留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔东部早志留世两类花岗岩的岩石成因及构造意义

肖典 廖群安 王良玉 赵浩 查雁鸿 赵红伟 尹庭旺 田锦明 刘鸿飞

黄启文, 李阿伟, 2019. 高应力条件下的岩芯电磁性能变化. 地质力学学报, 25 (4): 453-458. DOI: 10.12090/j.issn.1006-6616.2019.25.04.042
引用本文: 肖典, 廖群安, 王良玉, 等, 2016. 准噶尔东部早志留世两类花岗岩的岩石成因及构造意义. 地质力学学报, 22 (4): 1049-1061.
HUANG Qiwen, LI Awei, 2019. STRESS INDUCED CHANGES IN THE ELECTRICAL-MAGNETIC PROPERTIES OF ROCK CORESHUANG. Journal of Geomechanics, 25 (4): 453-458. DOI: 10.12090/j.issn.1006-6616.2019.25.04.042
Citation: XIAO Dian, LIAO Qun-an, WANG Liang-yu, et al., 2016. PETROGENESIS AND TECTONIC IMPLICATIONS OF TWO TYPES EARLY SILURIAN GRANITES IN EAST JUNGGAR. Journal of Geomechanics, 22 (4): 1049-1061.

准噶尔东部早志留世两类花岗岩的岩石成因及构造意义

基金项目: 

中国地质调查局“特殊地质地貌区填图试点”项目 DD20160060

中国地质调查局“特殊地质地貌区填图试点”项目 12120114042801

详细信息
    作者简介:

    肖典(1991-), 男, 硕士, 从事1:5万区域地质调查工作。E-mail:dianx244@gmail.com

    通讯作者:

    廖群安(1959-), 男, 教授, 从事区调工作和岩石学研究。E-mail:qanliao@cug.edu.cn

  • 中图分类号: P588.1;P595

PETROGENESIS AND TECTONIC IMPLICATIONS OF TWO TYPES EARLY SILURIAN GRANITES IN EAST JUNGGAR

  • 摘要: 哈尔里克山西段早志留世二长花岗岩和正长花岗岩呈北西西向带状展布,侵入奥陶系塔水组(O1-2t),LA-ICP-MS锆石U-Pb年龄为438.8±2.3~435.8±3.1 Ma。岩石高硅(SiO2含量73.0%~77.8%)、富钾(K2O含量3.31%~4.26%)、低镁(MgO含量0.03%~0.59%),铝饱和指数A/CNK值1.02~1.08,属高钾钙碱性弱过铝质岩石。二长花岗岩轻重稀土分馏显著,Eu异常中等,亏损Nb、Ta、Ti、P,富集Rb、Ba、K,表现为分异的Ⅰ型花岗岩特征,源区为基性下地壳;正长花岗岩强烈亏损Eu、P、Ti、Sr,不同程度富集Rb、K、Zr、Hf,表现为A型花岗岩特征,其源区为缺水的浅部长英质地壳。结合区域地层不整合资料,认为东准噶尔地区早志留世为后碰撞环境而非岛弧带,后碰撞软流圈上涌带来的热熔融准噶尔年轻地壳形成了岩性丰富的东准噶尔志留纪后碰撞岩浆岩组合。

     

  • Brady[1, 2], Li[3], Anastasiadis[4], Jensen[5], Niu[6], Ma[7, 8], and Yao[9] have researched the electromagnetic properties of rocks under stress, and the electromagnetic (EM) waves produced and their interaction with the ionosphere.

    To measure the electric current pulse produced under stress of fracturing rock samples, the charge measuring digital electrometer[4], and the short-circuit(to ground) streaming current[5] method have been used. Both show that at the onset of fracture there is a DC current pulse.

    This experiment uses a third method: a closed series circuit to measure the induced exoelectron cloud. A battery is in series with a digital voltmeter, oscilloscope, and the rock sample. The digital voltmeter measures the DC current flow caused by the battery's electric field, while the oscilloscope measures the AC component induced as the exoelectron cloud absorbs EM waves. The advantage of this closed setup is that both DC and AC currents are measured and it is easier to explore the physical origins of the exoelectron current.

    Various phenomenological models have been proposed to explain the data: piezoelectric effect[1], and the moving charge dislocation model[4] (MCD). The existing Standard Lattice Model (SLM) popularized by physicists, and chemists is adopted here.

    Poly-crystalline rocks (where the crystals are randomly oriented) can be modeled as a lattice array of predominantly Si-O-Si bonds(Figure 1). Other atoms can substitute for Si, eg. Li, Al, Ca, Na, etc.

    Figure  1.  Quartz lattice structure, interstitial space between atoms where exoelectrons can move in

    Under high pressure, the outer shell electron of the Si-O dipole will get squeezed into the interstitial space between atoms, creating a loosely bound exoelectron cloud that increases as the stress increases. This phenomenon which appears at high stress, is due to two sources: (a) the quantum mechanical electron tunneling effect[10], and (b) breaking bond electrons.

    (a) The outermost electron of the oxygen atom is bound in a shallow potential well (~0.38 volts); when stress energy is applied, this electron absorbs part of this energy, thus increasing its kinetic energy. By itself, this slight increase in energy is insufficient for the electron to overcome and jump out of its potential well; but it is enough to increase its probability of tunneling through the well wall into the lattice interstitial between atoms. This probability multiplied by the number of available oxygen atoms gives the number of the electrons that tunnel out and form the exoelectron cloud: typically of the order of picocoulombs to nanocoulombs.

    (b) Electrons released by breaking bonds from micro-crack initiation. Crack nucleation centres most probably start in parallel. Whenever a Si-O bond breaks, a dangling +Si bond is created along with a free electron attached to the -O atom which will hop from atom to atom. This electron current is proportional to the cracks'surface area, and the collection efficiency of the battery electrodes. The broken bond electron cloud is much more than the tunneling cloud.

    The measured current pulse will have an initial slowly rising tunneling part, followed by a suddenly rising broken bond current.

    The lattice under high pressure will also give rise to the following phenomena:

    ① strain-creep related EM radiation: due to the changes in Si-O dipole moment as the lattice contracts, and flows in different directions.

    ② light emission from breaking, and recombining Si-O bonds.

    ③ charge accumulation, and separation resulting in spark discharges and the concurrent light and EM emissions.

    ④ sound emissions from the strained lattice, and eventually crack propagation.

    Further experiments are underway to measure these effects as a function of pressure.

    Generally speaking, the exoelectron current effect is measurable in hard insulator rocks (granite, basalt, limestone, marble, etc.): the stress energy goes into distorting and breaking the Si-O bonds. In soft rocks (sandstone, shale, etc.) the stress energy is dissipated as the rock grains are forced into the inter-granular voids thus reducing the energy that could go into stressing the lattice bonds: consequently the exoelectron current is not measurable. Conducting rocks (pyrite, etc.) which have a relatively high background current flow would mask the normally weak exoelectron current(nano-amp range).

    For this experiment granite (large grained, igneous rock) and basalt (fine grained) samples were chosen to differentiate between the piezoelectric explanation and the SLM explanation for the tunneling and broken bond current measured. Sandstone (porous) and shale (sedimentary rock) were also measured and show no clear exoelectron current effect. Marble (metamorphic rock) has been measured by others[4], and shown to have the DC exoelectron effect.

    When the stressed core sample is placed in series with a battery, voltmeter and oscilloscope, the electron cloud will flow. The voltmeter detects the direct current (DC) I, and the oscilloscope measures the alternating current (AC) component.

    The exoelectron cloud will also absorb, and scatter an E.M. wave. The wave's energy E (a constant) is converted into the induced alternating (AC) current's power: V(f)×I(f). The frequency of the current is also the wave's frequency f.

    The energy of the EM wave is a constant during the experiment: E=V×I. Thus when the current I increases (as when tunneling electrons and breaking bond electrons move into the interstitial lattice), V drops. This drop in the AC amplitude as the stress increases is measured with the oscilloscope's Fourier Transform feature.

    Figure  2.  Experimental setup (200 ton press, with the sample (25 mm×50 mm cylinder), voltmeter, oscilloscope, and battery in a series circuit, and 50 Hz background radiation)

    The direct current I (mV) vs Stress curves measured by the digital voltmeter (DVM) for granite (Figure 3), and basalt follow (Figure 4). Both show an initial distinct gradual rise in I (due to the tunneling current), before a sudden rise (due to breaking bonds) at the fracture point.

    Figure  3.  Voltage vs Stress/Time, granite sample
    Figure  4.  Voltage vs Stress/Time, basalt sample

    The next photo shows the AC current results: First is the oscilloscope trace of the 50 Hz AC current component; then immediately below, the Fourier Transform showing the 50 Hz peak bracketed by left cursor at 40 Hz and right cursor at 60 Hz.(Figure 5)

    Figure  5.  Screen photo

    Figure 6 shows the start of the drop in the FT voltage peak as the AC current increases at higher and higher stress. A minimum is reached just before the major fracture, and minor cracks sounds are heard. After complete fracture and the stress drops to zero, the voltage peak rises back to the same level before stress was applied.

    Figure  6.  50 Hz FT peak at different times

    This small experiment confirms that EM waves can actively probe the stress changes in a highly stressed crust zone just before crack initiation. As the stress increases to breaking point, the exoelectron cloud increases in size.

    It has been suggested that the DC exoelectron current effect can be due to a piezoelectric cause. However a careful use of the Standard Lattice Model rules out this explanation: 1) Both granite (with coarse grained randomly oriented crystals, which might have a piezoelectric effect) and basalt (with fine grained crystals, with no known piezoelectric properties) have the same characteristic I(current) vs Stress curve at the approach to rupture, i.e. a slow rise followed by a sharp rise. 2) The strain/stress on a non-central symmetric piezoelectric crystal induces an electric field (voltage), but no free electrons. This is the definition of the piezoelectric effect. 3) Moreover, the piezo-voltage effect is present at low pressures too; Whereas the exoelectron current effect is only observed at high stress close to the rupture point.

    The exo-electron cloud and the induced DC current explains in a simple way the changes in rock sample conductivity (resistance) at high stress or pressures as reported by others. It also is the reason for increases in the measured electric charge field in crushing concrete compression tests.

    Ultra-low-frequency (ULF) waves[3] interacting with the ionosphere are being studied for earthquake precursors. These time-coincident data are complicated and do not show a clear cause-effect relationship. Satellite and ground receivers are used in this research.

    These studies use a 'passive' method unlike the 'active' approach proposed in this research: a radio transmitter transmits an EM wave that reflects off the exoelectron cloud created by a high differential stress fault zone.

    This active method would complement the existing ground station, and satellite receiving networks.

    The AC (alternating current) exoelectron current effect shows that the absorption of EM waves by rupturing rock, though small, is measurable and can be exploited to good effect.

    A probing E.M. wave beam will reflect off the exoelectron cloud produced at a high stress fault zone. When the differential stress reaches a critical intensity, the zone's strained crystal structure starts releasing more and more exoelectrons. Eventually the crystalline rock structure starts to crack producing an event. Further experiments are planned to measure and confirm this remote active sensing method.

    The reflected EM waves data would complement in-situ stress data[6, 7]. These two methods together would be more effective than either one individually.

    It is pointed out that other phenomena: strain-creep radiation, light emission, sound emission, and static electricity are produced concurrently. The detection and measurement of all the above five phenomena would be a necessary condition to anticipate an actual event.

    This research was supported by a Director's Research grant(2016-2018, DZLXJK201605). The assistance, and advice from the following are gratefully noted: PENG Hua, WANG Hongcai, MA Xiumin, JIANG Jingjie, PENG Liguo, WANG Fusheng, MA Yue, SUN Dongsheng, LIU Shengxin

  • 图  1  哈尔里克山西段早志留世酸性侵入岩带地质简图

    a-新疆北部主要蛇绿岩带分布图[14];b-哈尔里克山天山庙地质简图

    Figure  1.  Simplified geological map of the early Silurian acid intrusive rock belt in western Harlik

    图  2  二长花岗质糜棱岩和正长花岗岩野外及正交镜下照片

    Q-石英; Pl-斜长石; Kf-钾长石; Pth-条纹长石; Or-正长石

    Figure  2.  Field photos and micrographs of monzogranitic mylonite and syenogranite

    图  3  二长花岗岩(a)、正长花岗岩(b)典型锆石阴极发光图像及其U-Pb年龄谐和图

    Figure  3.  Representative zircon CL images and U-Pb concordia diagrams for monzogranite and syenogranite

    图  4  哈尔里克山西段早志留世酸性侵入岩SiO2-K2O及A/CNK-A/NK图解[16~17]

    Figure  4.  SiO2-K2O and A/CNK-A/NK diagrams from the early Silurian acid intrusive rock in western Harlik

    图  5  哈尔里克山西段早志留世酸性侵入岩球粒陨石标准化稀土元素配分图[19]及微量元素蛛网图[20]

    Figure  5.  REE and trace element spider diagrams of the early Silurian acid intrusive rock in western Harlik

    图  6  花岗岩Q-Ab-Or图[23]、SiO2-P2O5图及成因分类图解(c—e据[24], f据[25])

    Figure  6.  Q-Ab-Or, SiO2-P2O5 and genetic classification diagrams of granite

    图  7  哈尔里克山西段早志留世酸性侵入岩构造判别图[33~34]

    ①-地幔斜长花岗岩; ②-板块碰撞前消减带花岗岩; ③-碰撞后隆起区花岗岩; ④-造山晚期花岗岩; ⑤-非造山花岗岩; ⑥-同碰撞花岗岩; ⑦-造山期后花岗岩

    Figure  7.  Tectonic discriminating diagrams of the early Silurian acid intrusive rock in western Harlik

    表  1  二长花岗岩及正长花岗岩LA-ICP-MS锆石U-Pb同位素测定结果

    Table  1.   LA-ICP-MS zircon U-Pb analytical data of monzogranite granite and syenogranite

    测试点号含量/10-6同位素比值rho年龄/Ma谐和度
    TotPb232Th238UTh/U207Pb/U235206Pb/U238207Pb/235U206Pb/238U
    6-1-1882561751.460.545300.025370.070870.000960.29070441.916.7441.45.899%
    6-1-21183232791.160.559380.023030.071070.000810.27717451.115.0442.64.998%
    6-1-31072983280.910.560760.021450.063490.000640.26344452.014.0396.83.986%
    6-1-41353782671.410.578050.021260.070670.000930.35683463.213.7440.25.694%
    6-1-51995314541.170.596510.021250.071400.000700.27347475.013.5444.64.293%
    6-1-6741942280.850.559590.030370.070330.001190.31240451.319.8438.27.297%
    6-1-71303572921.220.551070.018950.070890.000770.31660445.712.4441.54.799%
    6-1-81173172531.250.575100.021050.070620.000870.33594461.313.6439.95.295%
    6-1-9621771491.190.620540.027180.070540.001030.33232490.217.0439.46.289%
    6-1-10892442750.890.566840.023040.069040.000910.32499456.014.9430.45.594%
    6-1-11671761910.920.641060.031840.070340.001090.31246503.019.7438.26.686%
    6-1-12932722551.070.613670.025450.071360.000940.31598485.916.0444.35.691%
    6-1-131644834401.100.585250.019050.069710.000640.28022467.812.2434.43.892%
    6-1-141504313991.080.556260.016880.070080.000760.35720449.111.0436.64.697%
    6-1-15952492870.870.574300.024010.070570.000880.29934460.815.5439.65.395%
    6-1-161223412671.280.524040.022080.070720.000940.31554427.814.7440.55.797%
    6-1-17852182740.790.540340.019760.069960.001020.39842438.613.0435.96.199%
    6-1-18731992510.790.561910.020980.068640.000980.38287452.813.6428.05.994%
    6-1-191082983560.840.547230.017690.069960.000770.34166443.211.6435.94.798%
    6-1-201233253340.970.557800.019180.071040.000790.32143450.112.5442.44.798%
    1458-1-11262744660.590.589720.020530.070420.000950.38903470.713.1438.75.792%
    1458-1-24179328331.120.676080.018180.071410.000750.38992524.411.0444.64.583%
    1458-1-31342795180.540.591890.017550.068590.000590.28931472.111.2427.63.690%
    1458-1-42445756930.830.583170.017240.069830.000780.37580466.511.1435.14.793%
    1458-1-51973855770.670.694100.020710.070350.000620.29367535.312.4438.33.780%
    1458-1-61453225180.620.567130.019910.069660.000840.34456456.212.9434.15.195%
    1458-1-71172574310.600.572660.018030.069790.000710.32382459.711.6434.94.394%
    1458-1-8751643050.540.561950.019850.069120.000820.33401452.812.9430.84.995%
    1458-1-91483175090.620.602230.022620.072100.001080.39857478.614.3448.86.593%
    1458-1-101423335370.620.539560.017800.069670.000850.37077438.111.7434.25.199%
    1458-1-111403224530.710.565670.027910.072150.001350.37791455.218.1449.18.198%
    1458-1-121042353950.590.565480.019640.069890.001050.43257455.112.7435.56.395%
    1458-1-131282744770.570.529480.020160.071130.001030.37913431.513.4442.96.297%
    1458-1-141272785020.550.548270.020370.070910.001040.39518443.913.4441.66.399%
    1458-1-151543325550.600.582460.034550.069800.000890.21390466.022.2435.05.393%
    1458-1-161042344020.580.522150.023130.071060.001180.37456426.615.4442.57.196%
    1458-1-171482914260.680.638070.021190.070730.000920.39001501.113.1440.65.587%
    1458-1-181122263820.590.725450.060400.071420.000930.15642553.935.5444.75.678%
    1458-1-1943682610400.790.720880.023010.073990.000820.34696551.213.6460.24.981%
    1458-1-201653064930.620.680700.029610.071440.001100.35257527.217.9444.86.683%
    1458-1-212345326910.770.562100.015300.069230.000890.47121452.99.9431.55.495%
    下载: 导出CSV

    表  2  哈尔里克山西段早志留世酸性侵入岩主量元素(%)、微量元素(10-6)分析结果

    Table  2.   Major and trace element concentrations for the early Silurian acid intrusive rock in western Harlik

    样号岩性SiO2TiO2Al2O3Fe2O3MnOMgOCaONa2OK2OP2O5LOITotalFeO*Mg#DIA/CNKVCrGaRbSrYZrNbTaThUPbCsHfBaCePrNdSmEuGdTbDyHoErTmYbLuΣREE(La/Yb)N(La/Sm)NδEu
    D3540-1H二长花岗岩75.30.1812.961.380.070.310.854.283.670.040.4799.541.2430.8092.701.03161013.567.416714.91137.00.711.852.26140.273.297754.95.7018.33.300.672.700.372.310.481.510.241.740.29122.8111.775.780.67
    D3540-3H73.00.2914.022.110.090.591.743.763.940.081.05100.691.9035.6586.671.03341014.590.630512.21506.00.511.001.72151.253.596153.25.4117.12.900.752.230.291.860.391.200.201.480.23117.8413.976.640.87
    D2591-4H77.80.1512.291.140.040.250.673.993.310.020.63100.271.0330.2993.611.08161010.849.714912.0866.90.612.502.61130.162.477548.84.7314.32.440.441.890.251.670.351.090.181.290.20106.7315.247.510.60
    D1352-1H正长花岗岩76.80.0811.881.640.020.050.084.194.06< 0.010.2599.021.485.7096.961.0472021.6121.53766.127817.51.212.352.28120.378.9407103.011.0542.810.400.8810.651.7512.152.638.091.288.171.28253.733.282.400.25
    D1352-2H76.50.0912.041.740.030.060.074.553.76< 0.010.1999.021.576.4096.941.0382021.787.74469.335720.21.814.902.54120.2011.36989.08.9833.67.910.658.361.4210.352.307.651.228.351.34213.732.642.590.24
    D2591-4H76.60.0912.041.770.060.030.054.314.260.020.1499.411.593.2597.181.0262023.2105.52384.031318.51.513.152.33150.148.9461105.511.8544.110.800.9110.701.8112.602.728.581.288.911.32265.983.412.620.26
    注:FeO*=0.8998×Fe2O3; 镁值Mg#=molar 100×Mg/(Mg+FeO*); DI=标准矿物(Q+Af+Ab+Ne+Kp+Lc); δEu=2×EuN/(SmN+GdN); A/CNK=Al2O3/(CaO+ Na2O+K2O)分子比; (La/Yb)N代表La和Yb球粒陨石标准化比值
    下载: 导出CSV

    表  3  哈尔里克山西段早志留世酸性侵入岩锆石饱和温度计算结果

    Table  3.   Values of zircon saturation thermometer for the Early Silurian acid intrusive rock in western Harlik

    岩性样品编号NaKCaAlSiZrMDT/℃
    二长花岗岩D3540-10.07810.04410.00860.14380.70911131.374389.4759
    D3540-30.06840.04720.01750.15510.68521501.423306.7779
    D2591-40.07280.03970.00680.13630.7314861.265767.4743
    正长花岗岩D1352-10.07700.04910.00080.13270.72732781.321784.2842
    D1352-20.08330.04530.00070.13410.72243571.341389.4865
    D1352-30.07870.05120.00050.13370.72173131.361584.7851
    下载: 导出CSV
  • [1] Badarch G, Dickson Cunningham W, Windley B F. A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87~110. doi: 10.1016/S1367-9120(02)00017-2
    [2] Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31~47. doi: 10.1144/0016-76492006-022
    [3] Xiao W J, Han C, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/4):102~117.
    [4] Xu Q, Ji J, Zhao L, et al. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China:Remnant ocean model[J]. Earth-Science Reviews, 2013, 126:178~205. doi: 10.1016/j.earscirev.2013.08.005
    [5] 顾连兴, 胡受奚, 于春水, 等.论博格达俯冲撕裂型裂谷的形成与演化[J].岩石学报, 2001(04):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm

    GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Initation and evolution of the Bogda subduction-torn-type rift[J]. Acia Petrologica Sinica, 2001(4):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm
    [6] 冯益民, 朱宝清, 杨军录, 等.东天山大地构造及演化——1:50万东天山大地构造图简要说明[J].新疆地质, 2002, (4):309~314. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200204004.htm

    FENG Yi-min, ZHU Bao-qing, YANG Jun-lu, et al. Tectonics and evolution of the eastern Tianshan Mountains:A brief introduction to tectonic map (1:500000) of the eastern Tianshan Mountains of Xinjiang[J]. Xinjiang Geology, 2002, (4):309~314. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200204004.htm
    [7] 李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评, 2004, 50(3):304~322. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403015.htm

    LI Jin-yi. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3):304~322. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403015.htm
    [8] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):Implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304(4):370~395. doi: 10.2475/ajs.304.4.370
    [9] 李锦轶, 王克卓, 孙桂华, 等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J].岩石学报, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm

    LI Jin-yi, WANG Ke-zhuo, SUN Gui-hua, et al. Paleozoic active margin slices in the southern Turfan-Hami basin:Geological records of subduction of the Paleo-Asian Ocean plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm
    [10] 曹福根, 涂其军, 张晓梅, 等.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据[J].地质通报, 2006, 25(8):923~927. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200608004.htm

    CAO Fu-gen, TU Qi-jun, ZHANG Xiao-mei, et al. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik Mountains, East Tianshan, Xinjiang, China:Evidence from zircon SHRIMP U-Pb dating of granite bodies in the Tashuihe area[J]. Geological Bulletin of China, 2006, 25(8):923~927. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200608004.htm
    [11] 郭华春, 钟莉, 李丽群.哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].地质通报, 2006, 25(8):928~931. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200608005.htm

    GUO Hua-chun, ZHONG Li, LI Li-Qun. Ziron SHRIMP U-Pb dating of quartz diorite in the Koumenzi area, Karlik Mountains, East Tianshan, Xinjiang, China, and its geological significance[J]. Geological Bulletin of China, 2006, 25(8):928~931. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200608005.htm
    [12] 马星华, 陈斌, 王超, 等.早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J].岩石学报, 2015, 31(1):89~104. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501007.htm

    MA Xing-hua, CHEN Bin, WANG Chao, et al. East Paleozoic subduction of the Paleo-Asian Ocan:Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(1):89~104. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501007.htm
    [13] 徐学义, 李荣社, 陈隽璐, 等.新疆北部古生代构造演化的几点认识[J].岩石学报, 2014, 30(6):1521~1534. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406001.htm

    XU Xue-yi, LI Rong-she, CHEN Jun-lu, et al. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica, 2014, 30(6):1521~1534. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406001.htm
    [14] 董连慧, 朱志新, 屈迅, 等.新疆蛇绿岩带的分布、特征及研究新进展[J].岩石学报, 2010, 26(10):2894~2904. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010002.htm

    DONG Lian-hui, Zhu Zhi-xin, QU Xun, et al. Spatial distribution geological features and latest progress of the main ophiolite zones in Xinjiang NW-China[J]. Acta Petrologica Sinica, 2010, 26(10):2894~2904. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010002.htm
    [15] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589~1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    WU Yuan-bao, ZHENG Yong-fei. Gensis of zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16):1589~1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    [16] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63~81. doi: 10.1007/BF00384745
    [17] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635~643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    [18] 邱检生, 肖娥, 胡建, 等.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 2008, 24(11):2468~2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm

    QIU Jian-sheng, XIAO E, HU Jian, et al. Petrogenesis of fractionated Ⅰ-type granites in the coastal area of northeastern Fujian Province:Constraints from zircon U-Pb geochronology, geochemistry, and Nd-Hf isotopes[J]. Acta Petrologica Sinica, 2008, 24(11):2468~2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm
    [19] Taylor S R, McLennan S M. The continental crust:Its composition and evolution[M]. London:Blackwell Scientific, 1986.
    [20] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt:Implications for mantle composition and processes[M]. London:Geological Society, 1989.
    [21] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm

    WU Fu-yuan, LI Xian-hua, YANG Jin-hui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm
    [22] 李献华, 李武显, 李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981~991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm

    LI Xian-hua, LI Wu-xian, LI Zheng-xiang.[J]. Re-discussion on genesis type and tectonic significance of Early Yanshanian granite in Nanling[J]. Chinese Science Bulletin, 2007, 52(9):981~991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm
    [23] Holtz F, Pichavant M, Barbey P, et al. Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar[J]. American Mineralogist, 1992, 77(11/12):1223~1241.
    [24] Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407~419. doi: 10.1007/BF00402202
    [25] 邱检生, 胡建, 王孝磊, 等.广东河源白石冈岩体:一个高分异的Ⅰ型花岗岩[J].地质学报, 2005, 79(4):503~514. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504010.htm

    QIU Jian-sheng, HU Jian, WANG Xiao-lei, et al. The Baishigang Pluton in Heyuan, Guangdong Province:A highly fractionated Ⅰ-type granite[J]. Acta Geologica Sinica, 2005, 79(4):503~514. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504010.htm
    [26] Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2):295~304. doi: 10.1016/0012-821X(83)90211-X
    [27] Miller C F, McDowell S M, Mapes R W. Hot and cold granites Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6):529~532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
    [28] Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8):743. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
    [29] Castillo Paterno R.埃达克岩成因回顾[J].科学通报, 2006, 51(6):617~627. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200606000.htm

    Castillo Paterno R. Review of the genesis of adakites[J]. Chinese Science Bulletin, 2006, 51(6):617~627. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200606000.htm
    [30] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8~32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891~931. doi: 10.1093/petrology/36.4.891
    [31] Conrad W K, NichollsI I A, Wall V J. Water-Saturated and-Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 kb:Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and Other Occurrences[J]. Journal of Petrology, 1988, 29(4):765~803. doi: 10.1093/petrology/29.4.765
    [32] Küster D, Harms U. Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen:a review[J]. Lithos, 1998, 45(1/4):177~195.
    [33] Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
    [34] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956~983. doi: 10.1093/petrology/25.4.956
    [35] 韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64~72. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200703007.htm

    HAN Bao-fu. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 2007, 14(3):64~72. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200703007.htm
    [36] Xiao W J, Windley B F, Yuan C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3):221~270. doi: 10.2475/03.2009.02
    [37] 董连慧, 屈迅, 赵同阳, 等.新疆北阿尔泰造山带早古生代花岗岩类侵入序列及其构造意义[J].岩石学报, 2012, 28(8):2307~2316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208002.htm

    DONG Lian-hui, QU Xun, ZHAO Tong-yang, et al. Magmatic sequence of Early Palaeozoic granitic intrusions and its tectonic implications in north Altay orogeny, Xinjiang[J]. 2012, 28(8):2307~2316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208002.htm
    [38] 简平, 刘敦一, 张旗, 等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J].地学前缘, 2003, 10(4):439~456. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002036.htm

    JIAN Ping, LIU Dun-yi, ZHANG Qi, et al. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 2003, 10(4):439~456. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002036.htm
    [39] 程裕淇.中国地层典:志留系[M].北京:地质出版社, 1998.

    CHENG Yu-qi. Stratigraphic lexicon of China:Silurian[M]. Beijing:Geological Publishing House, 1998.
    [40] 李亚萍, 李锦轶, 孙桂华, 等.新疆东准噶尔早泥盆世早期花岗岩的确定及其地质意义[J].地质通报, 2009, 28(12):1885~1893. doi: 10.3969/j.issn.1671-2552.2009.12.020

    LI Ya-ping, LI Jin-yi, SUN Gui-hua, et al. Determination of the Early Devonian granite in East Junggar, Xinjiang, China and its geological implications[J]. Geological Bulletin of China, 2009, 28(12):1885~1893. doi: 10.3969/j.issn.1671-2552.2009.12.020
    [41] 徐芹芹, 赵磊, 牛宝贵.新疆东准噶尔纸房地区早古生代花岗岩的确定及其地质意义[J].地质力学学报, 2015, 21(4):502~516. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20150406&flag=1

    XU Qin-qin, ZHAO Lei, NIU Bao-gui. Determination of the early Paleozoic granite in Zhifang area, east Junggar, Xingjiang and its geological implications[J]. Journal of Geomechanics, 2015, 21(4):502~516. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20150406&flag=1
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  151
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-16
  • 刊出日期:  2016-12-01

目录

/

返回文章
返回