留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数值模拟的盐上断层分布模式的研究

宋随宏 侯加根 刘钰铭 曹思凡 胡晨彬

宋随宏, 侯加根, 刘钰铭, 等, 2017. 基于数值模拟的盐上断层分布模式的研究. 地质力学学报, 23 (3): 429-435.
引用本文: 宋随宏, 侯加根, 刘钰铭, 等, 2017. 基于数值模拟的盐上断层分布模式的研究. 地质力学学报, 23 (3): 429-435.
SONG Sui-hong, HOU Jia-gen, LIU Yu-min, et al., 2017. A STUDY ON THE DISTRIBUTION PATTERN OF SUPRASALT FAULT BASED ON NUMERICAL SIMULATION. Journal of Geomechanics, 23 (3): 429-435.
Citation: SONG Sui-hong, HOU Jia-gen, LIU Yu-min, et al., 2017. A STUDY ON THE DISTRIBUTION PATTERN OF SUPRASALT FAULT BASED ON NUMERICAL SIMULATION. Journal of Geomechanics, 23 (3): 429-435.

基于数值模拟的盐上断层分布模式的研究

基金项目: 

国家科技重大专项 2016ZX05014002

详细信息
    作者简介:

    宋随宏(1990-), 男, 硕士研究生, 地质资源与地质工程专业, 主要研究方向:构造演化模拟及储层建模研究。E-mail:songsuihong@126.com

  • 中图分类号: P618.13;P542

A STUDY ON THE DISTRIBUTION PATTERN OF SUPRASALT FAULT BASED ON NUMERICAL SIMULATION

  • 摘要: 盐上断层的形态和分布模式主要由其下部盐体形态和盐拱起所产生的上拱力共同控制。对盐上断层形成机制和分布模式的定量研究在盐上断层解释与预测、盐体形态描述及油气运移和成藏等方面具有重要意义。在总结上拱力与其上断层形态定量关系的基础上,针对盐构造中三种典型的盐体形态类型,分别拟合上拱力分布模式,并数值模拟其所产生的盐上断层形态和分布模式。模拟结果表明:(1)在产生恒定上拱力的盐构造中,发育两组相对称、深度分布一致的断层,每组断层相平行;(2)在产生线性变化上拱力的盐构造中,发育主次两组倾向相反的断层,主断层分布较浅,次断层分布较深,多被主断层限制,每组断层内,断层分布随上拱力变小而线性变深,而其形态不发生变化;(3)在产生抛物线形上拱力的盐构造中,两组主断层倾向相反相互对称,每组断层内,从构造中心到边部,断层倾角变缓,分布变深,构造边部出现次级小断层多被主断层限制。模拟结果与自然界盐体形态和断层分布模式吻合性较好,证实了模拟基于的上拱力与断层形态定量关系理论和模拟结果的正确性。

     

  • 图  1  抛物线型莫尔包络线[7, 8]

    τσ—断裂面上的临界剪应力和临界正应力,MPa;
    σ1,σ3—发生断裂时最大和最小主应力,MPa;
    σm—平均应力(σm =(σ1 +σ3)/2),MPa;
    σI—岩石在各向等值拉伸条件下的抗张断裂极限,MPa;
    θ/2—岩石剪裂角(°)

    Figure  1.  The Parabolic Mohr failure envelope

    图  2  主要盐构造变形样式立体示意图[18, 19]

    Figure  2.  Stereoscopic diagram of the deformation patterns of the main salt structures

    图  3  恒定上拱力背景下盐上断层分布模式

    Figure  3.  The distribution pattern of upsalt faults with constant upwelling force

    图  4  线性上拱力背景下盐上断层分布模式

    Figure  4.  The distribution pattern of upsalt faults with linearly changing upwelling force

    图  5  抛物线形上拱力背景下盐上断层分布模式

    Figure  5.  The distribution pattern of upsalt faults with parabolically changing upwelling force

    图  6  自然界中盐上断层与抛物线形上拱力断层模式对比

    a—为墨西哥湾盐构造地震剖面[17];b—为地中海利翁湾盐构造地震剖面[20];c—为西非被动大陆边缘盐构造地震剖面[21];d—为数值模拟显示的抛物线型盐上断层模式

    Figure  6.  Pattern comparison between natural upsalt faults and faults with parabola upwelling force

    图  7  Reitbrook盐底劈构造盐上断层模式[22]

    a—Reitbrook盐拱构造古近系底部构造图; b—Reitbrook盐拱构造的剖面图。红色框内为被主断层限制的反向小断层

    Figure  7.  The pattern of upsalt fault of Reitbrook dome

  • [1] Schultz-Ela DD, Jackson M P A, Vendeville B C. Mechanics of active salt diapirism[J]. Tectonophysics, 1993, 228(3/4):275~312. http://www.sciencedirect.com/science/article/pii/004019519390345K
    [2] Withjack MO, Scheiner C. Fault patterns associated with domes——an experimental and analytical study[J]. AAPG Bulletin, 1982, 66(3):302~316. http://archives.datapages.com/data/bulletns/1982-83/data/pg/0066/0003/0300/0302.htm?q=%2BauthorStrip%3Awithjack
    [3] Davison I, Alsop I, Birch P, et al. Geometry and late-stage structural evolution of Central Graben salt diapirs, North Sea[J]. Marine and Petroleum Geology, 2000, 17(4):499~522. doi: 10.1016/S0264-8172(99)00068-9
    [4] Davison I, Alsop G I, Evans NG, et al. Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea[J]. Marine and Petroleum Geology, 2000, 17(5):601~618. doi: 10.1016/S0264-8172(00)00011-8
    [5] Yin H W, Groshong Jr R H. Balancing and restoration of piercement structures:Geologic insights from 3D kinematic models[J]. Journal of Structural Geology, 2006, 28(1):99~114. doi: 10.1016/j.jsg.2005.09.005
    [6] Yin H W, Groshong Jr R H. A three-dimensional kinematic model for the deformation above an active diapir[J]. AAPG Bulletin, 2007, 91(3):343~363. doi: 10.1306/10240606034
    [7] 宋随宏, 陈书平, 何明宇.上拱力背景下正断裂剖面形态及极限应力状态研究[J].地质力学学报, 2012, 18(2):149~157. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120205&journal_id=dzlxxb

    SONG Sui-hong, CHEN Shu-ping, HE Ming-yu. The investigation of normal fault under upwelling force and its critical stress state[J]. Journal of Geomechanics, 2012, 18(2):149~157. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120205&journal_id=dzlxxb
    [8] 陈庆宣, 王维襄, 孙叶, 等.岩石力学与构造应力场分析[M].北京:地质出版社, 1998, 221~241.

    CHEN Qing-xuan, WANG Wei-xiang, SUN Ye, et al. Rock mechanics and tectonic stress field[M]. Beijing:Geological Publishing House, 1998:221~241.
    [9] Seni S J, Jackson M P A. Evolution of salt structures, east Texas diapir province, part 1:Sedimentary record of halokinesis[J]. AAPG Bulletin, 1983, 67(8):1219~1244.
    [10] Jackson M P A, Talbot C J. External shapes, strain rates, and dynamics of salt structures[J]. GSA Bulletin, 1986, 97(3):305~323. doi: 10.1130/0016-7606(1986)97<305:ESSRAD>2.0.CO;2
    [11] Jackson M P A, Talbot C J. Anatomy of mushroom-shapeddiapirs[J]. Journal ofStructuralGeology, 1989, 11(1/2):211~230.
    [12] Jackson M P A. Retrospective salt tectonics[A]. Jackson M P A, Roberts D G, Snelson S. Salt Tectonics:A GlobalPerspective5[M]. WashingtonDC:AAPG, 1995, 1~28.
    [13] Coward M, Stewart S. Salt-influenced structures in the Mesozoic-Tertiary cover of the southern North Sea, U. K.[A]. Jackson M P A, Roberts D G, Snelson S. Salt Tectonics:A Global Perspective[M]. WashingtonDC:AAPG, 1995, 229~250.
    [14] Peel F J, Travis C J, Hossack JR. Genetic structural provinces and salt tectonics of the Cenozoic offshore U.S. Gulf of Mexico:A preliminary analysis[A]. Jackson M PA, Roberts D G, Snelson S. Salt Tectonics:A Global Perspective[M]. WashingtonDC:AAPG, 1995, 153~175.
    [15] Edgell H S. Salt tectonism in the Persian Gulf Basin[A]. Alsop G I, Blundell D J, Davison I. Salt Tectonics[M]. Geological Society, London, SpecialPublications, 1996, 100(1):129~151.
    [16] McBride B C, Rowan M G, Weimer P. The evolution of allochthonous salt systems, northern Green Canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5B):1013~1036.
    [17] Rowan M G, Jackson M P A, Trudgill B D. Salt-related fault families and faultwelds in the Northern Gulf of Mexico[J]. AAPG Bulletin, 1999, 83(9):1454~1484. http://archives.datapages.com/data/bulletns/1999/09sep/1454/1454.htm?q=%2BabstractStrip%3Afault+abstractStrip%3Aseal
    [18] Hudec M R, Jackson M P A. Terra infirma:Understanding salt tectonics[J]. Earth-Science Reviews, 2007, 82(1/2):1~28.
    [19] 余一欣, 周心怀, 彭文绪, 等.盐构造研究进展述评[J].大地构造与成矿学, 2011, 35(2):169~182. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102001.htm

    YU Yi-xin, ZHOU Xin-huai, PENG Wen-xu, et al. An overview on salt structures[J]. GeotectonicaetMetallogenia, 2011, 35(2):169~182. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102001.htm
    [20] dos Reis A T, Gorini C, Mauffret A. Implications of salt-sediment interactions on the architecture of the Gulf of Lions deep-water sedimentary systems-western Mediterranean Sea[J]. Marine and Petroleum Geology, 2005, 22(6/7):713~746. http://linkinghub.elsevier.com/retrieve/pii/S0264817205000541
    [21] 赵鹏, 王英民, 周瑾, 等.西非被动大陆边缘盐构造样式与成因机制[J].海洋地质前沿, 2013, 29(10):14~22. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201310003.htm

    ZHAO Peng, WANG Ying-min, ZHOU Jin, et al. Salt structures on the west-Africa passive continental margin and their genetic mechanism[J]. MarineGeology Frontiers, 2013, 29(10):14~22. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201310003.htm
    [22] Schmitz J, Flixeder F. Structure of a classic chalk oil field and production enhancement by horizontal drilling, Reitbrook, NW Germany[A]. Spencer A M. Generation, Accumulation and Production of Europe's Hydrocarbons Ⅲ. Special Publication of the European Association of Petroleum Geoscientists, Vol 3[M]. Berlin, Heidelberg:Springer, 1993, 141~154.
  • 加载中
图(7)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  97
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-06
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回