THE PETROGENESIS AND TECTONIC SIGNIFICANCES OF SILURIAN WEST-LUOTOUJUAN ROCKS FROM BEISHAN NIUJUANZI AREA IN GANSU PROVINCE, NW CHINA
-
摘要: 北山牛圈子地区的骆驼圈西埃达克岩为过铝质钙碱性岩浆系列,具有高的SiO2(>57.94%)、Al2O3(>16.66%)和低的MgO( < 4.32%)含量, 较高的Na2O/K2O比值(>3.13),显示富钠的特征; 而在微量元素上,高Sr(589×10-6~1170×10-6),低Y (4.60×10-6~13.90×10-6)和Yb (0.43×10-6~1.32×10-6);轻重稀土分异明显(La/Dy)N=4.60~13.87、(La/Yb)N=7.17~20.58,Eu异常不明显(Eu/Eu*=0.85~1.32);富集轻稀土和大离子亲石元素,而亏损高场强元素Nb,Ta,Ti和重稀土HREE,与世界上典型的俯冲洋壳熔融形成的埃达克岩特征相似。结合区域上埃达克岩的研究成果和岀露的构造位置,以及与牛圈子蛇绿岩的关系,认为骆驼圈西埃达克岩是志留纪(U-Pb年龄为428.9 Ma)时期热的洋壳向公婆泉—东七一山早古生代活动陆缘带俯冲过程中部分熔融的产物。对该岩体的研究,为进一步研究北山造山带早古生代北山洋盆闭合和晚古生代北山洋盆重新裂开提供新的依据。Abstract: West-Luotuojuan Adakitesin Beishan Niujuanzi Area belongs to Peraluminous calcium alkaline magma series with a high content of SiO2(>57.94%), Al2O3(>16.66%), a low content of MgO( < 4.32%), a relatively high Na2O/K2O ratio, displaying Na-rich feature. In respect of trace elements, it has a high content of Sr (589×10-6~1170×10-6), a low content of Y (4.60×10-6~13.90×10-6) and Yb (0.43×10-6~1.32×10-6).The differentiation of light and heavy rare earth is obvious ((La/Dy)N=4.60~13.87, (La/Yb)N=7.17~20.58), and there is not obvious anomaly of Eu (Eu/Eu*=0.85~1.32). Rich in light rare earth and large ionlithophile elements, and the loss of high field-strength elements Nb, Ta, Ti and heavy rare earth HREE, are similar with the typical Adakite rocks which formed by subducted oceanic crust melting.It is believed that West-Luotuojuan Adakite is a partial melting product which warm oceanic crust in Silurian (U-Pb age of 428.9 Ma) period moving to Gongpo spring-east Qiyi mountain early Paleozoic active continental margin in the process of subduction. The study of the rock mass provides evidence for the view that Beishan orogenic belt closed in the late early Paleozoic and split anew in the early late Paleozoic.
-
众所周知, 泊松比被定义为侧向应变与轴向应变的比值的绝对值。在均匀变形阶段, 泊松比是一个本构参数, 不依赖于应力或应变状态。
对于非均质的岩土材料, 其内部存在多种缺陷(微裂纹、孔洞等)。随着载荷的增加, 岩样内部的缺陷渐渐形核、聚结、长大, 联结成较大的裂纹, 直到形成穿透岩样的宏观断裂。在这一过程中, 为反映岩样的侧向变形特征, 需要引入一个类似泊松比的力学量。
由于岩样开始发生破坏的时刻(或应力水平)难于识别, 因而, 一些研究人员仍将通过测量得到的侧向应变与轴向应变的比值的绝对值称之为泊松比, 纵然岩样已经发生了破坏。他们发现有的时候泊松比的确大于0.5[1~5]。
文献[6]将单轴压缩条件下受到剪切破坏的岩样的应力峰值强度之后的侧向应变与轴向应变的比值的绝对值称之为峰后泊松比, 并得到了峰后泊松比的解析式。研究发现, 一般情况下, 峰后泊松比不是本构参数, 依赖于应力水平。通常, 峰后泊松比小于1.4。
由于在实验研究中, 不能保证多个岩样仅泊松比不同, 而其它弹性及塑性本构参数则完全相同。因而, 从实验角度无法研究泊松比对岩样破坏过程、模式及全部变形特征的影响。因此, 开展一定的理论研究和数值计算十分必要。文献[6~13]仅研究了单轴压缩条件下岩样受到剪切破坏时的全部变形特征、耗散能量及稳定性, 未涉及平面应变压缩条件下的全部变形特征的研究。
文献[14~16]采用拉格朗日元法(FLAC)内嵌语言FISH编写了计算平面应变压缩岩样全部变形特征的FISH函数, 研究了扩容角、软化模量及弹性模量对含单一材料缺陷岩样的破坏过程、模式、前兆及全部变形特征的影响。
本文利用上述FISH函数[14~16], 计算了不同泊松比时岩样的全部变形特征, 研究了泊松比对平面应变压缩岩样破坏模式及全部变形特征的影响。
1. 本构关系及计算模型
计算模型的几何尺寸、单元划分及边界条件见图 1。岩样的高度及宽度分别为10 cm及5 cm, 下端面被固定铰支座约束, 在岩样的上端面施加常速度, v0=4 ×10-10 m时步, 计算在小变形模式及平面应变状态下进行。将岩样划分为若干正方形单元, 单元边长为0.00 125 m。为了得到不对称的剪切带图案, 在岩样的左下部预制了一个材料缺陷, 材料缺陷是四个空单元。另外, 岩样上端面的岩石质点仅允许向下运动, 其它方向的运动被限制, 这对应于上端面与试验机压头之间存在较大摩擦力的情形。
在弹性阶段, 岩石的本构关系为线弹性, 本构参数包括弹性模量及泊松比。峰值强度后岩石的本构模型取为莫尔库仑剪破坏与拉破坏复合的应变软化模型, 抗拉强度取为0.2 MPa。岩石内聚力、内摩擦角与塑性应变的关系见文献[14~15]。
数值计算采用5个计算方案, 在各个方案中, 弹性模量均设置为26.6 GPa。
2. 结果分析及讨论
2.1 泊松比对岩样破坏模式的影响
图 2 (a~p)给出了不同泊松比(ν)时, 岩样的破坏过程及模式。黑色单元表示这些单元已经发生了破坏; 白色单元表示这些单元尚处于弹性状态。各图片的时间步(t)也都已给出, 例如:图 2 (e)的t为10 000。由各图片的t, 易于计算出岩样此时的轴向(加载方向)应变(εa)。
见图 2 (a)、(e)、(i)及(m), 无论ν高或低, 塑性单元首先启动于材料缺陷附近。
当ν较低时, 见图 2 (a~h), 众多塑性单元按一定方向排列, 形成了一条狭长的剪切带; 随着时间步的增加, 剪切带的长度增加, 直到贯穿岩样的右侧面; 岩样仅发生了单一的剪切破坏。
当ν较高时, 见图 2 (i~p), 岩样发生破坏的单元数较多, 破坏模式比较复杂。
经过测量, 图 2 (d)、(h)、(l)及(p)的剪切带倾角(剪切带的切向与水平方向所夹的锐角θ)分别为64°、62°、60°及57°。由此可见, 随着ν的增加, θ降低。关于θ的理论解主要有Coulomb、Roscoe及Arthur倾角[17, 18]。上述理论解表明, θ仅受摩擦角和扩容角影响。上述理论解无法考虑ν对θ的影响。当扩容角ψ=0时, 根据Coulomb、Roscoe及Arthur倾角公式可以计算出θ分别为67°、45°及56°。本文的数值解与Arthur倾角最接近。
2.2 泊松比对应力-轴向应变曲线的影响
图 3~7分别给出了ν对应力-轴向应变曲线、应力-侧向应变曲线、侧向应变-轴向应变曲线、通过轴向应变及侧向应变计算得到的泊松比-轴向应变曲线及体积应变-轴向应变曲线的影响。图 3~7中的各黑点的位置表示此时应力的峰值强度刚好被分别达到。
见图 3, 随着ν的增加, 应力的峰值强度增加, 峰前的应力-轴向应变曲线变得陡峭。在平面应变线弹性状态下, 轴向压缩应变εa=σ(1 -ν2)/E, E是弹性模量, σ是轴向压缩应力。σ与εa的比值为E (1-ν2)。因而, 随着ν的增加, 在平面应变线弹性阶段, 峰前的应力(σ) -轴向应变(εa)关系变得陡峭。这与本文的数值解吻合。
见图 3, 峰后的应力-轴向应变曲线的斜率几乎不受ν的影响。
2.3 泊松比对应力-侧向应变曲线的影响
见图 4, 随着ν的降低, 应力的峰值强度所对应的侧向应变的大小降低。
见图 4, 随着ν的增加, 应力-侧向应变曲线的峰前阶段有变平缓的趋势。在平面应变线弹性状态下, 侧向应变εl=-σ(ν+ν2) /E, 负号代表在压缩过程中侧向的膨胀。σ-εl关系的斜率的绝对值为E/ (ν+ν2)。因而, 在平面应变线弹性状态下, 随着ν的增加, σ- εl关系变得平缓。这与本文的数值解吻合。
见图 4, 随着ν的增加, 应力-侧向应变曲线软化段有变陡峭的趋势。
2.4 泊松比对侧向应变-轴向应变曲线的影响
见图 5, 随着ν的增加, 峰前的侧向应变-轴向应变曲线的线性阶段有变陡峭的趋势。在平面应变线弹性状态下, εl与εa的比值的绝对值为ν /(1 -ν)。随着ν的增加, 该绝对值增加, 因而, 上述数值模拟结果与平面应变状态下的线弹性解一致。
见图 5, 随着ν的增加, 峰后的侧向应变-轴向应变曲线有变平缓的趋势。
2.5 泊松比对计算的泊松比-轴向应变曲线的影响
见图 6, 不同ν时计算得到的泊松比-轴向应变曲线均可以划分为三个阶段[14, 15]:在第一个阶段, 泊松比不断增加; 在第二个阶段, 泊松比基本上保持不变; 在第三个阶段, 泊松比继续增加。第一阶段对应初始加载阶段; 第二阶段对应均匀变形阶段; 第三阶段大致对应峰后变形阶段。但是, 严格地讲, 第三阶段包括峰后变形阶段和峰前变形阶段的一小段。
见图 6, 在第一个阶段, ν较高时的ν -εa曲线较陡峭。在第一阶段, ν持续增加的原因第3期王学滨:泊松比对岩样破坏模式及全部变形特征的影响223详见文献[14]、[15]。
见图 6, 在第二个阶段, ν较高时计算得到的泊松比较高。在平面应变线弹性状态下, εl与εa的比值的绝对值ν /(1 -ν)为通过εl及εa计算得到的泊松比。随着ν的增加, ν /(1 -ν)增加。因而, 在均匀变形阶段, ν较高时计算得到的泊松比较高的结论是合理的。假定ν /(1 -ν) >0.5, 可以得到ν应大于三分之一。也就是说, 若ν>1/3, 则在第二阶段通过εl及εa计算得到的泊松比可以大于0.5。从图 6的数值计算结果中也可以发现这一点, 当ν=0.31 < 1/3时, 计算得到的泊松比小于0.5;而当ν=0.41 >1/3时, 计算得到的泊松比已大于0.5。
假定ν/ (1 -ν) >1, 可以得到ν>0.5, 这是不可能的。因而, 在均匀变形阶段, 通过εl及εa计算得到的泊松比不可能大于0.5。上述结论是在不含有孔隙水压力条件下得到的, 若有孔隙水压力作用, 在均匀变形阶段, 岩样的侧向膨胀效应将十分显著, 这样, 通过εl及εa计算得到的泊松比也可能大于0.5。
见图 6, 在应力的峰值强度之后, ν较高时的ν -εa曲线较平缓。最终, 通过εl及εa计算得到的泊松比的最大值都已经超过0.5。在单轴压缩条件下, 当剪切带切向与轴向压应力的夹角小于35°时, 岩样(高宽比为2:1)的峰后泊松比可以达到1.4[6]。
2.6 泊松比对体积应变-轴向应变曲线的影响
见图 7, 随着ν的增加, 体积应变-轴向应变曲线的峰值及所对应的轴向应变均降低。这说明, ν较小时, 岩样可以达到的最小体积为最小。
见图 7, 峰前的线性体积应变-轴向应变曲线的斜率随着ν的增加而降低。在平面应变线弹性状态下, 体积应变εv=εa +εl, 因此, 可以得到εv=σ(1 -ν-ν2) /E。εv-εa关系的斜率为1 -ν (1 -ν)。因而, 上述数值结果是合理的。
见图 7, 在应力的峰值强度之后, ν较高时的εv-εa曲线较平缓。
2.7 泊松比对破坏前兆的影响
由于图 3及图 4给出的应力-轴向应变曲线及应力-侧向应变曲线在峰前具有一定的波动性, 因此很难在峰前识别出岩样破坏的前兆。从图 5~7给出的3种曲线可以发现, 在峰前, 3种曲线均发生了一定程度的转折, 这些转折可视为岩样破坏的前兆。
随着ν的降低, 3种曲线在峰前发生的转折(偏离线性状态)程度越来越大, 因此, 岩样破坏的前兆随着ν的降低而增强。
3. 结论
高泊松比使岩样的破坏模式由单一剪切破坏向复杂破坏模式转变, 破坏区域的面积增加, 剪切带倾角降低, Coulomb、Roscoe及Arthur理论不能解释这一现象。
在峰前, 不同泊松比时计算得到的应力-轴向应变曲线、应力-侧向应变曲线、侧向应变-轴向应变曲线、体积应变-轴向应变曲线的线性阶段与平面应变压缩条件下的弹性解吻合。
理论结果表明, 如果采用的泊松比超过1/3, 通过轴向应变及侧向应变计算得到的平面应变压缩泊松比可以大于0.5, 这一点被数值模拟确认。
泊松比的增加使峰后的侧向应变-轴向应变曲线、体积应变-轴向应变曲线、计算得到的泊松比-轴向应变曲线变得不陡峭, 峰后的应力-侧向应变曲线变得陡峭。
泊松比的降低使侧向应变-轴向应变曲线、体积应变-轴向应变曲线、泊松比-轴向应变曲线在应力峰值强度之前发生的转折程度变大, 因而, 岩样破坏的前兆逐渐增强。
-
图 1 牛圈子地区地质简图[22]
Figure 1. Geological sketch in Niujuanzi area
图 4 骆驼圈西岩体位微量元素蛛网图和稀土元素配分曲线[24]
Figure 4. Primitive mantle normalized trace elements spider diagrams and chondrite normalized REE distribution patterns of West-Luotuojuan Rocks
图 7 骆驼圈西岩体Sr/Y-Y和(La/Yb)N-YbN判别图[2]
Figure 7. Discrimination diagram of Sr/Y-Y and (La/Yb)N-YbN for West-Luotuojuan rocks
图 8 埃达克岩与玄武岩的实验熔融体的SiO2-MgO图解[29]
Figure 8. SiO2-MgO diagrams of the experimental melt of adakite and the basalts
表 1 牛圈子地区埃达克岩主量(%)与微量元素(10-6)化学分析结果
Table 1. Major and trace element compositions of the adakite from Niujuanzi region
sample岩性 131042 131062 131044 131064 132001 131061 131012 131041 英云闪长岩 石英闪长岩 SiO2 69.17 66.68 67.70 66.87 65.10 57.94 60.16 60.54 TiO2 0.25 0.34 0.35 0.31 0.36 0.86 0.67 0.67 Al2O3 16.59 17.42 16.66 17.35 17.32 18.49 17.05 17.10 Fe2O3 0.90 1.14 1.15 1.18 1.83 1.99 1.86 1.84 FeO 1.37 1.72 1.88 1.56 1.42 2.79 3.79 3.49 MnO 0.05 0.05 0.06 0.05 0.06 0.08 0.09 0.10 MgO 0.97 1.35 1.37 1.27 1.54 4.32 3.61 3.33 CaO 3.86 4.46 4.48 4.70 4.63 7.58 6.47 5.69 K2O 1.03 1.26 1.20 1.07 0.81 0.94 0.92 1.21 Na2O 4.64 4.73 4.24 4.57 4.85 3.33 3.60 3.77 P2O5 0.11 0.13 0.14 0.13 0.13 0.13 0.19 0.21 LOI 0.89 0.51 0.55 0.77 1.79 1.22 1.15 1.63 total 99.84 99.79 99.78 99.82 99.84 99.67 99.56 99.57 AR 1.77 1.75 1.69 1.69 1.69 1.39 1.48 1.56 A/CNK 1.74 1.67 1.68 1.68 1.68 1.56 1.55 1.6 Mg # 0.44 0.47 0.46 0.46 0.47 0.63 0.54 0.54 Cr 8.5 8.9 14 9.8 11.7 34.9 55.4 48.9 Ni 5.55 7.94 10.4 7.05 13.2 18.7 46 40.8 V 39.2 54.4 51.4 50.5 59.7 112 147 121 Sc 4.82 5.21 5.22 5.25 7.28 12.1 14.5 15 Co 5.99 8 8.49 7.43 9.34 18.2 20.5 19.6 Rb 21.5 29.1 25.8 16.3 13 20.1 23.5 37.6 Cs 1 2.28 1.46 1.34 0.76 0.8 1.26 1.74 Sr 595 654 602 695 694 1170 592 589 Ba 313 355 408 407 277 191 272 315 Ga 17.4 18.7 17.9 18.1 18.3 19.3 19.3 19.1 Pb 12.6 12 9.02 11.3 9.6 6.89 10.1 10.2 U 0.57 0.62 0.58 0.47 0.52 0.44 1.06 1.56 Th 4.05 1.17 3.79 1.5 1.99 1.08 4.32 4.76 Nb 2.36 2.36 3.11 1.92 2.42 2.54 3.42 5.38 Ta 0.22 0.22 0.28 0.18 0.15 0.2 0.29 0.43 Zr 84.1 74.5 103 63.3 90.1 79.3 129 88.9 Hf 2.79 2.1 2.86 1.69 2.57 2.47 3.44 2.65 Y 5.05 5.22 6.41 4.6 6.93 10.9 13 13.9 La 13.2 6.47 11.6 8.58 7.56 10 12.9 16.8 Ce 26.5 14 23.9 18.2 17.6 24.8 29.5 38.2 Pr 3.28 1.72 2.8 2.13 2.43 3.32 3.85 5.03 Nd 11.2 7.29 10.6 8.17 10 13.5 15.6 19.6 Sm 2.19 1.81 2.19 1.62 2.13 2.91 3.76 4.31 Eu 0.56 0.65 0.8 0.67 0.69 1.08 1.1 1.12 Gd 1.53 1.47 1.8 1.42 1.78 2.65 3.28 3.57 Tb 0.2 0.19 0.25 0.18 0.25 0.4 0.48 0.52 Dy 1.02 1.03 1.42 0.97 1.46 2.33 2.72 2.96 Ho 0.18 0.2 0.24 0.19 0.29 0.44 0.52 0.54 Er 0.47 0.5 0.64 0.48 0.71 1.1 1.32 1.41 Tm 0.06 0.08 0.09 0.07 0.10 0.16 0.20 0.21 Yb 0.46 0.47 0.64 0.43 0.65 1 1.29 1.32 Lu 0.059 0.074 0.076 0.066 0.093 0.14 0.19 0.2 ∑REE 60.91 35.95 57.04 43.17 45.74 63.83 76.71 95.79 LREE 56.93 31.94 51.89 39.37 40.41 55.61 66.71 85.06 HREE 3.98 4.01 5.15 3.80 5.33 8.22 10.00 10.73 Eu/Eu * 0.89 1.18 1.20 1.32 1.05 1.17 0.94 0.85 (La/Yb) N 20.58 9.87 13 14.31 8.34 7.17 7.17 9.13 (Ho/Yb) N 1.18 1.28 1.13 1.33 1.34 1.32 1.21 1.23 (La/Dy) N 13.87 6.73 8.75 9.48 5.55 4.60 5.08 6.08 Eu/Eu*=EuN/(SmN×GdN)1/2,(La/Yb)N、(Ho/Yb)N、(La/Dy)N is ratio of Chondrite [24] 表 2 北山造山带骆驼圈西英云闪长岩锆石U-Pb同位素分析结果
Table 2. LA-ICP-MS U-Pb zircons dating results of sample (132053) from West-Luotuojuan in Beishan orogen
Analysis_# Th U Th/U Pb207/Pb206 Pb207/U235 Pb206/U238 Pb208/Th232 Pb207/U235 Pb206/U238 Pb208/Th232 ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma 132053-01 81.69 3550.82 0.02 0.05571 0.00092 0.43564 0.00730 0.05672 0.00079 0.04629 0.00186 367.2 5.16 355.6 4.8 914.5 35.84 132053-02 28.94 1223.24 0.02 0.05675 0.00089 0.44718 0.00720 0.05715 0.00077 0.02215 0.00060 375.3 5.05 358.3 4.69 442.9 11.95 132053-03 157.31 4170.61 0.04 0.05856 0.00099 0.46470 0.00796 0.05755 0.00081 0.03784 0.00155 387.5 5.52 360.7 4.92 750.6 30.28 132053-04 50.28 2494.59 0.02 0.05756 0.00095 0.46393 0.00781 0.05845 0.00080 0.02060 0.00064 387 5.41 366.2 4.89 412.1 12.6 132053-05 223.89 2183.09 0.10 0.10248 0.00165 0.84796 0.01387 0.06001 0.00083 0.06666 0.00205 623.5 7.62 375.7 5.07 1304.4 38.86 132053-06 503.50 554.08 0.91 0.05582 0.00092 0.52517 0.00878 0.06823 0.00093 0.02101 0.00057 428.6 5.84 425.5 5.62 420.3 11.22 132053-07 197.21 450.71 0.44 0.05550 0.00103 0.52273 0.00967 0.06831 0.00097 0.02156 0.00070 427 6.45 426 5.88 431.2 13.79 132053-08 366.42 421.73 0.87 0.05524 0.00117 0.52042 0.01076 0.06833 0.00102 0.02038 0.00063 425.4 7.18 426.1 6.16 407.9 12.45 132053-09 205.79 313.27 0.66 0.05508 0.00099 0.51935 0.00935 0.06838 0.00097 0.02067 0.00062 424.7 6.25 426.4 5.83 413.5 12.19 132053-10 184.73 419.12 0.44 0.05537 0.00097 0.52254 0.00920 0.06844 0.00096 0.02217 0.00067 426.8 6.14 426.8 5.76 443.3 13.25 132053-11 425.11 672.40 0.63 0.05454 0.00089 0.51680 0.00858 0.06872 0.00093 0.02161 0.00059 423 5.74 428.5 5.64 432.1 11.71 132053-12 166.55 281.16 0.59 0.05709 0.00120 0.54205 0.01111 0.06885 0.00103 0.02243 0.00074 439.8 7.32 429.2 6.2 448.3 14.65 132053-13 257.49 655.48 0.39 0.05789 0.00147 0.55007 0.01334 0.06891 0.00114 0.01945 0.00132 445 8.74 429.6 6.85 389.4 26.22 132053-14 431.94 865.59 0.50 0.05818 0.00118 0.55336 0.01103 0.06899 0.00103 0.02131 0.00217 447.2 7.21 430.1 6.23 426.1 42.92 132053-15 206.52 355.68 0.58 0.06019 0.00129 0.57471 0.01196 0.06925 0.00106 0.02185 0.00076 461.1 7.71 431.6 6.37 436.9 15.01 132053-16 65.00 248.92 0.26 0.06119 0.00120 0.58951 0.01143 0.06987 0.00102 0.02470 0.00101 470.6 7.3 435.4 6.15 493.2 19.97 132053-17 54.30 125.52 0.43 0.06421 0.00193 0.61913 0.01749 0.06994 0.00128 0.02492 0.00119 489.3 10.97 435.8 7.72 497.6 23.43 -
[1] Kay RW. Aleutian magnesianandesites: melts from subducted Pacific ocean crust[J]. Journal of Volcanology and Geothermal Research, 1978, 4(1/2): 117~132. [2] Defant M J, DrummondM S. Derivation of some modern arc magmas by melting of young subductedlithosphere[J]. Nature, 1990, 347(6294): 662~665. doi: 10.1038/347662a0 [3] 王焰, 张旗, 钱青.埃达克岩(adakite)的地球化学特征及其构造意义[J].地质科学, 2000, 35(2): 251~256. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002017.htmWANG Yan, ZHANG Qi, QIAN Qing. Adakite: geochemical characteristics and tectonic significances[J]. Scientia GeologicaSinica, 2000, 35(2): 251~256. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002017.htm [4] Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology, 1993, 21(11): 1007~1010. doi: 10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2 [5] 罗照华, 柯珊, 谌宏伟.埃达克岩的特征、成因及构造意义[J].地质通报, 2002, 21(7): 436~440. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200207014.htmLUO Zhao-hua, KE Shan, CHEN Hong-wei. Characteristics, petrogenesis and tectonic implications of adakite[J]. Geological Bulletin of China, 2002, 21(7): 436~440. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200207014.htm [6] 殷勇, 张旗, 殷先明, 等.甘肃北山埃达克岩特征及其找矿意义—几个与埃达克质岩石有关的Cu、Mo、Au矿实例[J].甘肃地质, 2009, 18(1): 6~11. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200901005.htmYIN Yong, ZHANG Qi, YIN Xian-ming, et al. Features of Adakite in Beishan of Gansu province and significance for prospecting: several examples of Cu, Mo and Au deposit related to Adakites[J]. Gansu Geology, 2009, 18(1): 6~11. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200901005.htm [7] 谢春林, 杨建国, 王立社, 等.甘肃北山地区古亚洲南缘古生代岛弧带位置的讨论[J].地质学报, 2009, 83(11): 1584~1600. doi: 10.3321/j.issn:0001-5717.2009.11.004XIE Chun-lin, Yang Jian-guo, WANG Li-she, et al. Disscussion on the location of Paleozoic island arc zone on the south margin of Paleo-Asian Ocean in the Beishan Area of Gansu Province[J]. Acta Geologica Sinica, 2009, 83(11): 1584~1600. doi: 10.3321/j.issn:0001-5717.2009.11.004 [8] 黄增保, 金霞, 李葆华, 等.甘肃红石山地区印支期花岗岩地球化学特征及成因讨论[J].西北地质, 2011, 44(1): 10~19. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201101003.htmHUANG Zeng-bao, JIN Xia, LI Bao-hua, et al. Petrological and geochemical characteristics of Indosinian granites in Hongshishan area, Gansu province and discussion on its genesis[J]. Northwestern Geology, 2011, 44(1): 10~19. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201101003.htm [9] 刘明强.甘肃北山造山带红石山地区埃达克质花岗岩类的发现及其地质意义[J].岩石矿物学杂志, 2007, 26(3): 232~238. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200703003.htmLIU Ming-qiang. Geochemical characteristics and geological significance of adakiticgranitoids in Hongshishan area of the Beishan orogenic belt, Gansu Province[J]. Acta Petrologicaet Mineralogica, 2007, 26(3): 232~238. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200703003.htm [10] 毛启贵, 肖文交, 韩春明, 等.北山柳园地区中志留世埃达克质花岗岩类及其地质意义[J].岩石学报, 2010, 26(2): 584~596. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002021.htmMAO Qi-gui, XIAO Wen-jiao, HAN Chun-ming, et al. Discovery of Middle Silurian adakite granite and its tectonic significance in Liuyuan area, Beishan Moutains, NW Chins[J]. Acta Petrologica Sinica, 2010, 26(2): 584~596. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002021.htm [11] 王启航, 王晓伟, 杨春霞, 等.甘肃金塔县老虎山晚古生代华北型富镁埃达克岩的发现及构造动力学意义[J].甘肃地质, 2014, 23(1): 28~34. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201401004.htmWANG Qi-hang, WANG Xiao-wei, YANG Chun-xia, et al. Late Paleozoic Adakitie rocks in Laohushan of Gansu and their tectonodynamics significance[J]. Gansu Geology, 2014, 23(1): 28~34. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201401004.htm [12] 张伟, 王金荣, 陈万峰, 等.阿拉善右旗地区晚石炭世埃达克岩的发现及其大地构造意义[J].高校地质学报, 2014, 20(3): 378~387. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201403004.htmZHANG Wei, WANG Jin-rong, CHEN Wan-feng, et al. The discovery of the Carboniferous Adakite and its Tectonic Implications in AlxaYouqi[J]. Geological Journal of China Universities, 2014, 20(3): 378~387. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201403004.htm [13] 杨合群, 李英, 李文明, 等.北山成矿构造背景概论[J].西北地质, 2008, 41(1): 22~28. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200801001.htmYANG He-qun, LI Ying, LI Wen-ming, et al. General discussion on Metallogenitic tectonic setting of Beishan mountain, northwestern China[J]. Northwestern Geology, 2008, 41(1): 22~28. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200801001.htm [14] 杨合群, 李英, 赵国斌, 等.新疆-甘肃-内蒙古衔接区地层对比及其意义[J].西北地质, 2009, 42(4): 60~75. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200904012.htmYANG He-qun, LI Ying, ZHAO Guo-bin, et al. Stratigraphic correlation and its significance of Xinjiang-Gansu-Inner Mongolia join area[J]. Northwestern Geology, 2009, 42(4): 60~75. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200904012.htm [15] 何世平, 任秉琛, 姚文光, 等.甘肃内蒙古北山地区构造单元划分[J].西北地质, 2002, 35(4): 30~40. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204003.htmHE Shi-ping, REN Bing-chen, YAO Wen-guang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology, 2002, 35(4): 30~40. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204003.htm [16] 左国朝.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990.ZUO Guo-chao. Plate Tectonics and Metallogenic Regularities in Beishan Region[M]. Beijing: Peking University Publication, 1990. [17] 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1): 1~15. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htmZUO Guo-chao, LIU Yi-ke, LIU Chun-yan. Framework and evolution of the Tectonic Structure in Beishan area across Gansu Province, Xinjiang autonomous region and Inner Mongolia autonomous region[J]. Acta Geologica Gansu, 2003, 12(1): 1~15. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm [18] 刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995, 28: 37~48. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199500001007.htmLIU Xue-ya, WANGQuan. Tectonics of orogenic belts in Beishan Mts., western China and their evolution[J]. Geological Research, 1995, 28: 37~48. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199500001007.htm [19] 聂凤军.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002, 1~499.NIE Feng-jun.Metallogenic Studies and Ore Prospecting in the Conjunction Area of Inner Mongolia Autonomous Region, Gansu Province and Xinjiang Uygur Autonomous Region (Beishan Mt.), Northwest China[M]. Beijing:Geological Publishing House, 2002, 1~499. [20] 龚全胜, 刘明强, 梁明宏, 等.北山造山带大地构造相及构造演化[J].西北地质, 2003, 36(1): 11~17. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200301002.htmGONG Quan-sheng, LIU Ming-qiang, LIANG Ming-hong, et al. The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 2003, 36(1): 11~17. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200301002.htm [21] 张克信, 潘桂棠, 何卫红, 等.中国构造-地层大区划分新方案[J].地球科学-中国地质大学学报, 2015, 40(2): 206~233. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201502003.htmZHANG Ke-xin, PAN Gui-tang, HE Wei-hong, et al. New division of tectonic-strata superregion in China[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(2): 206~233. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201502003.htm [22] 龚全胜, 梁明宏, 刘明强, 等.马鬃山幅1:25万区域地质图[M].兰州:甘肃省地质调查院, 2001.GONG Quan-sheng, LIANG Ming-hong, LIU Ming-qiang, et al. 1:250000 geology map of Mazhongshan[M]. Lanzhou: Gansu Geological Survey Institute, 2001. [23] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinationsof zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353~370. doi: 10.1111/ggr.2004.28.issue-3 [24] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[A]. Saunders AD, Norry MJ. Magmatism in Ocean Basins[C]. London:Geological Society, Special Publications, 1989, 42: 313~345. [25] Garrison J M, Davidson J P. Dubious case for slab melting in the Northern volcanic zone of the Andes[J]. Geology, 2003, 31(6): 565~568. doi: 10.1130/0091-7613(2003)031<0565:DCFSMI>2.0.CO;2 [26] Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411~429. doi: 10.1016/S0024-4937(98)00076~0 [27] 张旗.有关埃达克岩实验应用中几个问题的探讨[J].岩石矿物学杂志, 2015, 34(2): 257~270. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201502012.htmZHANG Qi. A tentative discussion on the experimental study of adakite[J]. ActaPetrologicaetMineralogica, 2015, 34(2): 257~270. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201502012.htm [28] Defant M J, Drummond M S. Mount St. Helens: potential example of the partial melting of the Subducted lithosphere in a volcanic arc[J]. Geology, 1993, 21(6): 547~550. doi: 10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2 [29] Defant M J, Xu J F, Kepezhinskas P, et al. Adakites: some variations on a theme[J]. ActaPetrologicaSinica, 2002, 18(2): 129~142. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200202000.htm [30] Kay R W, Ramos V A, Marquez M. Evidencein Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America[J]. The Journal of Geology, 1993, 101(6): 703~714. doi: 10.1086/648269 [31] Peacock S M, Rushmer T, Thompson A B. Partial melting of Subducting oceanic crust[J]. Earth and Planetary Science Letters, 1994, 121(1/2): 227~244. http://d.wanfangdata.com.cn/NSTLQK_10.1016~0012~821X(94)90042~6.aspx [32] 熊小林, 赵振华, 白正华, 等.西天山阿吾拉勒adakite型钠质中酸性岩及地壳垂向增生[J].科学通报, 2001, 46(4): 281~287. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200104002.htmXIONG Xiao-lin, ZHAO Zhen-hua, BAI Zheng-hua, et al. Adakite-type sodium-rich rocks in Awulale Mountain of west Tianshan: significance for the vertical growth of continental crust[J]. Chinese Science Bulletin, 2001, 46(1): 811~817. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200104002.htm [33] 张旗, 王焰, 王元龙.埃达克岩与构造环境[J].大地沟与成矿学, 2003, 27(2): 101~108. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200302000.htmZHANG QI, WANG Yan, WANG Yuan-long. On the relationship between adakite and its tectonic setting[J]. Geotectonicaet Metallogenia, 2003, 27(2): 101~108. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200302000.htm [34] 续海金, 马昌前.实验岩石学对埃达克岩成因的限定—兼论中国东部富钾高Sr/Y比值花岗岩类[J].地学前缘, 2003, 10(4): 417~427. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304014.htmXU Hai-jin, MA Chang-qian. Constraints of experimental petrology on the origin of adakites, and petrogenesis of Mesozoic K-rich and high Sr/Y ratio granitoids in eastern China[J]. Earth Science Frontiers, 2003, 10(4): 417~427. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304014.htm [35] Prouteau G, Scaillet B, Pichavant M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust[J]. Nature, 2001, 410(6825): 197~200. doi: 10.1038/35065583 [36] Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Research, 1991, 51(1/4): 1~25. http://www.sciencedirect.com/science/article/pii/030192689190092O [37] 王莉, 曾令森, 高利娥, 等.藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义[J].岩石学报, 2012, 28(6): 1741~1754. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206005.htmWANG Li, ZENG Ling-sen, GAO Li-e, et al. Remnant Jurassic intra-oceanic arc system in Southern Tibet: geochemistry and tectonic implications[J]. Acta Petrologica Sinica, 2012, 28(6): 1741~1754. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206005.htm [38] 边千韬, Pospelov I I, 李惠民, 等.青海省布青山早古生代末期埃达克岩的发现及其构造意义[J].岩石学报, 2007, 23(5): 925~934. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705008.htmBIAN Qian-tao, Pospelov I I, LI Hui-min, et al. Discovery of the end-Early Paleozoic ada-kite in the Buqingshan area, Qinghai province, and its tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(5): 925~934. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705008.htm [39] 余吉远, 李向民, 梁积伟, 等.甘新蒙北山地区古生代构造演化研究-北山古生代洋盆开启、闭合时限最新进展[J].新疆地质, 2012, 30(2): 205~209. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201202021.htmYU Ji-yuan, LI Xiang-min, LIANG Ji-wei, et al. Evolution of thegeological structure in Beishan area across Gansu province, Xinjiang autonomous region and Inner Mongolia autonomous region-Constraints on the timing of opening and closing of the Beishan Paleozoic oceanic basin[J]. Xinjiang Geology, 2012, 30(2): 205~209. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201202021.htm -