao, et al. Transport and retention of biochar particles in saturated porous media[J]. Chinese Journal of Soil Science, 2017, 48(2): 304~312. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2608312
    [191]
    刘泉声, 赵军, 张程远. 考虑尺寸排除效应颗粒迁移模型的建立[J]. 岩土力学, 2012, 33(8): 2265~2268. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201208005

    LIU Quansheng, ZHAO Jun, ZHANG Chengyuan. Establishment of particulate transport: size exclusion effect[J]. Rock and Soil Mechanics, 2012, 33(8): 2265~2268. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201208005
    [192]
    YAO Kuanmu, Habibian M T, O’Melia C R. Water and waste water filtration. Concepts and applications[J]. Environmental Science & Technology, 1971, 5(11): 1105~1112. doi: 10.1021/es60058a005
    [193]
    刘泉声, 崔先泽, 张程远. 多孔介质中悬浮颗粒迁移-沉积特性研究进展[J]. 岩石力学与工程学报, 2015, 34(12): 2410~2427. https://www.cnki.com.cn/lunwen-1017058678.html

    LIU Quansheng, CUI xianze, ZHANG Chengyuan. Research advances in the characterization of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2410~2427. (in Chinese) https://www.cnki.com.cn/lunwen-1017058678.html
    [194]
    王新亮. 石油储层微通道纳米颗粒吸附法双重减阻机制研究[D]. 上海: 上海大学, 2013: 1~139. http://cdmd.cnki.com.cn/Article/CDMD-10280-1013326123.htm

    WANG Xinliang. The mechanical-chemical drag reduction mechanism with nanoparticles adsorption method in reservoir micro-channels[D]. Shanghai: Shanghai University, 2013: 1~139. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10280-1013326123.htm
    [195]
    蒋官澄, 鄢捷年, 吴学诗. 计算完井液中固相颗粒侵入储层深度的数学模型[J]. 钻井液与完井液, 1995, 12(2): 66~73. http://www.cnki.com.cn/Article/CJFDTotal-JHSX199301012.htm

    JIANG Guancheng, YAN Jienian, WU Xueshi. mathematical model for the calculation of invasion depth of solid particles of completion fluid into reservoir[J]. Drilling Fluid and Completion Fluid, 1995, 12(2): 66~73. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JHSX199301012.htm
    [196]
    Jakob A. Matrix Diffusion for Performance Assessment Experimental Evidence, Modelling Assumptions and Open Issues[M]. Paul Scherrer Institut, Villigen PSI, 2004: 1~87.
    [197]
    Bullen T D, Wang Y. Water Rock Interaction[C]. London: Taylor & Francis, 2007: 1~849.
    [198]
    谢一婷. 疏松砂岩油藏适度出砂井近井地层渗透率变化规律研究[D]. 重庆: 西南石油大学, 2013: 1~140. http://cdmd.cnki.com.cn/Article/CDMD-10615-1017256562.htm

    XIE Yiting. Research on changes of in-situ permeability near wellbore in unconsolidated sandstone reservoir with sand management[D]. Chongqing: Southwest Petroleum University, 2013: 1~140. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10615-1017256562.htm
    [199]
    鞠斌山. 油藏渗流系统物性变化机理与数学模拟研究[D]. 北京: 中国地质大学(北京), 2006: 1~191. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006060315.htm

    JU Binshan. Study of mechanism and mathematical simulation on the changes in physical properties of flow system in oil reservoirs[D]. Beijing: China University of Geosciences (Beijing), 2006: 1~191. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-11415-2006060315.htm
    [200]
    苏崇华. 疏松砂岩储层伤害机理及应用[D]. 重庆: 西南石油大学, 2011: 1~155. http://cdmd.cnki.com.cn/Article/CDMD-10615-1012252672.htm

    SU Chonghua. Loose sand reservoir damage mechanism and its application to HND-1/2 oilfield[D]. Chongqing: Southwest Petroleum University, 2011: 1~155. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10615-1012252672.htm
    [201]
    王正茂. 油藏含砂流体渗流机理及流固耦合单井数值模拟研究[D]. 重庆: 西南石油大学, 2004: 1~160. http://cdmd.cnki.com.cn/Article/CDMD-10615-2005012766.htm

    WANG Zehngmao. The study of fluid flow mechanism with sand erosion and sand particulates migration in the reservoir and fluid-solid coupling single-well numerical simulation[D]. Chongqing: Southwest Petroleum University, 2004: 1~160. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10615-2005012766.htm
    [202]
    王嘉荫. 应力矿物概论[M]. 北京: 地质出版社, 1978.

    WANG Jiayin. Introduction to Stress Minerals[M]. Beijing: Geological Publishing House, 1978. (in Chinese)
    [203]
    施尔畏, 陈之战, 元如林. 水热结晶学[M]. 北京: 科学出版社, 2004.

    SHI Erwei, CHEN Zhizhan, YUAN Rulin. Hydrothermal Crystallology[M]. Beijing: Science Press, 2004. (in Chinese)
    [204]
    Lehner F K. Thermodynamics of rock deformation by pressure solution[A]. Barber D J, Meredith P G. Deformation Processes in Minerals, Ceramics and Rocks. London: Unwin Hyman, 1990: 296~333.
    [205]
    Chilingarian G V. Developments in Sedimentology 18B: Compaction of Coarse-Grained Sediments, Ⅱ[M]. New York: Elsevier Scientific Publishing Company, 1976: 1~808.
    [206]
    Ingerson E. Clay and clay minerals[A]. Proceedings of the Sixth National Conference on Clays and Clay Minerals[C]. London: Pergamon Press, 1957.
    [207]
    Ruhovets N, Fert W H. Volumes, types, and distribution of clay minerals in reservoir rocks based on well logs[R]. SPE 10796, 1982.
    [208]
    刘新宇. 泥岩涂抹变形机制的物理实验模拟研究[D]. 大庆: 东北石油大学, 2015: 1~51. http://cdmd.cnki.com.cn/Article/CDMD-10220-1015362680.htm

    LIU Xinyu. The physical simulation experiments for formation and evolution of clay smear[S]. Daqing: Northeast Petroleum University, 2015: 1~51. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10220-1015362680.htm
    [209]
    裴伟. 地壳应力状态[M]. 国家地震局地震地质大队情报资料室, 译. 北京: 地震出版社, 1978: 1~103.

    Пейве A B. Crustal stress state[M]. National Earthquake Bureau Geological Team Information Reference Room, trans. Beijing: China Earthquake Press, 1978: 1~103. (in Chinese)
    [210]
    苏生瑞, 黄润秋, 王士天. 断裂构造对地应力场的影响及其工程应用[M]. 北京: 科学出版社, 2002: 1~175.

    SU Shengrui, HUANG Runqiu, WANG Shitian. The Influence of Fracture Structure on Ground Stress Field and Its Engineering Application[M]. Beijing: Science Press, 2002: 1~175. (in Chinese)
    [211]
    Means W D. Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists[M]. New York: Springer-Verlag, 1976: 1~339.
    [212]
    Reinecker J, Tingay M, Müller B, et al. Present-day stress orientation in the Molasse Basin[J]. Tectonophysics, 2010, 482(1~4): 129~138. http://www.sciencedirect.com/science/article/pii/S0040195109004119
    [213]
    Zoback M D, Barton C A, Brudy M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7~8): 1049~1076. http://www.sciencedirect.com/science/article/pii/S1365160903001175
    [214]
    Bonini M. Mud volcanoes: Indicators of stress orientation and tectonic controls[J]. Earth-Science Reviews, 2012, 115(3): 121~152. doi: 10.1016/j.earscirev.2012.09.002
    [215]
    Reches Z, Lockner D A. Nucleation and growth of faults in brittle rocks[J]. Journal of Geophysical Research, 1994, 99(B9): 18159~18173. doi: 10.1029/94JB00115
    [216]
    皇甫岗. 断层泥的厚度、粒度与断层错距的关系[J]. 四川地震, 1988, (1): 50~56. http://www.cqvip.com/QK/95750X/199003/410655.html

    HUANG Pugang. Relationship between gouge thickness, size and faulting distance[J]. Sichuan Earthquake, 1988, (1): 50~56. (in Chinese) http://www.cqvip.com/QK/95750X/199003/410655.html
    [217]
    童亨茂. 断层开启与封闭的定量分析[J]. 石油与天然气地质, 1998, 19(3): 215~220. doi: 10.11743/ogg19980308

    TONG Hengmao. Quantitative analysis of fault opening and sealing[J]. Oil & Gas Geology, 1998, 19(3): 215~220. (in Chinese) doi: 10.11743/ogg19980308
    [218]
    WANG Chiyuan. Internal Structure of Fault Zones[M]. Boston: Birkhäuser Verlag, 1986: 1~373.
    [219]
    Seminsky K Z. Internal structure of fault zones: spatial and temporal evolution studies on clay models[J]. Geodynamics and Tectonophysic, 2012, 3(3): 183~194. doi: 10.5800/GT-2012-3-3-0070
    [220]
    Bullock R J, De Paola N, Holdsworth R E, et al. Lithological controls on the deformation mechanisms operating within carbonate-hosted faults during the seismic cycle[J]. Journal of Structural Geology, 2014, 58: 22~42. doi: 10.1016/j.jsg.2013.10.008
    [221]
    Holland M, Urai J L, van der Zee W, et al. Fault gouge evolution in highly overconsolidated claystones[J]. Journal of Structural Geology, 2006, 28(2): 323~332. doi: 10.1016/j.jsg.2005.10.005
    [222]
    黄筑平. 连续介质力学基础[M]. 北京: 高等教育出版社, 2003: 1~441.

    HUANG Zhuping. Fundamentals of Continuum Mechanics[M]. Beijing: Higher Education Press, 2003: 1~441. (in Chinese)
    [223]
    戚承志, 钱七虎. 岩体动力变形与破坏的基本问题[M]. 北京: 科学出版社, 2009: 1~371.

    QI Chengzhi, QIAN Qihu. Basic Problems of Dynamic Deformation and Fracture of Rock Mass[M]. Beijing: Science Press, 2009: 1~371. (in Chinese)
    [224]
    王思敬. 坝基岩体工程地质力学分析[M]. 北京: 科学出版社, 1990: 1~371.

    WANG Sijing. Dam Foundation Rock Mass Engineering Geological Mechanics Analysis[M]. Beijing: Science Press, 1990: 1~371. (in Chinese)
  • 加载中

Catalog

    Figures(5)

    Article Metrics

    Article views (181) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return