LIU Wei, YU Chuan-mou, 2009. CHARACTERISTICS OF FAULTS IN THE PU-WEI RING DEPRESSION AND ITS CONTRIBUTION TO MIGRATION AND ACCUMULATION OF OIL AND GAS. Journal of Geomechanics, 15 (2): 190-200.
Citation: LI Nan, WANG Banqiao, MEN Yuming, et al., 2018. STUDY ON DYNAMIC RESPONSE OF LANDSLIDE SUPPORTED BY PRESSURE-TYPE ANCHOR UNDER EARTHQUAKE. Journal of Geomechanics, 24 (4): 490-497. DOI: 10.12090/j.issn.1006-6616.2018.24.04.051

STUDY ON DYNAMIC RESPONSE OF LANDSLIDE SUPPORTED BY PRESSURE-TYPE ANCHOR UNDER EARTHQUAKE

doi: 10.12090/j.issn.1006-6616.2018.24.04.051
More Information
  • In order to study dynamic response of anchorage landslide and mechanical behaviors of pressure-type anchor under earthquake, the finite element software ABAQUS was adopted and an anchorage landslide model supported by pressure-type anchor and lattice beam was established. On that basis, the acceleration response law of anchorage landslide, the effect of ground motion parameters on acceleration response of the model, and the mechanical behaviors of pressure-type anchor under earthquake were researched respectively. The results indicated that anchorage landslide had elevation amplification effect from bottom to top along with the landslide, and the acceleration response in crest was the strongest. Due to the spectrum characteristics of earthquake, acceleration response is different under different seismic waves. The anchorage landslide had an amplifying effect on lower frequency band and an attenuation function on higher frequency band. With the increase of loading amplitude, the acceleration response of anchorage landslide decreased first and then increased. For the same anchor, axial force distribution was nearly uniform; however, for the anchors at different elevation, axial force of anchors had a great difference, and the strain distribution of anchor body shows the "C"-type from bottom to top. The bottom anchor and the top anchor bear most of the loads. The research results could provide a reasonable foundation for the design of the pressure-type anchor under earthquake.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • 东濮凹陷位于渤海湾盆地西南临清坳陷的南部, 凹陷内发育规模和活动周期不尽相同的断裂, 这些断裂的长期继承性发育不仅控制了东濮凹陷的形成和发育, 也控制了盆地内油气分布与富集[1~7]。濮卫环洼带隶属于东濮凹陷中央隆起带, 为北部卫东-文东断裂系和濮城-陈营断裂系相向下落所形成的“断洼型”负向构造单元, 地质结构复杂, 储层空间展布变化大。目前, 构造高部位的勘探程度较高, 而洼陷带勘探程度还较低。因此, 深入研究该区断裂特征及其对油气运聚的作用, 对滚动勘探开发和隐蔽油气藏勘探具有重要意义。渤海湾及其周缘乃至华北地区油气成藏条件与油气运聚过程研究日亦深入, 已取得许多新成果[8~19]可以借鉴。

    卫东-文东断裂系由复杂的卫东断裂破碎带和文东断层、文51断层等组成(图 1表 1)。

    图  1  濮卫环洼带主要断裂分布图
    Figure  1.  Distribution chart of main faults in the Pu-Wei ring depression
    表  1  濮卫环洼带主要断裂要素表
    Table  1.  Main fault elements in Pu-Wei ring depression
    下载: 导出CSV 
    | 显示表格

    (1) 卫东断层

    由3条呈雁行式排列的断层组成, 是一组东倾的滑脱性大断层, 北起古云集地区, 南至卫70井附近消失。断层在沙二下亚段沉积晚期产生, 至东营组沉积末期停止活动。断层走向NNE, 倾向SEE, 倾角15~50°, 落差为50~1130m。剖面上, 在沙三段盐层顺层滑动, 并在盐层内消失, 向下不切割基底。卫东断层下降盘伴生一系列反向“Y”字型次级断层, 从深层到浅层多期发育, 明显控制沙二段、沙一段及东营组等地层的沉积。

    (2) 文东断层

    文东断层是环洼带南部的西界断层, 向南断层落差逐渐增大。在研究区内, 断层走向NE、倾向SE, 延伸长度5km, 剖面上表现为上缓下陡, 落差为30~250m, 沙三下亚段沉积末期开始活动, 沙三中沉积期强烈活动, 至东营组沉积末期停止活动。

    (3) 文51断层

    属于卫东断层的伴生断层, 与卫东断层斜交, 呈反“ Y”形, 断层走向NEE, 倾向NWW, 倾角10~40°, 落差50~260m, 南大北小, 延伸长度约2.5km, 于沙二上至沙一期活动, 沙二上沉积期对沉积的控制作用明显。

    濮城-陈营断裂系展布于濮城和陈营地区, 发育濮城南断层、濮67断层、濮31断层、濮138断层和陈营断层(见图 1表 1)。

    (1) 濮城南断层

    断层走向NE, 倾向NW, 倾角25~60°, 落差50~560m, 延伸长度大于8.5km。断层活动时间为沙三中亚段早期至东营组沉积期。

    (2) 濮67断层

    濮67断层位于濮城-陈营断裂系的中段, 与濮城南断层和陈营断层首尾相接, 走向NNE, 倾向NWW, 延伸长度约10km。剖面上具有上陡下缓的特点, 倾角20~60°, 断层落差为50~360m, 北大南小。产生于沙三中亚段沉积期, 结束于沙二上亚段沉积末期。

    (3) 濮31断层

    濮31断层断面下陡上缓, 为濮67断层的伴生断层, 从沙三中后期一直活动至东营组沉积期。断层走向NNE、倾向NWW, 倾角40~60°, 落差50~200m, 延伸长度约10km。

    (4) 濮138断层

    位于濮31断层的西侧, 断层走向NNE向, 倾向NWW, 倾角40~60°, 落差为50~350m, 延伸长度约8km。剖面上, 向深部交接到濮67断层上。断层活动时间为沙三中-上亚段沉积期。

    (5) 陈营断层

    陈营断层是一条切割基底的区域性控制沉积断层, SN走向、倾向正西, 断层落差为50 ~1000m, 南端小、北端大, 延伸长度约10km。断裂活动开始于沙三下亚段沉积早期, 结束于沙二上亚段沉积晚期, 沙三下-中期剧烈活动。陈营断层与濮67断层呈雁行式排列, 向北斜交于古云集的云3断层。

    目前主要采用断层生长指数、断层落差、断层活动速率等参数来定量表示断层的活动性[20~22]。濮卫环洼带主要断层生长指数和断层落差统计表明, 同一条断层的不同部位、甚至同一部位的不同时期, 其活动性都存在着较大的差异。

    卫东断层是卫东-文东断裂系的主体, 沙二上亚段至东营组沉积期间, 持续较强的断裂活动, 是一条长期活动的控洼断层。卫东三号断层活动范围最广泛, 活动强度大, 断层最大落差高达1130m。东营组沉积期, 卫东断层的活动性最强, 断层中段生长指数高达3.5, 在601测线上断层落差达518m。沿走向分段性明显, 断层中段活动强度最大, 向两端活动性减弱(图 2ab)。

    图  2  濮卫环带主要断层生长指数与落差直方图
    Figure  2.  The growth index and paleo-fall bar chart of the main faults in the Pu-Wei ring depression

    濮城南断层位于濮城-陈营断裂系南端, 活动时间较长, 但整体活动性较弱, 最大落差为560m。沙三中-上亚段沉积期是该断裂主要活动期, 活动范围最广泛, 最大生长指数为1.8, 901测线上的断层落差达460m。沙二下开始活动强度逐渐减弱, 活动范围也缩小至中南部, 至东营期仅在1001测线附近活动, 落差为60m (图 2cd)。

    濮67断层活动时间相对较短, 沙三中-上亚段沉积时期断层活动最为强烈, 沙二下次之, 沙二上活动强度最小。沙三中-上亚段沉积时期, 在701~801测线附近活动性最强, 断层生长指数近1.8, 最大落差达360m, 为濮卫环洼带早期的控洼断裂之一(图 2ef)。

    濮31断层活动时间长, 不同时期、不同部位的断层活动强度变化较大。从断层生长指数来看, 沙三中-上沉积期断层活动性最强, 沙二下开始断层活动相对减弱, 沙一和东营期仅在741测线附近活动, 断层活动微弱。(图 2g)。

    濮138断层活动时间较短, 沙三中亚段沉积期断层活动强度弱, 至沙三上亚段沉积期断层活动较为强烈, 且向西南方向活动性增强(图 2h)。

    断层和连通砂体是濮卫环洼带最主要的运移通道, 二者共同构成了断层型、断-砂组合型油气输导体系, 它们在平面分布以及成藏模式上均具有较大的差异。

    (1) 断层输导体系

    该输导体系类型分布较为局限, 仅分布于文明寨的主体高部位、濮城断阶带和卫城卫东断层附近, 其中以文明寨主体部位最具代表性。文明寨主体构造位置较高, 自身生烃能力差, 区内断裂发育, 由于卫东断层沟通了烃源岩和储集层, 油气沿断层面向上垂向运移, 在适当部位聚集成藏, 油气的垂向运移距离远远大于侧向运移距离。

    据地层水矿化度对比分析, 濮卫环洼带沙二段地层水具有异常高矿化度, 其值与下部沙三段地层水矿化度较接近。平面上, 异常高矿化度的CaCl2型地层水主要沿濮31、濮城南、卫东断层分布(图 3), 表明这些断层是流体运移的主要通道, 它们沟通了深部的地层, 使高矿化度地层水沿断裂带向上运移。

    图  3  濮卫环洼带沙二段异常高矿化度地层水平面分布图
    Figure  3.  Distribution of exceedingly high-mineralization water in Sha-2 Member in the Pu-Wei ring depression

    然而, 断层输导体系若输送大量的油气, 往往需要断层沟通有效烃源岩, 且在烃源岩层系内存在大量的砂体, 这些砂体可以汇聚生烃层系的油气, 然后借助于断层的沟通作用向上部垂向运移, 运移至地层倾角不大的地层进入断层面两侧砂体中形成油气藏。

    (2) 断-砂复合输导体系

    断层与砂体相互配置构成了濮卫环洼带运载油气的主要输导体系, 分布范围较广, 在卫城和濮城的主体部位最具代表性。目前已经发现的濮城油田、濮城南地区的文213含油气区等, 均具有此类运聚特征。

    濮卫环洼带砂岩厚度较大, 断-砂匹配关系良好, 构成了良好的输导体系。该区域的多套砂岩储层呈层状分布于洼陷内及斜坡带, 纵向上每套输导层之上均有泥岩和盐岩盖层封隔, 以侧向输导为主(图 4)。此时, 砂体主要起运移通道的作用, 而断层主要起阻挡油气, 并调节油气运移层系和方向的作用。因此, 随着油气运移层系的不断变浅, 运移动力具有明显的衰减, 在断层活动停止、封堵条件较好的地区聚集成藏, 形成主断层附近的构造-地层油气藏和远离主断层的边部岩性油气藏。

    图  4  断-砂输导体系剖面模式图
    Figure  4.  A model for the fault-sand transforming system

    断层活动时间与大规模油气运聚时间的匹配关系, 决定了断层在油气运移成藏中的贡献, 同时也决定了油气藏的分布特征[23]。濮卫环洼带烃源岩生排烃史、油气藏饱和压力及流体包裹体分析表明, 东营组沉积期沙三段烃源岩已经进入生烃门限, 是油气生成和成藏高峰期。东营组地层的剥蚀, 使烃源岩热演化生烃受到抑制甚至停止。新近纪以来研究区再次下沉接受沉积, 至新近纪晚期发生明显的二次生烃作用, 但此时构造活动弱, 生排烃量相对较小。故该地区成藏关键时期是在东营组沉积时期[24]

    ① 高平.濮卫洼陷岩性油气藏成藏规律与精细勘探[R].河南濮阳:中原油田分公司勘探开发科学研究院, 2008.

    濮卫环洼带主要断层活动时间与油气运移期对比分析表明(表 2), 卫东断层活动时间长, 油气大规模运移时期强烈活动, 与成藏时间匹配好, 是油气从深层向浅层运移的重要通道。文东、濮31及濮城南等断层活动强度微弱, 活动范围局限, 但与油气大规模运移时间相匹配, 可充当油气运移的有效通道。文51、濮67、濮138和陈营等断层活动时间较早, 东营期已经停止活动或基本停止活动, 主要对油气的聚集成藏起圈闭遮挡的作用。

    表  2  濮卫环洼带主要断层活动时间与油气运移期对比表
    Table  2.  Comparison of growth index to main fault and migration phase of the hydrocarbon
    下载: 导出CSV 
    | 显示表格

    此外, 断层本身活动的不均衡性也使油气运聚成藏情况复杂化。同一条断层(或断层的某一段)在不同时期或不同部位, 由于活动强度的不一致, 对油气成藏所起的作用也不尽相同, 某一时期作为油气运移的通道, 输导油气, 另一时期则成为阻止油气运移的屏障, 使油气在断层附近聚集成藏。

    (1) 濮卫环洼带主要发育卫东-文东断裂系和濮城-陈营断裂系, 均为较大规模的二级断裂。卫东-文东断裂系由复杂的卫东断裂破碎带和文东断层、文51断层等组成, 濮城-陈营断裂系自东而西发育陈营断层、濮67断层、濮城南断层、濮31断层和濮138断层。

    (2) 卫东、文东、濮城南及濮31等断层活动时间较长, 活动强度不一致, 与成藏时间匹配好, 是油气从深层向浅层运移的重要通道, 文东、濮31及濮城南等断层可充当油气运移的有效通道。

    (3) 断层和连通砂体构成了断层型、断-砂组合型油气输导体系。断层型输导体系沟通了烃源岩和储集层, 增强了油气垂向运移能力, 断-砂组合型油气输导体系以侧向输导为主, 断层主要起阻挡油气, 并调节油气运移层系和方向的作用。这些结论对本区油气田滚动勘探开发有重要意义。

  • [1]
    李浩, 杨为民, 黄晓, 等.天水市麦积区税湾地震黄土滑坡特征及其形成机制[J].地质力学学报, 2016, 22(1):12~24. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160102&journal_id=dzlxxb

    LI Hao, YANG Weimin, HUANG Xiao, et al. Characteristics and deformation mechanism of Shuiwan seismic loess landslide in Maiji, Tianshui[J]. Journal of Geomechanics, 2016, 22(1):12~24. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160102&journal_id=dzlxxb
    [2]
    周德培, 张建经, 汤涌.汶川地震中道路边坡工程震害分析[J].岩石力学与工程学报, 2010, 29(3):565~576. http://www.cqvip.com/QK/96026X/201003/33175660.html

    ZHOU Depei, ZHANG Jianjing, TANG Yong. Seismic damage analysis of road slopes in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3):565~576. (in Chinese with English abstract) http://www.cqvip.com/QK/96026X/201003/33175660.html
    [3]
    Hong Y S, Chen R H, Wu C S, et al. Shaking table tests and stability analysis of steep nailed slopes[J]. Canadian Geotechnical Journal, 2005, 42(5):1264~1279. doi: 10.1139/t05-055
    [4]
    Wartman J, Seed R B, Bray J D. Shaking table modeling of seismically induced deformations in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5):610~622. doi: 10.1061/(ASCE)1090-0241(2005)131:5(610)
    [5]
    朱宏伟, 姚令侃, 项琴.锚固长度对加锚边坡地震动力特性的影响[J].水文地质工程地质, 2012, 39(3):54~59. http://www.cqvip.com/QK/90596X/201203/42027379.html

    ZHU Hongwei, YAO Lingkan, XIANG Qin. A study of the effect of bolt length on dynamic response of anchored slopes under earthquakes[J]. Hydrogeology & Engineering Geology, 2012, 39(3):54~59. (in Chinese with English abstract) http://www.cqvip.com/QK/90596X/201203/42027379.html
    [6]
    汪班桥, 郝建斌, 黄毓挺, 等.滑坡防治格构梁锚杆地震动力响应分析[J].四川大学学报(工程科学版), 2016, 48(3):48~54. http://www.cqvip.com/QK/90462B/201603/668855368.html

    WANG Banqiao, HAO Jianbin, HUANG Yuting, et al. Dynamic response for framed anchors in landslide prevention under earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(3):48~54. (in Chinese with English abstract) http://www.cqvip.com/QK/90462B/201603/668855368.html
    [7]
    郝建斌, 郭进扬, 张振北, 等.地震作用下锚杆支护边坡动力响应[J].交通运输工程学报, 2017, 17(3):46~55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsgydx201005025

    HAO Jianbin, GUO Jinyang, ZHANG Zhenbei, et al. Dynamic response of anchors-supported slope under earthquake[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3):46~55. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsgydx201005025
    [8]
    文畅平, 杨果林.格构式框架护坡地震动位移模式的振动台试验研究[J].岩石力学与工程学报, 2011, 30(10):2076~2083. http://www.cqvip.com/QK/96026X/201110/39752707.html

    WEN Changping, YANG Guolin. Shaking table model test study of seismic displacement mode of slope with anchor lattice frame structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10):2076~2083. (in Chinese with English abstract) http://www.cqvip.com/QK/96026X/201110/39752707.html
    [9]
    杨果林, 文畅平.格构锚固边坡地震响应的振动台试验研究[J].中南大学学报(自然科学版), 2012, 43(4):1482~1493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201204045

    YANG Guolin, WEN Changping. Shaking table test study on dynamic response of slope with lattice framed anchor structure during earthquake[J]. Journal of Central South University (Science and Technology), 2012, 43(4):1482~1493. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201204045
    [10]
    赖杰, 郑颖人, 刘云, 等.抗滑桩和锚杆联合支护下边坡抗震性能振动台试验研究[J].土木工程学报, 2015, 48(9):96~103. http://www.cqvip.com/QK/90342X/201509/665936064.html

    LAI Jie, ZHENG Yingren, LIU Yun, et al. Shaking table text study on anti-slide piles and anchor bars of slope under earthquake[J]. China Civil Engineering Journal, 2015, 48(9):96~103. (in Chinese with English abstract) http://www.cqvip.com/QK/90342X/201509/665936064.html
    [11]
    汪鹏程, 朱大勇, 许强.强震作用下加固边坡的动力响应及不同加固方式的比较研究[J].合肥工业大学学报(自然科学版), 2009, 32(10):1501~1504. doi: 10.3969/j.issn.1003-5060.2009.10.012

    WANG Pengcheng, ZHU Dayong, XU Qiang. Dynamic response of slopes subjected to intense earthquakes and effect comparison between various support modes[J]. Journal of Hefei University of Technology (Natural Science), 2009, 32(10):1501~1504. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-5060.2009.10.012
    [12]
    叶帅华. 黄土地区框架预应力锚杆支护边坡地震动反应及稳定性分析[D]. 兰州: 兰州理工大学, 2012.

    YE Shuaihua. Dynamic response and stability analysis of slope supported by frame with pre-stressed anchors under earthquake in loess area[D]. Lanzhou: Lanzhou University of Technology, 2012. (in Chinese with English abstract)
    [13]
    Ji Q W, Xu Q, Wang T N, et al. Seismic performance analysis of fill slope with pre-stressed anchors[J]. Applied Mechanics and Materials, 2013, 353~356:2052~2056. doi: 10.4028/www.scientific.net/AMM.353-356
    [14]
    Dong J H, Zhu Y P, Zhou Y, et al. Dynamic calculation model and seismic response for frame supporting structure with prestressed anchors[J]. Science China Technological Sciences, 2010, 53(7):1957~1966. doi: 10.1007/s11431-010-3241-z
    [15]
    毕忠伟, 张明, 金峰, 等.地震作用下边坡的动态响应规律研究[J].岩土力学, 2009, 30(S1):180~183. http://www.cqvip.com/QK/89807X/201505/664862610.html

    BI Zhongwei, ZHANG Ming, JIN Feng, et al. Dynamic response of slopes under earthquakes[J]. Rock and Soil Mechanics, 2009, 30(S1):180~183. (in Chinese with English abstract) http://www.cqvip.com/QK/89807X/201505/664862610.html
    [16]
    张妙芝. 滑坡防治压力型锚固系统地震动力响应分析[D]. 西安: 长安大学, 2016.

    ZHANG Miaozhi. Study on the dynamic response for compression-type anchorage system under the action of earthquake in landslide prevention[D]. Xi'an: Chang'an University, 2016. (in Chinese with English abstract)
    [17]
    江学良, 祝中林, 杨慧, 等.含隧道岩石边坡在地震作用下动力响应特性研究[J].自然灾害学报, 2016, 25(2):94~102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncslsd200712021

    JIANG Xueliang, ZHU Zhonglin, YANG Hui, et al. Study on dynamic response characteristics of rock slope with tunnel under earthquake[J]. Journal of Natural Disasters, 2016, 25(2):94~102. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncslsd200712021
    [18]
    刘晶波, 谷音, 杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报, 2006, 28(9):1070~1075. http://www.oalib.com/paper/4372909

    LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9):1070~1075. (in Chinese with English abstract) http://www.oalib.com/paper/4372909
    [19]
    徐光兴, 姚令侃, 李朝红, 等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报, 2008, 30(6):918~923. http://www.oalib.com/paper/4372820

    XU Guangxing, YAO Lingkan, LI Zhaohong, et al. Dynamic response of slopes under earthquakes and influence of ground motion parameters[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6):918~923. (in Chinese with English abstract) http://www.oalib.com/paper/4372820
    [20]
    陈新民, 沈建, 魏平, 等.下蜀土边坡地震稳定性的大型振动台试验研究(Ⅱ)——试验结果及分析[J].防灾减灾工程学报, 2010, 30(6):587~594. http://www.cnki.com.cn/Article/CJFDTotal-SGJS201513018.htm

    CHEN Xinmin, SHEN Jian, WEI Ping, et al. Large-scale shaking table test of seismic stability of Xiashu loess slopes:Analysis of test results (Ⅱ)[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6):587~594. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SGJS201513018.htm
    [21]
    郝建斌, 姚婕, 黄毓挺, 等.动力作用下锚杆格构支护土质边坡动态响应分析[J].地球科学与环境学报, 2015, 37(5):93~100. http://www.cnki.com.cn/Article/CJFDTotal-XAGX201505009.htm

    HAO Jianbin, YAO Jie, HUANG Yuting, et al. Analysis of dynamic response of soil slope reinforced by anchors and lattices subjected to dynamic loads[J]. Journal of Earth Sciences and Environment, 2015, 37(5):93~100. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-XAGX201505009.htm
    [22]
    汪班桥, 门玉明, 郝建斌.拉压锚杆锚固性能的对比试验分析[J].长安大学学报(自然科学版), 2013, 33(4):68~74. http://www.oalib.com/paper/4327479

    WANG Banqiao, MEN Yuming, HAO Jianbin. Experiment and analysis of anchorage performances of pressure type and tensile type anchor[J]. Journal of Chang'an University (Natural Science Edition), 2013, 33(4):68~74. (in Chinese with English abstract) http://www.oalib.com/paper/4327479
  • 加载中

Catalog

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (272) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return