CONCENTRATION AND SOURCES OF BLACK CARBON IN DIFFERENT FUNCTION ZONES OF BEIJING, CHINA
-
摘要: 随着城市迅猛发展,城市土壤性质发生显著变化,不同功能区之间呈现明显差异性。为了深入讨论人为影响方式和程度、污染来源的差别对土壤碳库(特别是黑碳)的影响,本研究以北京市为对象,对比研究了城区和郊区不同功能区(公园、居民区、道路绿化带)土壤有机碳(SOC)含量、黑碳(BC)含量以及含量比值(BC/SOC)的特点,并通过BC/SOC指标对土壤受到的人类活动影响方式和程度进行详细讨论。结果显示,北京市城区不同功能区的土壤SOC富集程度不同,且公园和居民区土壤在人为管理下SOC含量趋于平均;而郊区不同功能区的SOC含量值接近,表明其受人为影响较小,更接近于自然土壤。城区不同功能区的土壤BC含量存在较大差异,由大到小是公园(0.60%~2.28%,平均值为1.56%)、道路绿化带(0.12%~2.20%,平均值为0.62%)、居民区(0.11%~1.15%,平均值为0.35%),其中公园内区域性的翻种、施肥使得BC大量聚集,道路绿化带受到来自交通环境的强烈影响;而郊区不同功能区的BC含量值低且接近,代表了区域土壤BC含量背景值。土壤BC/SOC总体介于0.11和0.5之间,且郊区BC/SOC小于城区,指示了化石燃料和生物质的燃烧均是城区和郊区土壤BC物质的来源,但所占比重不同,且城区是郊区土壤黑碳的重要来源。另外,城区个别地区BC/SOC显著偏高,反映了BC/SOC不但指示土壤污染程度,同时与城市化时间、特定的人类活动密切相关。Abstract: With the rapid development of city, soil properties in city have changed significantly with significant differences among different function zones. In order to discuss the impact on the soil carbon pool (especially black carbon), from human activities of different ways and at different degrees as well as pollution from different sources, the concentration of black carbon (BC) and organic carbon (SOC), and concentration ratio (BC/SOC) of surface soil in different function zones (parks, residential areas and road green belt) in urban and suburban areas in Beijing are compared in the study, and the influence of human activities of different ways and at different degrees on soil are discussed based on the BC/SOC index. The results show that the enrichment degrees of soil SOC in different function zones in urban areas are different, and the concentration of SOC in soil in parks and residential areas under human management tend to be average; in suburban areas, the concentration of SOC in different function zones are close and much the same as the natural soil, indicating the soil is less influenced by human activities. There are significant differences in the concentration of BC values in soil in different function zones of urban areas, and the descending order is parks (0.60%~2.28%, mean 1.56%), road green belts (0.12%~2.20%, mean 0.62%), residential areas (0.11%~1.15%, mean 0.35%).The regional digging, planting and fertilization made a large number of BC gather in parks and road green belts are strongly impacted by traffic discharge; in suburban areas, the concentration of BC of different function zones are low and close to each other, representing the background concentration of BC in regional soil. The BC/SOC values in soil mainly fall in between 0.11% and 0.5%, and BC/SOC values in suburban area are smaller than that of urban areas, indicating that the burning of fossil fuels and biomass are both sources of BC in soil in the urban and suburban areas but with different proportions, and the urban area is an important source of BC in the suburban area. In addition, BC/SOC values in some places of urban areas are significantly higher, reflecting that BC/SOC value not only indicates the degree of soil pollution but also is closely related to urbanization progress and specific human activities.
-
Key words:
- Environmental geology /
- urban soil /
- black carbon /
- Beijing
-
表 1 北京市不同功能区土壤样品采样点概况
Table 1. General information of soil sampling sites in different function zones of Beijing
功能区 采样区域 采样地点 样品数量 道路绿化带 城区 南四环至城中心 9 朝阳区 5 房山区 2 郊区 通州区 1 昌平区 1 顺义区 1 公园 城区 西城区陶然亭公园 5 郊区 顺义区潮白河公园 3 海淀区百望山公园 1 居民区 城区 西城区甘家口小区(老居民区) 2 丰台区角门西晨新园小区 5 丰台区潘家园小区 1 郊区 海淀区茉莉园小区 2 大兴区马驹桥228院 2 房山区东亚小区 1 总计 41 表 2 北京市不同功能区土壤SOC含量、BC含量、BC/SOC比值
Table 2. The content of SOC and BC and BC/SOC values of soil samples in different function zones of Beijing
功能区和
采样区域样品编号 北纬 东经 采样点描述 SOC
含量/%BC
含量/%BC/
SOC道路绿化带-城区 道绿-城区-1 39°50′53.25″ 116°22′17.23″ 丰台区马家堡西路路旁 2.77 0.81 0.29 道绿-城区-2 39°51′04.40″ 116°22′17.37″ 丰台区马家堡西路和角门北路交汇处路旁 1.59 0.43 0.27 道绿-城区-3 39°51′19.21″ 116°22′18.24″ 丰台区南三环万芳桥下马家堡西路路旁 0.84 0.12 0.15 道绿-城区-4 39°52′08.00″ 116°22′28.65″ 丰台区开阳桥北京南站附近路旁 0.81 0.25 0.31 道绿-城区-5 39°52′23.24″ 116°22′28.85″ 西城区陶然亭公园外路旁 0.86 0.24 0.28 道绿-城区-6 39°53′28.74″ 116°22′29.09″ 西城区菜市口北公交站旁 1.26 0.45 0.36 道绿-城区-7 39°54′42.50″ 116°22′25.66″ 西城区西单北大街路旁 3.51 0.71 0.20 道绿-城区-8 39°55′25.41″ 116°22′24.15″ 西城区西四北大街路旁 1.42 0.38 0.27 道绿-城区-9 39°55′50.75″ 116°22′23.13″ 西城区平安里路口南公交站旁 2.24 2.20 0.98 道路绿化带-郊区 道绿-郊区-1 39°59′43.81″ 116°29′42.72″ 朝阳区京密路旁,景观树、杂草 0.58 0.15 0.26 道绿-郊区-2 40°01′20.94″ 116°31′18.20″ 朝阳区京密路北皋桥旁,景观树 0.82 0.28 0.34 道绿-郊区-3 40°01′20.94″ 116°31′18.20″ 朝阳区京密路北皋桥旁,景观树 1.02 0.33 0.32 道绿-郊区-4 40°02′56.23″ 116°32′14.94″ 朝阳区孙河乡道路绿化带内,景观树、杂草 0.50 0.16 0.32 道绿-郊区-5 40°02′56.23″ 116°32′14.94″ 朝阳区孙河乡道路绿化带内,景观树、杂草 0.44 0.13 0.30 道绿-郊区-6 39°38′40.92″ 115°30′08.29″ 房山区北京河北交界,山脚下马路旁绿化带内,小叶李、杂草 0.20 0.06 0.28 道绿-郊区-7 39°38′40.92″ 115°30′08.29″ 房山区北京河北交界,山脚下马路旁绿化带内,小叶李、杂草 0.25 0.06 0.22 道绿-郊区-8 39°44′59.91″ 116°32′55.56″ 通州区马驹桥镇专96车站旁 0.33 0.05 0.14 道绿-郊区-9 40°14′38.30″ 116°07′56.07″ 昌平区南口镇粮食供销站路旁 0.25 0.05 0.21 道绿-郊区-10 40°07′34.01″ 116°40′24.85″ 顺义城区路旁,可见几小块焚烧迹象 0.71 0.20 0.28 公园-城区 公园-城区-1 39°52′28.43″ 116°22′40.85″ 西城区陶然亭公园西门月季园 2.16 1.71 0.79 公园-城区-2 39°52′27.57″ 116°22′54.58″ 西城区陶然亭公园中央岛小山顶上,多人工种植松树、长草 2.91 2.28 0.78 公园-城区-3 39°52′25.14″ 116°22′57.77″ 西城区陶然亭公园中央岛大山顶上,多人工种植槐树、长草 3.30 2.43 0.74 公园-城区-4 39°52′20.61″ 116°23′06.39″ 西城区陶然亭公园东南角山顶上,靠近马路,多人工种植桃树、松柏、杂草 2.48 0.60 0.24 公园-城区-5 39°52′28.54″ 116°23′10.10″ 西城区陶然亭公园东边,银杏树下花坛内 2.48 0.79 0.32 公园-郊区 公园-郊区-1 40°07′54.36″ 116°40′12.46″ 顺义区减河公园内草坪、周围人类活动频繁 1.00 0.22 0.22 公园-郊区-2 40°07′33.12″ 116°40′59.65″ 顺义区潮白河公园次生林,多大树、林下植物稀少 0.72 0.11 0.15 公园-郊区-3 40°07′33.12″ 116°40′59.65″ 顺义区潮白河公园次生林,林下杂草较多 0.27 0.05 0.18 公园-郊区-4 40°2′38.31″ 116°14′54.68″ 海淀区百望山公园 1.71 0.15 0.09 居民区-城区 居民区-城区-1 39°50′47.88″ 116°22′18.60″ 丰台区晨新园小区花坛,以杂草为主 1.25 0.22 0.17 居民区-城区-2 39°50′46.82″ 116°22′20.69″ 丰台区晨新园小区花坛,以杂草、李子树为主 0.74 0.12 0.16 居民区-城区-3 39°50′47.42″ 116°22′30.36″ 丰台区晨新园小区花坛,以杂草、李子树、桃树为主 0.86 0.18 0.21 居民区-城区-4 39°50′48.86″ 116°22′31.79″ 丰台区晨新园小区花坛,大松树下 1.04 0.23 0.23 居民区-城区-5 39°50′47.91″ 116°22′21.29″ 丰台区晨新园小区花坛,以杂草、月季为主 0.51 0.11 0.22 居民区-城区-6 39°55′29.00″ 116°19′35.87″ 西城区甘家口8号楼健身器材旁 1.74 1.15 0.66 居民区-城区-7 39°55′29.00″ 116°19′35.87″ 西城区甘家口8号楼花坛内 0.62 0.28 0.45 居民区-城区-8 39°52′42.51″ 116°26′40.33″ 丰台区潘家园小区内 1.31 0.47 0.36 居民区-郊区 居民区-郊区-1 39°42′51.28″ 116° 3′11.73″ 房山区东亚小区内 0.16 0.06 0.40 居民区-郊区-2 40°2′53.42″ 116°14′36.61″ 海淀区茉莉园小区花坛内 0.62 0.09 0.15 居民区-郊区-3 40°2′53.42″ 116°14′36.61″ 海淀区茉莉园小区菜园内 1.17 0.22 0.19 居民区-郊区-4 39°44′52.54″ 116°33′6.86″ 通州区马驹桥宏仁家园花坛内 1.37 0.21 0.15 居民区-郊区-5 39°44′51.81″ 116°33′7.92″ 通州区宏仁家园院内 0.54 0.10 0.19 表 3 北京市与其他城市表土SOC含量、BC含量、BC/SOC情况对比
Table 3. Comparison of the content of SOC and BC and BC/SOC values between Beijing and other cities
功能区和采样区域 SOC含量/% BC含量/% BC/SOC 数据
来源变幅范围 平均值 变幅范围 平均值 变幅范围 平均值 北京市道路绿化带-城区 0.81~3.51 1.70 0.12~2.20 0.62 0.15~0.98 0.35 本研究 北京市道路绿化带-郊区 0.20~1.02 0.51 0.06~0.33 0.15 0.14~0.34 0.27 北京市公园-城区 2.16~3.30 2.67 0.60~2.28 1.56 0.24~0.79 0.57 北京市公园-郊区 0.27~1.71 0.93 0.05~0.22 0.13 0.09~0.22 0.16 北京市居民区-城区 0.51~1.74 1.01 0.11~1.15 0.35 0.16~0.66 0.31 北京市居民区-郊区 0.16~1.37 0.77 0.06~0.22 0.14 0.15~0.40 0.21 北京市城区 0.37~3.22 1.52 0.098~1.270 0.583 0.09~0.88 0.37 [29] 北京市郊区平原 0.13~1.24 0.933 0.037~0.418 0.331 0.05~0.91 0.31 北京市郊区山区 0.42~6.34 2.85 0.092~0.830 0.352 0.04~0.28 0.12 南京市城区道路绿化带 2.184~3.721 2.909 0.640~2.305 0.619 - 0.45 [15] 南京市城区公园 0.244~2.149 1.005 0.050~0.377 0.193 - 0.26 南京市城区学校 1.093~2.626 1.7 0.146~1.043 0.412 - 0.22 南京市城区居民区 0.273~1.793 0.119 0.037~0.319 0.185 - 0.16 南京市郊区菜地 1.172~1.786 1.414 0.096~0.248 0.16 - 0.12 南京市城区道路绿化带 - - 1.330~1.973 1.568 0.51~0.57 0.55 [3] 南京市城区公园 - - 0.185~0.487 0.294 0.35~0.45 0.41 南京市城区学校 - - 0.131~0.563 0.398 0.36~0.40 0.39 南京市城区居民区 - - 0.159~0.354 0.231 0.35~0.42 0.38 南京市城区绿地广场 - - 0.250~0.444 0.333 0.31~0.38 0.34 南京市城区天然林 - - 0.385~0.918 0.528 0.31~0.38 0.33 南京市城郊天然林 - - 0.346~0.535 0.436 0.20~0.22 0.21 德国斯图加特市 - - 0.39~7.19 - 0.18~0.73 - [22] 英国格拉斯哥市、考文垂市、斯托克-特伦特市 - - 0.46~1.77 - 0.124~0.328 - [23] 印度德里市 - - 0.058~0.205 0.125 0.06~0.22 0.13 [33] -
[1] Deluca T H, Mackenzie M D, Gundale M J. Biochar effects on soil nutrient transformation[M]//Lehmann J, Joseph S. Biochar for Environmental Management:Science and Technology. London:Earthscan, 2009. 251~270. [2] Glaser B, Haumaier L, Guggenberger G, et al.. The "Terra Preta" phenomenon:a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1):37~41. doi: 10.1007/s001140000193 [3] 王曦, 杨靖宇, 俞元春, 等.不同功能区城市林业土壤黑碳含量及来源-以南京市为例[J].生态学报, 2016, 36(3):837~843. http://d.wanfangdata.com.cn/Periodical/stxb201603028WANG Xi, YANG Jingyu, YU Yuanchun, et al. Concentration and sources of black carbon in urban forest soils in different functional areas of Nanjing, China[J]. Acta Ecologica Sinica, 2016, 36(3):1~7. (in Chinese with English abstracts) http://d.wanfangdata.com.cn/Periodical/stxb201603028 [4] Goldberg E D. Black Carbon in the Environment:Properties and Distribution[M]. New York:Interscience Publication, 1985, 1~198. [5] 曹军骥, 占长林.黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J].地球科学与环境学报, 2011, 33(2):177~184. http://www.wenkuxiazai.com/doc/9874d33ca32d7375a417805a.htmlCAO Junji, ZHAN Changlin. Research significance and role of black carbon in the global climate and environmental systems[J]. Journal of Earth Sciences and Environment, 2011, 33(2):177~184. (in Chinese with English abstracts) http://www.wenkuxiazai.com/doc/9874d33ca32d7375a417805a.html [6] 刘恋, 周鑫, 葛俊逸.元素碳碳同位素在古环境研究中的应用[J].地质论评, 2012, 58(3):526~532. http://www.oalib.com/paper/4886079LIU Lian, ZHOU Xin, GE Junyi. The Application of carbon isotope of element carbon in the research of paleoenvironment[J]. Geological Review, 2012, 58(3):526~532. (in Chinese with English abstracts) http://www.oalib.com/paper/4886079 [7] 刘恋, 杨帅斌, 乔彦松, 等.不同自然环境和城市功能区的土壤黑碳特征及来源研究[J].地质学报, 2017, 91(3):658~667. http://d.wanfangdata.com.cn/Periodical/dizhixb201703012LIU Lian, YANG Shuaibin, QIAO Yansong, et al. Characteristics and sources of soil black carbon in different natural environments and urban functional areas[J]. Acta Geologica Sinica, 2017, 91(3):658~667. (in Chinese with English abstracts) http://d.wanfangdata.com.cn/Periodical/dizhixb201703012 [8] Griffin J J, Goldberg E D. Sphericity as a characteristic of solids from fossil fuel burning in a lake Michigan sediment[J]. Geochimica et Cosmochimica Acta, 1981, 45:763~769. doi: 10.1016/0016-7037(81)90047-8 [9] Fernandes M B, Skjemstad J O, Johnson B B, et al. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features[J]. Chemosphere, 2003, 51(8):785~795. doi: 10.1016/S0045-6535(03)00098-5 [10] Brodowski S, Amelung W, Haumaier L, et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1/2):116~129. https://www.sciencedirect.com/science/article/pii/S0016706104003301 [11] Gatari M J, Boman J. Black carbon and total carbon measurements at urban and rural sites in Kenya, East Africa[J]. Atmospheric Environment, 2003, 37(8):1149~1154. doi: 10.1016/S1352-2310(02)01001-4 [12] Gelinas Y, Prentice K M, Baldock J A, et al. An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils[J]. Environ. Sci. Technol., 2001, 35(17):3519~3525. doi: 10.1021/es010504c [13] Novakov T, Andreae M O, Gabriel R, et al. Origin of carbonaceous aerosols over the tropical Indian ocean:biomass burning or fossil fuels?[J]. Geophysical Research Letter, 2000, 27(24):4061~4064. doi: 10.1029/2000GL011759 [14] Mayol-Bracero O L, Gabriel R, Andreae M O, et al. Carbonaceous aerosols over the Indian ocean during the indian ocean experiment (INDOEX):Chemical characterization, optical properties, and probable sources[J]. Journal of Geophysical Research, 2002, 107(D19):INX229-1-INX229-21. doi: 10.1029/2000JD000039/full [15] 何跃, 张甘霖.城市土壤有机碳和黑碳的含量特征与来源分析[J].土壤学报, 2006, 43(2):177~182. doi: 10.11766/trxb200502280201HE Yue, ZHANG Ganlin. Concentration and sources of organic carbon and black carbon of urban soils in Nanjing[J]. Acta Pedologica Sinica, 2006, 43(2):177~182. (in Chinese with English abstracts) doi: 10.11766/trxb200502280201 [16] Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394(6695):767~769. doi: 10.1038/29507 [17] Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 1997, 389(6647):153~158. doi: 10.1038/38229 [18] Ciais P, Tans P P, White J W C, et al. Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network[J]. Journal of Geophysical Research, 1995, 100(D3):5051~5070. doi: 10.1029/94JD02847 [19] Liu L, Qiao Y S, Hao Z G. Black carbon concentration and isotopic composition of surface sand from deserts and dune fields in Northern China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 445:1~7. doi: 10.1016/j.palaeo.2015.12.026 [20] 徐永昌, 沈平.中国化石燃料的同位素地球化学[J].中国科学B辑, 1990, (4):409~418. http://chem.scichina.com:8081/sciB/CN/abstract/abstract393420.shtmlXU Yongchang, SHEN Ping. Isotopic geochemistry of fossil fuels in China[J]. Science in China, Series B, 1991, 34(2):83~95.(in Chinese with English abstracts) http://chem.scichina.com:8081/sciB/CN/abstract/abstract393420.shtml [21] 郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000. 196~199.ZHENG Yongfei, CHEN Jiangfeng. Stable Isotope Geochemistry[M]. Beijing:Science Press, 2000. 196~199.(in Chinese) [22] Lorenz K, Preston C M, Kandeler E. Soil organic matter in urban soils:estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy[J]. Geoderma, 2006, 130(3/4):312~323. http://www.sciencedirect.com/science/article/pii/S0016706105000467 [23] Rawlins B G, Vane C H, Kim A W, et al. Methods for estimating types of soil organic carbon and their application to surveys of UK urban areas[J]. Soil Use and Management, 2008, 24:47~59. doi: 10.1111/sum.2008.24.issue-1 [24] Hamilton A, Harnett H E. Black carbon concentrations in urban and rural arid-land soils[C]//Fall Meeting 2008. Washington, DC:American Geophysical Union, 2008. [25] Wang X S. Black carbon in urban topsoils of Xuzhou (China):Environmental implication and magnetic proxy[J]. Environmental Monitoring Assessment, 2010, 163(1/4):41~47. http://www.cabdirect.org/abstracts/20103135959.html [26] Cao J J, Lee S C, Chow J C, et al. Spatial and seasonal distributions of carbonaceous aerosols over China[J]. Journal of Geophysical Research, 2007, 112:D22S11. http://www.academia.edu/2943259/Spatial_and_seasonal_distributions_of_carbonaceous_aerosols_over_China [27] 田晖, 杜佩轩, 梅琳.西安市城市灰尘微量元素环境异常研究[J].地质力学学报, 2005, 11(4):361~369. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20050452&flag=1TIAN Hui, DU Peixuan, MEI Lin. Environmental anomalies of trace elements in urban dust of Xi'an city[J]. Journal of Geomechanics, 2005, 11(4):361~369. (in Chinese with English abstracts) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20050452&flag=1 [28] 张磊, 张晓亮, 白凌燕, 等.北京地区黄庄-高丽营断裂北段活动性研究与灾害效应分析[J].地质力学学报, 2017, 23(4):548~557. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170406&flag=1ZHANG Lei, ZHANG Xiaoliang, BAI Lingyan, et al. Activity study and disaster effect analysis of the north section of Huangzhuang-Gaoliying fault in Beijing[J]. Journal of Geomechanics, 2017, 23(4):548~557. (in Chinese with English abstracts) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170406&flag=1 [29] Liu S D, Xia X H, Zhai Y W, et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China:Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere, 2011, 82(2):223~228. doi: 10.1016/j.chemosphere.2010.10.017 [30] Lim B, Cashier H. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays[J]. Chemical Geology, 1996, 131(1/4):143~154. https://www.sciencedirect.com/science/article/pii/0009254196000319 [31] 张甘霖, 何跃, 龚子同.人为土壤有机碳的分布特征及其固定意义[J].第四纪研究, 2004, 24(2):149~159. http://d.wanfangdata.com.cn/Periodical/dsjyj200402004ZHANG Ganlin, HE Yue, GONG Zitong. Characteristics of organic carbon distribution in anthropogenic soils and its implication on carbon sequestration[J]. Quaternary Sciences, 2004, 24(2):149~159. (in Chinese with English abstracts) http://d.wanfangdata.com.cn/Periodical/dsjyj200402004 [32] 戴婷, 李艾芬, 章明奎.浙北平原农业土壤中黑碳分布特征的研究[J].土壤通报, 2009, 40(6):1321~1324. http://d.wanfangdata.com.cn/Periodical/trtb200906020DAI Ting, LI Anfen, ZHANG Mingkui. Distribution characteristics of black carbon in agricultural soils of northern Zhejiang plain[J]. Chinese Journal of Soil Science, 2009, 40(6):1321~1324.(in Chinese with English abstracts) http://d.wanfangdata.com.cn/Periodical/trtb200906020 [33] Agarwal T, Bucheli T D. Is black carbon a better predictor of polycyclic aromatic hydrocarbon distribution in soils than total organic carbon?[J]. Environmental Pollution, 2011, 159(1):64~70. doi: 10.1016/j.envpol.2010.09.016 [34] Schleuß U, Wu Q, Blume H P. Variability of soils in urban and periurban areas in Northern Germany[J]. Catena, 1998, 33(3/4):255~270. https://www.sciencedirect.com/science/article/pii/S0341816298000708 [35] Skjemstad J O, Reicosky D C, Wilts A R, et al. Charcoal carbon in US agricultural soils[J]. Soil Science Society of America Journal, 2002, 66(4):1249~1255. doi: 10.2136/sssaj2002.1249 [36] Brodowski S, Amelung W, Haumaier L, et al. Black carbon contribution to stable humus in German arable soils[J]. Geoderma, 2007, 139:220~228.) doi: 10.1016/j.geoderma.2007.02.004