MICROSCOPIC PORE CHARACTERISTICS AND INFLUENCE FACTORS ANALYSIS OF SHALES IN PERMIAN, YANLONG AREA, SOUTHERN NORTH CHINA BASIN
-
摘要: 运用氩离子抛光—场发射环境扫描电子显微成像测试技术,对南华北盆地偃龙地区ZK1614井二叠系海陆交互相—陆相的泥页岩样品进行观察并获取二次电子及背散射信息。结合X射线能谱信息和JMicroVision软件灰度识别功能,对样品矿物组成及微观孔隙特征进行定性分析和定量表征,并探讨了孔隙发育分布的影响因素。研究发现:样品主要发育的孔隙以无机矿物孔为主,孔隙类型有粒内孔、粒间孔、少量有机质孔及微裂隙;样品面孔率介于0.92%~5.53%之间,整体来看,面孔率大小与孔隙数量正相关;孔径大小介于50~2000 nm间,不同区段的孔面积对数指标与单位面积孔数量对数指标呈两段式线性关系,孔径较小时两者负相关,孔径较大时两者正相关。不同矿物对孔隙的发育有不同的控制作用,脆性矿物主要影响裂隙的发育,对孔隙的发育有一定的抑制作用;粘土矿物因构造应力、矿物相变及脱水等作用形成大量孔隙,对孔隙的发育起一定的促进作用。研究区燕山期、喜山期因构造活动形成了大量尺度较大的裂隙,裂隙的发育使岩层的渗流性能增加,促进了有机酸和地层水对矿物的溶蚀作用,相应的促进了孔隙的发育。此外,随着埋藏深度的增加,孔隙体积随着压实作用的增大而逐渐减小。Abstract: Using argon ion polishing and field emission environmental scanning electron microscopy imaging testing technique, the interactive marine-continental facies and continental facies shale samples from Permian drilled in ZK1614 well in Yanlong area of southern North China Basin are scanned, and the SE and BSE information are obtained as well. Combining X-ray spectrum information with gray level recognition function of JMicroVision software, qualitative analysis and quantitative representation of the mineral composition and the characteristics of micro pores of shale samples are made, and the genesis of pore system are discussed. The research shows that the pores of shale samples are mainly inorganic mineral pores, and the pore types include intragranular pores, intergranular pores, and a small amount of organic matter pores and micro fissures. The surface porosities of samples from Permian are between 0.92%~5.53%, and surface porosities are positively correlated with the number of pores in general. With different sizes of pores, there is a two-segment linear relationship between the logarithmic index of pore area and the logarithmic index of pore number of unit area in different pore diameter interval between 50~2000 nm, and when the pore diameter is small, they are negatively correlated, when the pore diameter is large, they are positively correlated. Different minerals result in different control effects on the development of pores.Brittle minerals mainly influence the development of micro fissures and inhibit the development of pores; clay minerals, due to the actions of tectonic stress, phase transformation and dehydration of minerals, result in plenty of pores, which promote the development of pores. Besides, the differential expansion and differential dissolution of minerals could also produce pores. During the Yanshan and the Himalayan periods, large scale fractures were formed in the study area. The development of fractures increased the penetrability of the roc kstratum, which promoted the dissolution of minerals by organic acids and formation water, and it also promoted the development of pores correspondingly. Moreover, with the increase of burial depth, the pore volume decreased with the increase of compaction.
-
Key words:
- southern North China Basin /
- Permian /
- shale /
- microscopic pore
-
表 1 样品地球化学测试数据
Table 1. Geochemical data of shale samples
样品编号 岩性 TOC/% Ro/% S1+S2/(mg/g) Tmax/℃ TY5 泥页岩 1.42 4.22 0.03 478 TY9 泥页岩 5.34 4.34 0.06 477 SX15 泥页岩 1.61 4.43 0.04 488 SX19 泥页岩 0.16 4.49 0.03 487 SX24 泥页岩 0.18 4.29 0.02 376 XSHZ35 泥页岩 1.21 4.6 0.04 473 XSHZ44 泥页岩 0.15 4.64 0.03 366 SSHZ54 泥页岩 0.21 — 0.02 446 注:“TOC”表示有机碳含量;“Ro”表示镜质体反射率;“S1+S2”表示生烃潜量;“Tmax”表示最高热解峰温;“—”表示无测试数据 表 2 泥页岩样品孔隙特征参数统计表
Table 2. Parametric statistical table of pore characteristics of shale samples
样品编号 孔数量/个 总孔面积
×107/nm2平均孔面积
×104/nm2面孔率/% D1 C1 D2 C2 dtran/nm TY5 10294 52.25 5.08 0.92 1.9 -21.34 -10.45 71.29 200~250 TY9 31623 259.17 8.20 4.59 2.65 -27.32 -4.03 26.53 200~250 SX15 10433 56.16 5.38 0.99 2.93 -28.43 — — — SX19 18404 179.11 9.73 3.17 2.4 -25.62 -1.7 7.3 350~400 SX24 23850 170.73 7.16 3.02 3.03 -30.41 -7.51 52.46 250~300 XSHZ35 31610 312.50 9.89 5.53 2.94 -30.33 -3.07 18.72 350~400 XSHZ44 16811 71.64 4.26 1.27 2.18 -23.3 -4.07 25.61 150~200 SSHZ54 21267 161.02 7.57 2.85 2.96 -29.78 -5 32.95 250~300 注:“D”表示关系函数斜率;“C”表示关系函数截距;“dtran”表示过渡点孔径区间;“—”表示无测试数据 表 3 泥页岩样品矿物组成
Table 3. Main mineral composition in shale samples
样品编号 脆性矿物/%
(石英+长石)碳酸盐岩/%
(方解石+白云石)黄铁矿
/%粘土矿物
/%TY5 22.32 15.42 10.82 48.44 TY9 35.18 13.03 10.73 49.06 SX15 46.42 10.84 8.36 34.38 SX19 29.78 36.24 1.62 40.36 SX24 33.72 11.15 1.27 53.86 XSHZ35 21.23 8.09 1.04 69.64 XSHZ44 37.36 4.70 1.21 50.73 SSHZ54 32.60 11.22 0.87 55.31 -
[1] 张抗.从致密油气到页岩油气—中国非常规油气发展之路探析[J].国际石油经济, 2012, 21(2):9~15. http://d.wanfangdata.com.cn/Periodical/gjsyjj201203002ZHANG Kang. From tight oil & gas to shale oil & gas-An approach to developing unconventional oil & gas in China[J]. International Petroleum Economics, 2012, 21(2):9~15. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gjsyjj201203002 [2] 耳闯, 赵靖舟, 王芮, 等.鄂尔多斯盆地三叠系延长组富有机质页岩孔隙特征及发育机制[J].天然气地球科学, 2016, 27(7):1202~1214. doi: 10.11764/j.issn.1672-1926.2016.07.1202ER Chuang, ZHAO Jingzhou, WANG Rui, et al. Characteristics and occurrence mechanism of organic-rich shale in the Triassic Yanchang Formation, Ordos Basin, China[J]. Natural Gas Geoscience, 2016, 27(7):1202~1214. (in Chinese with English abstract) doi: 10.11764/j.issn.1672-1926.2016.07.1202 [3] 钟太贤.中国南方海相页岩孔隙结构特征[J].天然气工业, 2012, 32(9):1~4. doi: 10.3787/j.issn.1000-0976.2012.09.001ZHONG Taixian. Characteristics of pore structure of marine shales in South China[J]. Natural Gas Industry, 2012, 32(9):1~4. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2012.09.001 [4] 马勇, 钟宁宁, 程礼军, 等.渝东南两套富有机质页岩的孔隙结构特征-来自FIB-SEM的新启示[J].石油实验地质, 2015, 37(1):109~116. doi: 10.11781/sysydz201501109MA Yong, ZHONG Ningning, CHENG Lijun, et al. Pore structure of two organic-rich shales in southeastern Chongqing area:Insight from Focused Ion Beam Scanning Electron Microscope(FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1):109~116. (in Chinese with English abstract) doi: 10.11781/sysydz201501109 [5] 郭旭升.南方海相页岩气"二元富集"规律—四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报, 2014, 88(7):1209~1218. https://mall.cnki.net/qikan-DZXE201407001.htmlGUO Xusheng. Rules of two-factors enrichiment for marine shale gas in southern China-Understanding from the Longmaxi formation shale gas in Sichuan basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7):1209~1218. (in Chinese with English abstract) https://mall.cnki.net/qikan-DZXE201407001.html [6] 王红岩, 刘玉章, 董大忠, 等.中国南方海相页岩气高效开发的科学问题[J].石油勘探与开发, 2013, 40(5):574~579. doi: 10.11698/PED.2013.05.09WANG Hongyan, Liu Yuzhang, Dong Dazhong, et al. Scientific issues on effective development of marine shale gas in southern China[J]. Petroleum Exploration and Development, 2013, 40(5):574~579. (in Chinese with English abstract) doi: 10.11698/PED.2013.05.09 [7] 郭旭升, 胡东风, 文治东, 等.四川盆地及周缘下古生界海相页岩气富集高产主控因素—以焦石坝地区五峰组-龙马溪组为例[J].中国地质, 2014, 41(3):893~901. http://mall.cnki.net/magazine/Article/DIZI201403016.htmGUO Xusheng, Hu Dongfeng, Wen Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan basin and its periphery:A case study of the Wufeng-Longmaxi formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3):893~901. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/DIZI201403016.htm [8] 余和中, 吕福亮, 郭庆新, 等.华北板块南缘原型沉积盆地类型与构造演化[J].石油实验地质, 2005, 27(2):111~117. doi: 10.11781/sysydz200502111YU Hezhong, L(U) Fuliang, GUO Qingxin, et al. Proto-sediment basin types and tectonic evolution in the southern edge of north China plate[J]. Petroleum Geology & Experiment, 2005, 27(2):111~117. (in Chinese with English abstract) doi: 10.11781/sysydz200502111 [9] 张江华. 洛宜-伊川盆地上古生界构造特征及其形成演化[D]. 西北大学, 2006.ZHANG Jianghua. Tectonic characterizatics and the formation evolution at the upper paleozoic in Luoyi-Yichuan basin[D]. Northwest University, 2006. (in Chinese) [10] 张小浩, 周鼎武, 赵伟波.豫西地区构造样式与油气勘探的探究[J].西北大学学报自然科学版, 2007, 37(4):647~652. http://www.cqvip.com/QK/95035X/200704/26090082.htmlZHANG Xiaohao, ZHOU Dingwu, ZHAO Weibo. The structural style and oil and gas exploration prediction in western of Henan Province[J]. Journal Of Northwest University(Natural Edition), 2007, 37(4):647~652. (in Chinese with English abstract) http://www.cqvip.com/QK/95035X/200704/26090082.html [11] 解东宁. 南华北盆地晚古生代以来构造沉积演化与天然气形成条件研究[D]. 西北大学, 2007.XIE Dongning. Study of sedimentary evolution and natural gas formation conditions in the late Paleozoic era, southern North China[D]. Northwest University, 2007. (in Chinese) [12] 崔景伟, 邹才能, 朱如凯, 等.页岩孔隙研究新进展[J].地球科学进展, 2012, 27(12):1319~1325. http://d.wanfangdata.com.cn/Periodical/dqkxjz201212003CUI Jingwei, ZOU Caineng, ZHU Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Science, 2012, 27(12):1319~1325. (in Chinese) http://d.wanfangdata.com.cn/Periodical/dqkxjz201212003 [13] 杨峰, 宁正福, 胡昌蓬, 等.页岩储层微观孔隙结构特征[J].石油学报, 2013, 34(2):301~311. doi: 10.7623/syxb201302012YANG Feng, NING Zhengfu, HU Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2):301~311. (in Chinese with English abstract) doi: 10.7623/syxb201302012 [14] 吕海刚, 于萍, 闫建萍, 等.四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J].天然气地球科学, 2015, 26(8):1556~1562. http://www.cqvip.com/QK/97226X/201508/666084696.htmlL(U) Haigang, YU Ping, YAN Jianping, et al. Experimental Investigation of Water Absorption and Its Significance on Pore Network Connectivity in Mudstone from Silurian Longmaxi Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(8):1556~1562. (in Chinese with English abstract) http://www.cqvip.com/QK/97226X/201508/666084696.html [15] 杨向东, 李智锋, 孟洁, 等.利用分形研究页岩孔隙结构特征[J].石油化工应用, 2013, 32(5):20~22. http://d.wanfangdata.com.cn/Periodical/syhgyy201305006YANG Xiangdong, LI Zhifeng, MENG Jie, et al. The characteristics of shale pore structure are studied by fractal[J]. Petrochemical Industry Application, 2013, 32(5):20~22. (in Chinese) http://d.wanfangdata.com.cn/Periodical/syhgyy201305006 [16] 黄振凯, 陈建平, 王义军, 等.松辽盆地白垩系青山口组泥岩微观孔隙特征[J].石油学报, 2013, 34(1):30~36. http://d.wanfangdata.com.cn/Periodical/syxb201301004HUANG Zhenkai, CHEN Jianping, WANG Yijun, et al. Characteristics of micropores in mudstones of the Cretaceous Qingshankou formation, Songliao basin[J]. Acta Petrolei Sinica, 2013, 40(1):58~65. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/syxb201301004 [17] Loucks R G, Reed R M.. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. Aapg Bulletin, 2012, 96(6):1071~1098. doi: 10.1306/08171111061 [18] Klaver J, Desbois G, Littke R, et al. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[J]. Marine & Petroleum Geology, 2015, 59(3):451~466. https://www.sciencedirect.com/science/article/pii/S0264817214003092 [19] 潘长春, 耿安松, 钟宁宁, 等.矿物和水对干酪根热解生烃作用的影响—Ⅲ.甾、藿烷(烯)的形成与热演化[J].地质学报, 2006, 80(3):446~453. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603018.htmPAN Changchun, GENG Ansong, ZHONG Ningning, et al. The effects of minerals and water on hydrocarbon generation from kerogen:Ⅲ steranes and triterpane generation and maturayion[J]. Acta Geologica Sinica, 2006, 80(3):446~453.(in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603018.htm [20] 张琴, 刘畅, 梅啸寒, 等.页岩气储层微观储集空间研究现状及展望[J].石油与天然气地质, 2015, 36(4):666~674. doi: 10.11743/ogg20150417ZHANG Qin, LIU Chang, MEI Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology[J]. 2015, 36(4):666~674. (in Chinese with English abstract) doi: 10.11743/ogg20150417 [21] 王奕萱, 张晓东, 孙勇, 等.陕北斜坡上古生界山2~盒8段沉积-成岩与储层孔隙特征[J].地质力学学报, 2014, 20(3):230~242. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20140303&flag=1WANG Yixuan, ZANG Xiaodong, SUN Yong, et al. The porosity characterizatics of sedimentary and diagenetic environment for Shan-2 member to He-8 member at the upper paleozoic in northern Shanxi slope[J]. Journal of Geomechanics, 2014, 20(3):230~242. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20140303&flag=1 [22] 熊金红, 梁明亮, 曹占元, 等.准噶尔盆地南缘柴窝堡凹陷泥页岩地球化学和矿物学特征研究[J].地质力学学报, 2017, 23(4):585~593. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170410&flag=1XIONG Jinhong, LIANG Mingliang, CAO Zhanyuan, et al. The Geochemical and Mineralogical Characteristics of Shales in Chaiwobu Depression, Southern Margin of Junggar Basin[J]. Journal of Geomechanics, 2017, 23(4):585~593. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170410&flag=1 [23] 吴伟, 王雨涵, 曹高社, 等.南华北盆地豫西地区C-P烃源岩地球化学特征[J].天然气地球科学, 2015, 26(1):128~136. http://www.cqvip.com/QK/97226X/201501/663999806.htmlWU Wei, WANG Yuhan, CAO Gaoshe, et al. The Geochemical Characteristics of The Carboniferous and Permian Source Rocks in the Western Henan, the southern North China Basin[J]. Natural Gas Geoscience, 2015, 26(1):128~136. (in Chinese with English abstract) http://www.cqvip.com/QK/97226X/201501/663999806.html [24] 刘丽, 任战利.济源-中牟-黄口坳陷带热演化史与油气的关系[J].石油与天然气地质, 2007, 28(3):355~361. doi: 10.11743/ogg20070308LIU Li, REN Zhanli. Relation between geothermal history and hydrocarbon generation in Jiyuan-Zhongmo-Huangkou depression belt[J]. Oil & Gas Geology, 2007, 28(3):355~361. (in Chinese with English abstract) doi: 10.11743/ogg20070308 [25] 程喆, 徐旭辉, 王荣新, 等.南华北地区上古生界烃源岩异常热演化因素探讨[J].石油实验地质, 2011, 33(2):142~147. doi: 10.11781/sysydz201102142CHEN Zhe, XU Xuhui, WANG Rongxin, et al. Reasons for abnormal thermal evolution of source rocks in Upper Paleozoic, southern North China[J]. Petroleum Geology & Experiment, 2011, 33(2):142~147. (in Chinese with English abstract) doi: 10.11781/sysydz201102142