METALLOGENIC AGES AND THE NATURE OF MAGMA SOURCE OF THE YUJIASHAN CU-NI DEPOSIT, HANNAN COMPLEX:CONSTRAINTS FROM ZIRCON U-PB DATING AND LU-HF ISOTOPE
-
摘要: 汉南杂岩余家山铜镍矿位于望江山基性岩体的西南部,地处扬子克拉通北缘西端。矿区内出露的岩体成岩成矿时代和源区性质不明,从而影响了对本矿床成因的认识。本文分析了矿区内出露的典型含矿岩体和围岩的LA-ICP-MS锆石U-Pb年代学和原位Lu-Hf同位素数据,结果表明其成矿时代接近或稍晚于约(791±4)Ma,成岩时代约为(808±7)Ma。且含矿岩体的εHf(t)值在+9.5~+10.9之间,平均值为+10.7,一阶段Hf模式年龄为924~974 Ma;围岩的εHf(t)值在+8.7~+11.1之间,平均值为+9.9,一阶段Hf模式年龄为927~1018 Ma。结合前人研究成果表明,余家山铜镍矿基性岩体由中元古代晚期至新元古代早期亏损地幔物质部分熔融生成,可能形成于活动大陆边缘环境。
-
关键词:
- 汉南杂岩 /
- 余家山铜镍矿 /
- 望江山基性岩体 /
- 锆石U-Pb年代学 /
- 锆石Lu-Hf同位素
Abstract: The Yujiashan Cu-Ni deposit of Hannan complex is located in the southwest of the Wangjiangshan basic massif, in the west of the northern margin of the Yangtze craton. There is less study on the diagenesis age, mineralization age and the nature of magma source of the outcropped rock mass, which affects the understanding of the deposit genesis. The data of LA-ICP-MS zircon U-Pb dating and in-situ Lu-Hf isotope of the typical outcropped ore-bearing and surrounding rocks were analyzed in the study. The results show that the mineralization age is about or a little late than (791±4) Ma, and the diagenesis age is about (808±6.8) Ma. Furthermore, the in-stiu zircon Hf isotopic analysis indicates that the εHf(t) values of ore-bearing rock range from +9.5~+10.9, with an average value of +10.7 and Hf model ages ranging from 924 Ma to 974 Ma; the εHf(t) values of surrounding rock range from +8.7~+11.1, with an average value of +9.9 and Hf model ages ranging from 924 Ma~974 Ma. Coupled with the available published data, it is proposed that the basic massif of the Yujiashan Cu-Ni deposit maybe derived from the partial melting of depleted mantle materials of late Middle Proterozoic-Neoproterozoic age in the active continental margins setting. -
近年来,针对四川盆地及周缘志留系龙马溪组页岩储层特征、成藏条件、富集高产模式研究以及勘探实践等方面取得了很多进展[1~9]。随着中石油长宁—威远及中石化涪陵焦石坝等区块页岩气勘探开发的不断突破,我国又陆续在彭水、丁山、南川、黔江、龙山及保靖等区块陆续开展了一系列页岩气钻探与压裂改造实践活动,并取得了很多的认识和经验积累[10~15]。本文主要从四川盆地及周缘具有代表性的龙马溪组页岩压裂井资料分析入手,分析代表不同区块、不同类型的页岩气井压后产气效果,总结影响产气效果的主要因素,以期对我国南方海相页岩气勘探开发提供借鉴。
1. 四川盆地及周缘龙马溪组页岩气勘探开发现状
四川盆地及周缘龙马溪组优质烃源岩主体分布于川东高陡褶皱带和川黔坳陷断褶带。两个构造带以齐岳山断裂为分界,西部断裂发育成北东向、北北东向高陡背斜带与宽缓向斜和断裂带组成的隔挡式褶皱,东部断裂发育由隔挡式褶皱过渡为隔挡隔槽褶皱带和隔槽式褶皱带;经历了加里东、印支、燕山、喜马拉雅等多期构造运动,其中发育的上奥陶统五峰组—下志留统龙马溪组黑色、深灰色炭质、钙质页岩富含笔石和黄铁矿,主要形成于闭塞、半闭塞滞留环境下的深海陆棚,是一套很好的烃源岩[7, 16~19]。
近几年来对龙马溪组页岩的勘探开发中,通过焦页1HF-4HF井、丁页1HF-2HF井、彭页1HF-4HF井、南页1HF井、濯页1井、龙参2井、保页1井等一系列直井、水平井钻井及压裂改造发现,日产量超过万方的井大部分集中在四川盆地内部齐岳山断裂以西,而齐岳山断裂以东的隔挡隔槽褶皱带和隔槽褶皱带内的钻井效果仅部分井达到了工业气流,部分井的钻井显示较好,但整体的改造效果较差(见图 1)。通过对影响页岩气产量的储层地质、岩石力学、构造保存、压裂改造工艺等方面的对比分析发现,影响页岩气最终产量的关键因素主要有优质页岩厚度、含气量、脆性矿物含量、脆性指数、地层压力系数、水平应力差异系数、水平井钻完井及分段改造压裂方式。
2. 储层地质特征对压后产气效果的影响
页岩气成藏地质条件及评价要素主要包括页岩厚度、埋藏深度、有机碳含量、有机质类型及成熟度、脆性矿物含量、地层压力与温度、储层物性、天然裂缝发育程度和含气量等[1, 20~22]。近几年来,四川盆地及周缘地区龙马溪组页岩的勘探实践证明,我国南方海相龙马溪组页岩发育面积广、厚度大、有机碳含量高、成熟度适中、含气性较好,脆性好,具有良好的开发前景。
通过分析不同地区的页岩气井地质参数发现,能够获得页岩气产量井的储层地质条件都比较好,优质页岩厚度大(有机质含量高、孔隙度较高、裂缝发育段)、TOC、Ro、含气量、脆性矿物含量、脆性指数普遍较高(见表 1),通过对这些参数与压后产量做单因素二项式相关性分析和多因素灰色关联法分析发现,优质页岩厚度、含气量、脆性矿物含量、孔隙度是影响页岩气产量的主要因素(见图 2—图 5),它们都与压后产量呈正相关关系。
表 1 四川盆地及周缘典型页岩气井地质参数统计表Table 1. Geological fators of tipical shale gas wells in Sichuan Basin and adjacent areas井号 优质页岩厚度/m TOC/% Ro/% 总含气量/(m3/t) 脆性矿物含量/% 脆性指数/% 孔隙度/% 渗透率/md 测试产量/万方 JY1HF 38 1.625 2.65 4.64 56.5 52~60 7.70 0.024 20.3 DY2HF 35.5 3.95 2.35 4.48 63.6 49.27 5.81 0.1425 10.5 彭页1HF 24 2.13~4.74 2.39~2.9 2.46 74.1 60 2.87 0.045 2.3 彭页4HF — 3.50 2.0~2.8 — 49.69 — — — 2.68 南页1HF 29 1.98~7.73 2.31~2.77 4.41 62.3 62 5.3 0.0524 0.2 龙页2井 5 1.56 5.50 0.20 35.5 40 3.4 0.0001 — 保页1井 10 2.03 3.34 2.50 57 67.2 0.77 0.42 0.16 濯页1井 25 2.22 2.60 1.04 67 0.62 1.72 0.0031 — 濯页2井 35 2.76 2.92 0.08 63 0.58 1.25 0.0014 — 龙参2井 12 2.76~5.96 2.24~2.57 1.3~1.7 70.60 62.4 2.5 0.151 0.06 JY2HF 40.5 3.76 3.71 5.40 42.2 — 4.39 0.202 34 JY3HF 43.5 2.99 — 4.30 40.9 — 4.03 — 12 JY4HF 39.5 3.67 3.11 5.50 40.5 — 4.9 0.5943 26 JY5HF 43 3.15 3.75 3.56 — — — — — JY6HF 33.4 2.81 — 4.98 72.7 — — — 36 JY7HF 48.2 3.02 — 3.77 71.7 — — — 15 JY8HF 33.58 2.43 — 3.88 65.2 — — — 150 优质页岩厚度与产量的相关系数为0.6414,优质页岩厚度越大,压后产量越高。页岩含气量与产量的相关系数为0.5275,页岩的含气量越高,压后产量越高。脆性矿物含量与产量的相关系数为0.5975,龙马溪组页岩中的脆性矿物含量以石英为主,其次是长石、白云石和方解石,另有少量的黄铁矿,JY1、JY2等井的龙马溪组有页岩下部可见大量的硅质海绵骨针、放射虫、笔石生物化石,是页岩脆性矿物含量高的主要原因之一,脆性矿物含量越高,压后产量越高。储层孔隙度与产量的相关系数为0.5355,页岩孔隙是控制游离气含量的主要因素,在很大程度上决定了页岩的产能,储层孔隙度越高,压后产量越高。
3. 构造保存条件对产气效果的影响
龙马溪组页岩的勘探实践表明,页岩气保存条件是影响最终产量的关键因素,众所周知,该地区经历了多期构造运动,多期次的构造演化(包括埋藏、抬升、断裂和褶皱等)和热演化(多期次、多种方式的生排烃)都会造成页岩气的聚集与散失,因此,寻找构造保存条件较好的地区成为页岩气勘探成功的关键。根据目前的勘探开发经验来看,地层压力系数是反映本地区构造保存条件的重要参数,地层压力系数高,有利于页岩气聚集和保存,页岩气井的压后产量就高。统计分析长宁—威远、涪陵、彭水、南川、龙山和保靖等区块的大量钻井地层压力系数与产量的关系(见表 2)并做单因素相关性分析发现(见图 6),地层压力系数越高,压后产量普遍较高,地层压力系数与产量呈较好的正相关关系,相关系数为0.5823。
表 2 四川盆地及周缘典型页岩气井地层压力系数与产量统计表Table 2. Formation pressure coefficient and gas production of typical shale gas wells in Sichuan Basin and adjacent areas井号 压力系数 产量/万方 彭页3HF 0.96 3.2 彭页4HF 0.94 1.7 威201-H1 0.92 1.31 威204 1.96 16.5 宁201-H1 2.03 15 长宁H3-1 2 7.68 阳201-H2 2.2 43 YSH1-1 1.15 3.56 YS108H1-1 2 20.68 威202 1.4 2.75 威201 0.92 0.26 JY1HF 1.45 20.3 DY2HF 1.6 10.5 彭页1HF 0.96 2.3 南页1HF 1.5 0.2 保页1井 1 0.16 龙参2井 1 0.2 页岩储层压裂是以地层产生网状裂缝,实现体积改造为目标[23],根据岩石力学参数中的杨氏模量和泊松比计算页岩的脆性指数,杨氏模量高,泊松比低,储层的脆性强,脆性指数高,有利于压裂改造过程中形成复杂的裂缝系统[24~25]。统计发现龙马溪组页岩脆性指数较高,普遍在40%~80%之间,利用形成复杂裂缝。而统计发现不同地区水平地应力的差异系数差别较大,实验表明,水平应力差异系数越小,压裂容易形成网状裂缝,而当水平应力差异系数越大时,压裂裂缝容易沿最大主应力方向延伸,不易形成网状裂缝[26~27],分析发现水平应力差异系数与压后产量成很好的相关性(见图 7),差异系数越小,产量越高,而差异系数越大,产量越低。
4. 钻完井及分段压裂改造工艺对压后产气效果的影响
从目前对龙马溪组页岩的压裂改造工艺来看,大多体现了“两大、两小”的改造思路,“两大”一是指大排量,施工排量在8 m3/min以上;二是指大液量,单井用液量都在万方以上,平均单段液量大于1500 m3。“两小”一是指小粒径支撑剂,支撑剂一般采用100目和40/70目陶粒;二是指低砂比,平均砂液比为3%~5%,最高砂比不超过10%。
压裂液体系多采用低粘度的滑溜水+线性胶混合压裂液体系,压裂前期通过滑溜水的造缝能力,充分沟通和扩展天然裂缝,同时为了提高裂缝导流能力,在压裂后期多采用线性胶体系,利用其携砂能力,便于携带大粒径支撑剂形成高导流能力的支撑裂缝。
目前焦石坝地区的页岩气水平井的水平段长度在1000~1500 m之间不等,压裂段数大多在12~15段,多采用分簇射孔压裂,簇间距一般为30~35 m,段间距一般为35~40 m。分段压裂采用桥塞分段方式,此种工艺在焦石坝、长宁—威远地区已经应用成熟并取得了良好的效果,而目前其它地区的页岩气压裂也在借鉴焦石坝的压裂经验。但由于受地层条件、构造保存等因素的影响,压裂改造效果相差较大。中石化南川区块的南页1HF井在钻井过程中页岩气显示良好,各项地质参数都与焦石坝地区的相近,但在后期压裂改造后,整体压裂效果较差,分析原因来看一方面可能受附近断层影响,另一方面也可能与后期水平井钻井设计与压裂改造工艺有关。从目前龙山和保靖区块对页岩气直井的压裂改造效果来看,除了受优质页岩厚度较小等不利地质因素影响之外,主要还是由于直井压裂改造裂缝波及面积较小,改造规模有限,造成压裂改造后产气量低,且成不连续段塞流。分析认为分段压裂改造的单段压裂液用量和单段加砂量与压后产量的相关性不大(见图 8、图 9)。
5. 讨论
我国真正实现页岩气商业化开发时间短,页岩气水平井钻完井和分段压裂技术从2013年才开始大规模应用和实践,目前对页岩气水平井压裂效果的评价大都是针对单井压裂工艺展开的[10~15],还没有文献对影响页岩压裂效果的因素进行系统深入分析,在参考常规油气压裂效果影响因素分析方法的基础上,本文利用灰色关联法对可能影响页岩气水平井压裂效果的的影响因素进行分析。
将压后产量作为参考序列x0(k),优质页岩厚度、TOC、Ro、含气量、脆性矿物含量、地层压力系数、孔隙度和渗透率作为比较序列xi(k)(数据见表 1),将参考序列和比较序列数据进行标准化变换,求出参考序列和比较序列的平均值和标准差,然后将原始数据减去相应的平均值后再除以标准差,由此得到新数据序列即为标准化序列,其量纲为1,均值为0,方差为1。
计算各序列的灰色关联系数εi(k):
εi(k)minimink|x0(k)−xi(k)|+ρminimink|x0(k)−xi(k)||x0(k)−xi(k)|+ρminimink|x0(k)−xi(k)| 式中:ρ为分辨系数,ρ∈(0,1),一般取0.5。求关联度γi,即计算各比较序列关联系数的平均值:
γi=1nn∑i=1εi(k) 根据关联度大小进行排序,即可以确定各比较序列对参考序列影响大小的主次关系。利用此方法求取的优质页岩厚度、TOC、Ro、含气量、脆性矿物含量、地层压力系数、孔隙度和渗透率的关联度分别是0.6974、0.7300、0.7964、0.7531、0.5960、0.7280、0.7055、0.7673。从排序结果来看,页岩有机质成熟度Ro、地层渗透率、含气量和地层压力系数对压裂效果的影响相对较大。
6. 结论
影响页岩气压后产气效果的因素主要包括储层条件、构造保存和工艺技术,其中储层条件中的优质页岩厚度、含气量、脆性矿物含量是影响页岩产能的内因;而构造保存条件是页岩气储集的关键,地层压力系数是直观反映构造保存好坏的重要参数,而水平应力差异系数是影响压裂改造规模的主要因素;水平井钻完井和分段压裂工艺是影响最终开发效果的外因,水平井方位、水平井段长度、分段压裂规模、压裂液体系、施工工艺等都有可能影响最终的压裂改造效果。
通过对不同参数与压后产量的相关性分析认为,优质页岩厚度、含气性、脆性矿物含量、孔隙度、地层压力系数和水平应力差异系数都与产量有较好的相关性。而单段压裂规模和加砂规模与压后产量没有明显的相关性。因此建议页岩气勘探开发中首先优选构造相对稳定、保存条件较好的有利区开展钻探,水平井钻完井和分段压裂是实现页岩气高产的关键技术,钻井过程中要评价选择优质页岩层段,确保水平井段在优质页岩层段中穿行,以利于后期改造。
地应力和岩石力学参数是影响水平井钻井设计和后期压裂设计的关键参数,建议在构造复杂地区首先获取该地区的地应力和岩石力学参数,以指导后期的钻井地质设计和压裂改造设计。
从对影响压后产气效果的不同参数的灰色关联分析结果来看,优选页岩成熟度适中、地层物性较好、保存条件较好的有利区是页岩气勘探开发取得成功的关键。
-
图 1 汉南地区构造纲要图及研究区位置图
(据文献[13]修改)
Figure 1. Structural outline map and location map of the study area in Hannan region
表 1 余家山铜镍矿LA-ICP-MS锆石U-Pb年代学测试结果
Table 1. LA-ICP-MS zircon U-Pb dating results of the Yujiashan nickel-copper deposit
样品点号 Pb Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 谐和度 ppm 同位素比值 年龄/Ma HN145-3-1 31.2 267 155 1.72 0.0679 0.0020 1.2403 0.0348 0.1326 0.0019 877.8 61.1 819.0 15.8 802.9 10.8 98% HN145-3-2 54.7 274 324 0.85 0.0673 0.0016 1.2403 0.0285 0.1337 0.0017 855.6 48.1 819.0 12.9 808.7 9.5 98% HN145-3-3 42.8 296 238 1.24 0.0670 0.0015 1.2031 0.0254 0.1306 0.0018 838.9 47.1 802.0 11.7 791.4 10.2 98% HN145-3-4 58.9 532 292 1.82 0.0694 0.0018 1.2613 0.0300 0.1321 0.0017 922.2 53.7 828.5 13.5 799.7 9.6 96% HN145-3-5 48.5 250 284 0.88 0.0674 0.0018 1.2381 0.0313 0.1330 0.0016 851.5 54.8 818.0 14.2 805.2 8.9 98% HN145-3-6 22.0 112 136 0.82 0.0671 0.0024 1.1921 0.0394 0.1303 0.0021 842.6 74.8 796.9 18.2 789.7 12.1 99% HN145-3-7 41.3 299 225 1.33 0.0665 0.0018 1.2065 0.0332 0.1313 0.0018 821.9 55.6 803.6 15.3 795.3 10.2 98% HN145-3-8 16.8 86 103 0.83 0.0665 0.0026 1.1647 0.0399 0.1293 0.0022 821.9 81.5 784.1 18.7 783.7 12.7 99% HN145-3-9 33.3 196 195 1.00 0.0661 0.0018 1.1762 0.0309 0.1295 0.0018 809.3 58.2 789.5 14.4 784.7 10.3 99% HN145-3-10 42.5 314 230 1.36 0.0678 0.0016 1.2070 0.0276 0.1292 0.0014 861.1 50.8 803.8 12.7 783.4 8.3 97% HN145-3-11 30.5 187 175 1.07 0.0688 0.0021 1.2503 0.0388 0.1321 0.0019 894.4 69.4 823.5 17.5 799.6 10.9 97% HN145-3-12 34.7 189 207 0.91 0.0660 0.0020 1.1816 0.0340 0.1300 0.0016 805.6 67.6 792.0 15.8 788.1 9.4 99% HN145-3-13 53.6 344 305 1.13 0.0653 0.0015 1.1604 0.0247 0.1288 0.0014 783.3 42.4 782.2 11.6 780.8 7.8 99% HN145-3-14 188.1 1330 1019 1.30 0.0674 0.0012 1.2230 0.0210 0.1311 0.0014 851.5 35.2 811.1 9.6 794.1 7.9 97% HN145-3-15 20.3 134 116 1.16 0.0671 0.0022 1.2077 0.0400 0.1305 0.0019 842.6 68.5 804.1 18.4 790.8 11.0 98% HN145-3-16 28.5 171 167 1.03 0.0673 0.0020 1.2024 0.0349 0.1289 0.0017 855.6 60.8 801.7 16.1 781.5 9.5 97% HN145-3-17 25.9 177 146 1.21 0.0662 0.0023 1.1758 0.0410 0.1285 0.0017 813.0 69.4 789.3 19.1 779.5 9.9 98% HN145-3-18 59.5 367 349 1.05 0.0657 0.0015 1.1714 0.0238 0.1290 0.0016 798.2 52.8 787.3 11.1 782.4 9.1 99% HN145-3-19 33.4 231 188 1.23 0.0664 0.0020 1.1923 0.0338 0.1302 0.0019 820.4 64.8 797.0 15.6 788.9 10.8 98% HN145-3-20 39.9 271 228 1.19 0.0660 0.0018 1.1835 0.0313 0.1292 0.0017 805.6 59.3 793.0 14.6 783.5 9.5 98% HN145-11-01 48.5 150 165 0.91 0.0660 0.0033 1.2098 0.0488 0.1329 0.0023 806.8 99.97 805.1 22.4 804.6 13.3 99% HN145-11-02 39.3 118 145 0.81 0.0689 0.0036 1.2718 0.0558 0.1338 0.0025 896.8 104.42 833.2 24.92 809.6 14.1 97% HN145-11-03 31.3 98 116 0.84 0.0665 0.0036 1.2191 0.0554 0.1329 0.0025 822.9 108.33 809.4 25.35 804.5 14.1 99% HN145-11-04 51.5 153 189 0.81 0.0687 0.0032 1.2573 0.0459 0.1328 0.0023 889.5 92.76 826.7 20.66 803.6 13.0 97% HN145-11-05 23.1 62 99 0.62 0.0699 0.0042 1.2895 0.0671 0.1339 0.0027 924 117.69 841.1 29.74 810.1 15.4 96% HN145-11-06 29.3 76 141 0.54 0.0681 0.0035 1.2552 0.0542 0.1337 0.0024 871.5 103.79 825.7 24.4 808.9 13.9 98% HN145-11-07 37.4 118 140 0.84 0.0685 0.0036 1.2645 0.0552 0.1339 0.0025 884 104.13 829.9 24.77 810 14.2 98% HN145-11-08 27.4 81 106 0.77 0.0693 0.0041 1.2810 0.0653 0.1341 0.0027 907.4 116.37 837.3 29.09 811.2 15.3 97% HN145-11-09 28.0 80 115 0.69 0.0665 0.0039 1.2298 0.0636 0.1342 0.0027 821.9 119.09 814.3 28.95 811.6 15.3 100% HN145-11-10 24.4 66 106 0.62 0.0698 0.0079 1.2837 0.1384 0.1335 0.0048 921.4 215.89 838.5 61.55 807.6 27.0 96% HN145-11-11 49.3 165 163 1.01 0.0668 0.0034 1.2242 0.0520 0.1329 0.0024 831.6 103.34 811.7 23.74 804.5 13.7 99% HN145-11-12 58.6 166 242 0.69 0.0673 0.0031 1.2341 0.0437 0.1330 0.0022 847.1 91.71 816.2 19.84 805 12.7 99% HN145-11-13 24.9 67 106 0.63 0.0687 0.0056 1.3541 0.1018 0.1431 0.0038 888.5 158.86 869.3 43.91 861.9 21.2 99% HN145-11-14 20.3 49 83 0.59 0.0748 0.0047 1.3779 0.0766 0.1337 0.0029 1061.9 121.57 879.6 32.71 809 16.2 92% HN145-11-15 35.8 92 178 0.52 0.0662 0.0034 1.2284 0.0511 0.1345 0.0024 813.6 102.29 813.6 23.3 813.7 13.7 100% HN145-11-16 19.2 56 87 0.64 0.0630 0.0060 1.1894 0.1074 0.1370 0.0039 706.7 190.81 795.7 49.81 827.9 22.0 104% HN145-11-17 27.6 81 112 0.73 0.0665 0.0044 1.2214 0.0727 0.1333 0.0029 821 132.87 810.4 33.23 806.7 16.5 100% HN145-11-18 32.6 107 120 0.89 0.0683 0.0038 1.2593 0.0608 0.1338 0.0025 876.6 112.38 827.6 27.33 809.5 14.4 98% HN145-11-19 21.4 59 89 0.66 0.0663 0.0043 1.2229 0.0709 0.1338 0.0028 815.7 130.24 811.1 32.4 809.5 15.9 100% HN145-11-20 46.3 149 158 0.94 0.0690 0.0035 1.2738 0.0534 0.1340 0.0024 897.8 101.51 834.1 23.84 810.5 13.6 97% 表 2 余家山铜镍矿锆石Lu-Hf同位素组成
Table 2. Zircon Lu-Hf isotopic composition from the Yujiashan nickel-copper deposit
测点号 Age/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) tDM1/Ma tDM2/Ma fLu/Hf HN145-3-1 802.9 0.035803 0.000989 0.282574 0.000032 -7.0 10.2 959 1053 -0.97 HN145-3-2 808.7 0.021066 0.000835 0.282586 0.000019 -6.6 10.9 938 1018 -0.97 HN145-3-3 791.4 0.033041 0.001106 0.282578 0.000029 -6.9 10.0 957 1055 -0.97 HN145-3-4 799.7 0.012552 0.000452 0.282557 0.000023 -7.6 9.8 969 1075 -0.99 HN145-3-5 805.2 0.008886 0.000321 0.282572 0.000027 -7.1 10.6 945 1033 -0.99 HN145-3-6 789.7 0.013889 0.000501 0.282557 0.000025 -7.6 9.6 970 1083 -0.98 HN145-3-7 795.3 0.012072 0.000346 0.282568 0.000023 -7.2 10.2 952 1050 -0.99 HN145-3-8 783.7 0.022368 0.000842 0.282566 0.000023 -7.3 9.6 967 1078 -0.97 HN145-3-9 784.7 0.013221 0.000447 0.282572 0.000022 -7.1 10.0 949 1052 -0.99 HN145-3-10 783.4 0.031703 0.001069 0.282600 0.000023 -6.1 10.7 924 1008 -0.97 HN145-3-11 799.6 0.015805 0.000579 0.282579 0.000023 -6.8 10.5 942 1031 -0.98 HN145-3-12 788.1 0.019114 0.000675 0.282558 0.000021 -7.6 9.5 974 1088 -0.98 HN145-3-13 780.8 0.029298 0.000994 0.282597 0.000022 -6.2 10.6 927 1015 -0.97 HN145-3-14 794.1 0.032476 0.001249 0.282578 0.000028 -6.9 10.0 960 1058 -0.96 HN145-3-15 790.8 0.022605 0.000826 0.282564 0.000026 -7.4 9.7 969 1077 -0.98 HN145-3-16 781.5 0.017842 0.000696 0.282577 0.000029 -6.9 10.0 948 1050 -0.98 HN145-3-17 779.5 0.029740 0.001082 0.282593 0.000026 -6.3 10.3 935 1028 -0.97 HN145-3-18 782.4 0.037648 0.001345 0.282598 0.000022 -6.2 10.4 935 1024 -0.96 HN145-3-19 788.9 0.044190 0.001455 0.282595 0.000027 -6.2 10.4 941 1029 -0.96 HN145-3-20 783.5 0.038055 0.001368 0.282595 0.000025 -6.3 10.3 939 1031 -0.96 HN145-11-1 804.6 0.016663 0.000728 0.282527 0.000027 -8.7 8.7 1018 1149 -0.98 HN145-11-2 809.6 0.026208 0.001040 0.282565 0.000025 -7.3 10.0 973 1071 -0.97 HN145-11-3 804.5 0.018955 0.000780 0.282564 0.000025 -7.4 10.0 968 1068 -0.98 HN145-11-4 803.6 0.014788 0.000642 0.282556 0.000028 -7.6 9.8 975 1081 -0.98 HN145-11-5 810.1 0.015933 0.000711 0.282562 0.000028 -7.4 10.1 969 1066 -0.98 HN145-11-6 808.9 0.017269 0.000777 0.282556 0.000023 -7.6 9.8 979 1083 -0.98 HN145-11-7 810 0.017751 0.000787 0.282572 0.000024 -7.1 10.4 957 1047 -0.98 HN145-11-8 811.2 0.020999 0.000879 0.282554 0.000021 -7.7 9.8 984 1089 -0.97 HN145-11-9 811.6 0.013807 0.000611 0.282535 0.000027 -8.4 9.2 1004 1123 -0.98 HN145-11-11 804.5 0.025776 0.001024 0.282574 0.000021 -7.0 10.3 959 1053 -0.97 HN145-11-12 805 0.023812 0.001152 0.282557 0.000028 -7.6 9.6 988 1096 -0.97 HN145-11-14 809 0.011868 0.000519 0.282589 0.000027 -6.5 11.1 927 1001 -0.98 HN145-11-15 813.7 0.022469 0.001008 0.282548 0.000025 -7.9 9.5 996 1105 -0.97 HN145-11-17 806.7 0.014377 0.000674 0.282568 0.000025 -7.2 10.3 960 1054 -0.98 HN145-11-18 809.5 0.019634 0.000831 0.282555 0.000027 -7.7 9.8 982 1087 -0.97 HN145-11-19 809.5 0.011156 0.000466 0.282567 0.000022 -7.2 10.4 955 1046 -0.99 HN145-11-20 810.5 0.018883 0.000787 0.282550 0.000024 -7.9 9.6 988 1097 -0.98 注:εHf(0)=[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1]×104;εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×104;TDM1=1/λ×In{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tDM2=tDM1-(tDM1-t)×[(fcc-fs)/(fcc-fDM)];fLu/Hf=(176Lu/177Hf)S-(176Lu/177Hf)CHUR-1;其中:(176Lu/177Hf)S和(176Hf/177Hf)S为样品测量值,t为锆石结晶年龄,(176Hf/177Hf)CHUR, 0=0.282772,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)DM=0.28325,(176Lu/177Hf)DM=0.0384[45, 47],λ=1.867×10-11a-1[48],(176Lu/177Hf)C=0.015,fcc=[(176Lu/177Hf)C/(176Lu/177Hf)CHUR]-1,fs=fLu/Hf,fDM=[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1 -
[1] 李婷. 扬子陆块北缘碑坝-西乡地区新元古代构造-岩浆作用研究[D]. 西安: 长安大学, 2010.LI Ting. The study of Neoproterozoic tectonic-magmatic events in the Northern margin of the Yangtze continental[D]. Xi'an:Chang'an University, 2010(in Chinese with English abstract). [2] 王梦玺. 扬子地块北缘新元古代镁铁-超镁铁质岩体地幔源区特征, 岩浆演化过程和成矿潜力评价[D]. 北京: 中国科学院大学, 2013.WANG Mengxi. Mantle source and differentiation of magmas in the formation of the Neoproterozoic mafic-ultramafic intrusions in the northern margin of the Yangtze Block, Central China:Implications for the ore potentials[D]. Beijing:University of Chinese Academy of Sciences, 2013(in Chinese with English abstract). [3] 王梦玺, 王焰, 赵军红.扬子板块北缘周庵超镁铁质岩体锆石U/Pb年龄和Hf-O同位素特征:对源区性质和Rodinia超大陆裂解时限的约束[J].科学通报, 2012, 57(34):3283~3294.WANG Mengxi, WANG Yan, ZHAO Junhong. Zircon U/Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the Yangtze Block, SW China:Constraints on the nature of mantle source and timing of the supercontinent Rodinia breakup[J]. Chinese Science Bulletin, 2013, 58(7):777~787(in Chinese). [4] 赵凤清, 赵文平, 左义成, 等.陕南汉中地区新元古代岩浆岩U-Pb年代学[J].地质通报, 2006, 25(3):383~388. http://d.wanfangdata.com.cn/Periodical/zgqydz200603007ZHAO Fengqing, ZHAO Wenping, ZUO Yicheng, et al. U-Pb geochronology of Neoproterozoic magmatic rocks in Hanzhong, southern Shaanxi, China[J]. Geological Bulletin of China, 2006, 25(3):383~388(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgqydz200603007 [5] 杨合群, 苏犁, 宋述光, 等.论陕西毕机沟钒钛磁铁矿床成因[J].地质与勘探, 2013, 49(6):1036~1045. http://d.wanfangdata.com.cn/Periodical/dzykt201306003YANG Hequn, SU Li, SONG Shuguang, et al. On genesis of the Bijigou V-Ti magnetite deposit in Shaanxi province[J]. Geology and Exploration, 2013, 49(6):1036~1045(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzykt201306003 [6] 任鹏, 梁婷, 牛亮, 等.陕西秦岭铅锌矿床的地质特征及成矿动力学过程[J].地球科学与环境学报, 2013, 35(1):34~47. http://d.wanfangdata.com.cn/Periodical/xagcxyxb201301004REN Peng, LIANG Ting, NIU Liang, et al. Geological Characteristic and Geodynamic Process from Pb-Zn deposit in Qinling of Shaanxi[J]. Journal of Earth Sciences and Environment, 2013, 35(1):34~47(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/xagcxyxb201301004 [7] 李进学, 侯满堂, 朱增伍.扬子地块北缘观音庵铅锌矿找矿模型及远景预测[J].陕西地质, 2011, 29(1):1~9. http://d.wanfangdata.com.cn/Periodical/sxdizhi201101001LI Jinxue, HOU Mantang, ZHU Zengwu. Ore-prospecting model and potential prediction of lead-zinc mineralization in Guanyinan at the northern margin of the Yangtze land-mass[J]. Geology of Shaanxi, 2011, 29(1):1~9(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/sxdizhi201101001 [8] 齐文, 侯满堂, 汪克明, 等.陕西南郑县马元一带发现大型层控型铅锌矿带[J].地质通报, 2004, 23(11):1139~1142. doi: 10.3969/j.issn.1671-2552.2004.11.015QI Wen, HOU Mantang, WANG Keming, et al. A large-scale stratabound lead-zinc metallogenic belt discovered in the Mayuan area, Nanzheng County, Shaanxi[J]. Geological Bulletin of China, 2004, 23(11):1139~1142(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2004.11.015 [9] 李厚民, 陈毓川, 王登红, 等.陕西南郑地区马元锌矿的地球化学特征及成矿时代[J].地质通报, 2007, 26(5):546~552. http://d.wanfangdata.com.cn/Periodical/zgqydz200705006LI Houmin, CHEN Yuchuan, WANG Denghong, et al. Geochemistry and mineralization age of the Mayuan zinc deposit, Nanzheng, Southern Shaanxi, China[J]. Geological Bulletin of China, 2007, 26(5):546~552(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgqydz200705006 [10] 王晓虎, 薛春纪, 李智明, 等.扬子陆块北缘马元铅锌矿床地质和地球化学特征[J].矿床地质, 2008, 27(1):37~48. http://d.wanfangdata.com.cn/Periodical/kcdz200801004WANG Xiaohu, XUE Chunji, LI Zhiming, et al. Geological and geochemical characteristics of Mayuan Pb-Zn ore deposit on northern margin of Yangtze landmass[J]. Mineral Deposits, 2008, 27(1):37~48(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kcdz200801004 [11] 李厚民, 王登红, 张长青, 等.陕西几类重要铅锌矿床的矿物微量元素和稀土元素特征[J].矿床地质, 2009, 28(4):434~448. http://d.wanfangdata.com.cn/Periodical/kcdz200904006LI Houmin, WANG Denghong, ZHANG Changqing, et al. Characteristics of trace and rare earth elements in minerals from some typical lead-zinc deposits of Shaanxi Province[J]. Mineral Deposits, 2009, 28(4):434~448(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kcdz200904006 [12] 王平安, 陈毓川.秦岭造山带构造-成矿旋回与演化[J].地质力学学报, 1997, 3(1):10~20. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=19970102&flag=1WANG Ping'an, CHEN Yuchuan. Tectono-minerogenic cycles and minerogenetic evolution through geological history in the Qinling orogenic belt[J]. Journal of Geomechanics, 1997, 3(1):10~20(in Chinese with English abstract). http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=19970102&flag=1 [13] Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China:Constraints from zircon U-Pb geochronology and geochemistry[J]. Precambrian Research, 2012, 196/197:247~274. doi: 10.1016/j.precamres.2011.12.007 [14] Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122(1/4):111~140. doi: 10.1016-S0301-9268(02)00222-X/ [15] Zhao J H, Zhou M F, Zheng J P, et al. Neoproterozoic crustal growth and reworking of the Northwestern Yangtze Block:Constraints from the Xixiang dioritic intrusion, South China[J]. Lithos, 2010, 120(3~4):439~452. doi: 10.1016/j.lithos.2010.09.005 [16] 凌文黎, 高山, 张本仁, 等.扬子克拉通北缘早前寒武纪地壳演化——后河杂岩元素和同位素地球化学限制[J].矿物岩石, 1997, 17(4):26~32. http://www.cqvip.com/QK/94361X/1997004/2857202.htmlLING Wenli, GAO Shan, ZHANG Benren, et al. Early Precambrian continental crust evolution at the northern margin of Yangtze craton:constrain from the elemental and isotopic geochemical study of Houhe complex[J]. Journal of Mineralogy and Petrology, 1997, 17(4):27~33(in Chinese with English abstract). http://www.cqvip.com/QK/94361X/1997004/2857202.html [17] 凌文黎, 高山, 欧阳建平, 等.西乡群的时代与构造背景:同位素年代学及地球化学制约[J].中国科学(D辑), 2002, 32(2):101~112. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200202001&dbname=CJFD&dbcode=CJFQLING Wenli, GAO Shan, OUYANG Jianping, et al. Time and tectonic setting of the Xixiang Group:Constraints from zircon U-Pb geochronology and geochemistry[J]. Science in China (Series D), 2002, 45(9):818~831(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200202001&dbname=CJFD&dbcode=CJFQ [18] 凌文黎.扬子克拉通北缘元古宙基底同位素地质年代学和地壳增生历史:Ⅰ.后河群和西乡群[J].地球科学——中国地质大学学报, 1996, 21(5):491~494. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx605.007&dbname=CJFD&dbcode=CJFQLING Wenli. Isotopic geochronology and crustal growth of Proterozoic basement along the northern margin of Yangtze craton:I. Houhe group and Xixiang group[J]. Earth Science——Journal of China University of Geosciences, 1996, 21(5):491~494(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx605.007&dbname=CJFD&dbcode=CJFQ [19] 凌文黎, 周炼, 张宏飞, 等.扬子克拉通北缘元古宙基底同位素地质年代学和地壳增生历史:Ⅱ.火地垭群[J].地球科学——中国地质大学学报, 1996, 21(5):495~500. http://www.cqvip.com/QK/94035X/199605/2296775.htmlLING Wenli, ZHOU Lian, ZHANG Hongfei, et al. Isotopic geochronogy and crustal growth of Proterozoic basement along the northern margin of Yangtze craton:Ⅱ. The Huodiya Group[J]. Earth Science——Journal of China University of Geoscience, 1996, 21(5):495~500(in Chinese with English abstract). http://www.cqvip.com/QK/94035X/199605/2296775.html [20] 赖绍聪, 杨瑞瑛, 张国伟.南秦岭西乡群孙家河组火山岩形成构造背景及其大地构造意义的讨论[J].地质科学, 2001, 36(3):295~303. http://d.wanfangdata.com.cn/Periodical/dzkx200103004LAI Shaocong, YANG Ruiying, ZHANG Guowei. Tectonic setting and implication of the Sunjiahe volcanic rocks, Xixiang Group, in south Qinling[J]. Chinese Journal of Geology, 2001, 36(3):295~303(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzkx200103004 [21] 徐学义, 陈隽璐, 李向民, 等.西乡群三郎铺组和大石沟组火山岩U-Pb定年及岩石成因研究[J].岩石学报, 2010, 26(2):617~632. http://d.wanfangdata.com.cn/Periodical/ysxb98201002022XU Xueyi, CHEN Junlu, LI Xiangmin, et al. Geochemisrty and petrogenesis of volcanic rocks from Sanlangpu Formation and Dashigou Formation[J]. Acta Petrologica Sinica, 2010, 26(2):617~632(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201002022 [22] 邓奇, 王剑, 汪正江, 等.扬子北缘西乡群大石沟组和三郎铺组凝灰岩锆石U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版), 2013, 43(3):797~808, 819. http://d.wanfangdata.com.cn/Periodical/cckjdxxb201303014DENG Qi, WANG Jian, WANG Zhengjiang, et al. Zircon U-Pb ages for tuffs from the Dashigou and Sanlangpu Formations of the Xixiang Group in the northern margin of Yangtze Block and their geological significance[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3):797~808, 819(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cckjdxxb201303014 [23] Zhao J H, Zhou M F. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China:Partial melting of a thickened lower crust and implications for secular crustal evolution[J]. Lithos, 2008, 104(1~4):231~248. doi: 10.1016/j.lithos.2007.12.009 [24] Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc-related Mafic intrusions along the northern margin of South China:Implications for the accretion of Rodinia[J]. The Journal of Geology, 2002, 110(5):611~618. doi: 10.1086/341762 [25] Zhao J H, Zhou M F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 2009, 107(3~4):152~168. doi: 10.1016/j.lithos.2008.09.017 [26] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4):481~492. http://d.wanfangdata.com.cn/Periodical/kcdz200904010HOU Kejun, LI Yanhe, TIAN Yourong. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4):481~492(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kcdz200904010 [27] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353~370. doi: 10.1111/ggr.2004.28.issue-3 [28] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391~1399. doi: 10.1039/c2ja30078h [29] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1~2):537~571. doi: 10.1093/petrology/egp082 [30] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423~439. http://onlinelibrary.wiley.com/resolve/doi?DOI=10.1046/j.1525-1314.2000.00266.x [31] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589~1604. http://d.wanfangdata.com.cn/Periodical/kxtb200416002WU Yuanbao, ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554~1569(in Chinese). http://d.wanfangdata.com.cn/Periodical/kxtb200416002 [32] 周春景, 胡道功, Barosh P J, 等.东昆仑三道湾流纹英安斑岩锆石U-Pb年龄及其地质意义[J].地质力学学报, 2010, 16(1):28~35. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20100104&flag=1ZHOU Chunjing, HU Daogong, Barosh P J, et al. Zircon U-Pb dating of the rhyolite-dacite porphyry in the Sandaowan of east Kunlun mountains and its geological significance[J]. Journal of Geomechanics, 2010, 16(1):28~35(in Chinese with English abstract). http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20100104&flag=1 [33] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2):51~67. http://www.oalib.com/references/19137130 [34] 夏林圻, 夏祖春, 马中平, 等.南秦岭中段西乡群火山岩岩石成因[J].西北地质, 2009, 42(2):1~37. http://d.wanfangdata.com.cn/Periodical/xbdz200902001XIA Linqi, XIA Zuchun, MA Zhongping, et al. Petrogenesis of volcanic rocks from Xixiang Group in middle part of South Qinling Mountains[J]. Northwestern Geology, 2009, 42(2):1~37(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/xbdz200902001 [35] Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China:Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 2011, 189(1/2):66~90. http://www.sciencedirect.com/science/article/pii/S0301926811001033 [36] 李献华, 李正祥, 葛文春, 等.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义[J].矿物岩石地球化学通报, 2001, 20(4):271~273. http://d.wanfangdata.com.cn/Periodical/kwysdqhxtb200104019LI Xianhua, LI Zhengxiang, GE Wenchun, et al. U-Pb zircon ages of the Neoproterozoic granitoids in South China and their tectonic implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4):271~273(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kwysdqhxtb200104019 [37] 李献华, 李正祥, 周汉文, 等.皖南新元古代花岗岩的SHRIMP锆石U-Pb年代学、元素地球化学和Nd同位素研究[J].地质论评, 2002, 48( http://d.wanfangdata.com.cn/Periodical/OA000005927S):8~16. LI Xianhua, LI Zhengxiang, ZHOU Hanwen, et al. SHRIMP U-Pb zircon geochronological, geochemical and Nd isotopic study of the neoproterozoic granitoids in Southern Anhui[J]. Geological Review, 2002, 48(S):8~16(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/OA000005927 [38] Li X H, Li W X, Li Z X, et al. 850~790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:A major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 2008, 102(1~2):341~357. doi: 10.1016/j.lithos.2007.04.007 [39] Zhao J H, Zhou M F. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China[J]. The Journal of Geology, 2007, 115(6):675~689. doi: 10.1086/521610 [40] Harrison T M, Blichert-Toft J, Müller W, et al. Heterogeneous hadean hafnium:evidence of Continental Crust at 4.4 to 4.5 Ga[J]. Science, 2005, 310(5756):1947~1950. doi: 10.1126/science.1117926 [41] 第五春荣, 孙勇, 王倩.华北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示[J].岩石学报, 2012, 28(11):3520~3530. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201211009&dbname=CJFD&dbcode=CJFQDIWU Chunrong, SUN Yong, WANG Qian. The crustal growth and evolution of North China Craton:Revealed by Hf isotopes in detrital zircons from modern rivers[J]. Acta Petrologica Sinica, 2012, 28(11):3520~3530(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201211009&dbname=CJFD&dbcode=CJFQ [42] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185~220. http://d.wanfangdata.com.cn/Periodical/ysxb98200702001WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185~220(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98200702001 [43] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 2006, 226(3/4):144~162. http://researchonline.jcu.edu.au/4682/ [44] 禹丽, 李龚健, 王庆飞, 等.保山地块北部晚白垩世岩浆岩成因及其构造指示:全岩地球化学、锆石U-Pb年代学和Hf同位素制约[J].岩石学报, 2014, 30(9):2709~2724. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201409020&dbname=CJFD&dbcode=CJFQYU Li, LI Gongjian, WANG Qingfei, et al. Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block:Constraints from bulk geochemistry, zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrologica Sinica, 2014, 30(9):2709~2724(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201409020&dbname=CJFD&dbcode=CJFQ [45] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133~147. doi: 10.1016/S0016-7037(99)00343-9 [46] 凌文黎, 王歆华, 程建萍.扬子北缘晋宁期望江山基性岩体的地球化学特征及其构造背景[J].矿物岩石地球化学通报, 2001, 20(4):218~221. http://d.wanfangdata.com.cn/Periodical/kwysdqhxtb200104003LING Wenli, WANG Xinhua, CHENG Jianping. Geochemical features and its tectonic implication of the Jinningian Wangjiangshan gabbro in the North margin of Yangtze block[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4):218~221(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kwysdqhxtb200104003 [47] Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1~2):243~258. doi: 10.1016/S0012-821X(97)00040-X [48] Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3~4):311~324. doi: 10.1016/S0012-821X(04)00012-3 [49] 崔建堂, 韩芳林, 张拴厚, 等.南秦岭西乡群锆石SHRIMP U-Pb年龄及其构造地质意义[J].陕西地质, 2010, 28(2):53~58. http://d.wanfangdata.com.cn/Periodical/sxdizhi201002009CUI Jiantang, HAN Fanglin, ZHANG Shuanhou, et al. Zircon SHRIMP U-Pb dating and the tectonic significance of the Xixiang Group in Southern Qinling[J]. Geology of Shaanxi, 2010, 28(2):53~58(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/sxdizhi201002009 -