A STUDY ON THE INFLUENCE RULE OF THE FRACTURE CHARACTERISTICS ON ROCK SEEPAGE CHARACTERISTICS
-
摘要: 裂隙是油气储层主要的储集空间及流体渗流通道,影响油气的运移规律,是油气勘探开发的重要指标。以冀中坳陷任丘油田任10井为例,运用数值模拟方法研究了裂隙开展宽度和裂隙面粗糙度对岩石渗流特性的影响规律。研究结果表明,(1)裂隙开展宽度较小时,孔隙内流体压力仅在入口处小范围内呈扇形分布,裂隙中压力分布曲线呈正切函数型,流体流速在裂隙和孔隙中都较小;随着裂缝开展宽度的增加,孔隙内流体压力逐渐增大,裂隙中压力分布曲线逐渐向直线型转变,流体流速在入口处先减小后稳定,在裂隙中先增加后稳定;(2)裂隙面粗糙度对裂隙岩石渗流特性的影响与裂隙开展宽度有关,在裂隙开展宽度较大时,裂隙面粗糙度对流体压力的分布影响较大;随着裂隙面粗糙度增大,孔隙内流速逐渐增大,而裂隙中流速逐渐减小;(3)随着裂隙开展宽度的增大,影响裂隙流体流动的主控因素逐渐由裂隙开展宽度转变为裂隙面粗糙度。Abstract: Fracture is the main reservoir space and fluid seepage channel in oil and gas reservoirs, which affects hydrocarbon migration directly as an important indicator of oil and gas exploration and development. In this study, the Ren 10 well in Renqiu Oilfield of the Jizhong depression was taken as an example, the influence rule of fracture width and fracture surface roughness on rock seepage characteristics was studied in this work by numerical simulation. The results show as follows: 1) When fracture width is small, fluid pressure in pore distributes as a fan and only in a small range of the entrance; pressure distribution curve in fracture is tangent function type, and fluid and flow velocity are both relatively small in fracture and pore. With the increase of fracture width, fluid pressure in pore increases gradually; pressure distribution curve in fracture gradually changes to linear type. Moreover, the fluid and flow velocity decrease first and then tend to be stable at the entrance while increase first and then tend to be stable in fracture. 2) The influence of fracture surface roughness on rock seepage characteristics varies with fracture width. When fracture width gets bigger, the influence of fracture surface roughness gets greater on the distribution of fluid pressure. With the increase of fracture surface roughness, flow velocity in pore gradually increases while that in fracture decreases. 3) With the increase of fracture width, the main controlling factor affecting fluid flow in fracture changes from fracture width to fracture surface roughness.
-
表 1 碳酸盐岩模型材料参数值
Table 1. The material parameters of model
流体 基体 裂隙 密度(kg/m3) 动力粘度/(kg/(m·s)) 孔隙率/% 渗透率/m2 孔隙率/% 渗透率/m2 2450 1×10-3 0.25 1×10-11 0.80 1×10-7 -
[1] 周宏伟, 谢和平.岩石节理张开度的分形描述[J].水文地质工程地质, 1999, 26(1): 1~4. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG901.000.htmZHOU Hongwei, XIE Heping. Fractal description of the average opening of a rock joint[J]. Hydrogeology and Engineering Geology, 1999, 26(1): 1~4. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG901.000.htm [2] 宋良. 裂隙含沙渗流模型与应用研究[D]. 徐州: 中国矿业大学, 2013.SONG Liang. Research on the model of flow in rock fractures with injected sand and its application[D]. Xuzhou: China University of Mining and Technology, 2013. [3] 刘才华, 陈从新, 付少兰.二维应力作用下岩石单裂隙渗流规律的实验研究[J].岩石力学与工程学报, 2002, 21(8): 1194~1198. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200208019.htmLIU Caihua, CHEN Congxin, FU Shaolan. Testing study on seepage characteristic of a single rock fracture under two-dimensional stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(8): 1194~1198. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200208019.htm [4] 于洪丹, 陈飞飞, 陈卫忠, 等.含裂隙岩石渗流力学特性研究[J].岩石力学与工程学报, 2012, 31(S1): 2788~2795. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1024.htmYU Hongdan, CHEN Feifei, CHEN Weizhong, et al. Research on permeability of fractured rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2788~2795. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1024.htm [5] 许孝臣, 盛金昌.渗流-应力-化学耦合作用下单裂隙渗透特性[J].辽宁工程技术大学学报(自然科学版), 2009, 28( http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1082.htmS): 270~272. XU Xiaochen, SHENG Jinchang. Permeability of single fracture under coupled hydrological-mechanical-chemical action[J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(S): 270~272. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1082.htm [6] 曾亿山, 卢德唐, 曾清红, 等.单裂隙流-固耦合渗流的试验研究[J].实验力学, 2005, 20(1): 10~16. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200501001.htmZENG Yishan, LU Detang, ZENG Qinghong, et al. Experimental study on coupling of flow-stress within a single fracture[J]. Journal of Experimental Mechanics, 2005, 20(1): 10~16. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200501001.htm [7] 刘泉声, 刘学伟.多场耦合作用下岩体裂隙扩展演化关键问题研究[J].岩土力学, 2014, 35(2): 305~320. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402001.htmLIU Quansheng, LIU Xuewei. Research on critical problem for fracture network propagation and evolution with multifield coupling of fractured rock mass[J]. Rock and Soil Mechanics, 2014, 35(2): 305~320. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402001.htm [8] 王玉芳, 杜建军, 牛新年.碳酸盐岩酸压裂缝导流能力随缝长变化规律研究[J].地质力学学报, 2015, 21(4): 546~554. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2016&filename=DZLX201504010&v=MDU4NzZVYnJCSVRmSGRyRzRIOVRNcTQ5RVpJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTDJmYnVSbkZ5N24=WANG Yufang, DU Jianjun, NIU Xinnian. Study on acid fracture conductivity with length variation in carbonate reservoir[J]. Journal of Geomechanics, 2015, 21(4): 546~554. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2016&filename=DZLX201504010&v=MDU4NzZVYnJCSVRmSGRyRzRIOVRNcTQ5RVpJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTDJmYnVSbkZ5N24= [9] 王永辉, 李永平, 程兴生, 等.高温深层碳酸盐岩储层酸化压裂改造技术[J].石油学报, 2012, 33( doi: 10.7623/syxb2012S2017S2): 166~173. WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(S2): 166~173. doi: 10.7623/syxb2012S2017 [10] 王卫星, 杨记明.一种基于图像处理的岩石裂隙粗糙度几何信息算法[J].重庆邮电大学学报(自然科学版), 2010, 22(4): 454~457. doi: 10.3979/j.issn.1673-825X.2010.04.013WANG Weixing, YANG Jiming. A geometric information on roughness of rock fractures based on image processing[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(4): 454~457. doi: 10.3979/j.issn.1673-825X.2010.04.013 [11] 郑少河, 赵阳升, 段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报, 1999, 18(2): 133~136. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.003.htmZHENG Shaohe, ZHAO Yangsheng, DUAN Kanglian. An experimental study on the permeability law of natural fracture under 3-D stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 133~136. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.003.htm [12] 叶源新, 刘光廷.三维应力作用下砂砾岩孔隙型渗流[J].清华大学学报(自然科学版), 2007, 47(3): 335~339. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200703008.htmYE Yuanxin, LIU Guangting. Porous seepage in calcirudite rock with 3-D stresses[J]. Journal of Tsinghua University (Science & Technology), 2007, 47(3): 335~339. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200703008.htm [13] 董平川.变形介质流固耦合渗流的数值模型及其应用[J].地质力学学报, 2005, 11(3): 273~277. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2005&filename=DZLX200503009&v=MTcyODRkckc0SHRUTXJJOUZiWVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkwyZmJ1Um5GeTduVWI3QUlUZkg=DONG Pingchuan. Numerical model of fully coupled fluid-solid seepage in a deformable porous medium and its applications[J]. Journal of Geomechanics, 2005, 11(3): 273~277. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2005&filename=DZLX200503009&v=MTcyODRkckc0SHRUTXJJOUZiWVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkwyZmJ1Um5GeTduVWI3QUlUZkg= [14] 熊祥斌, 张楚汉, 王恩志.岩石单裂隙稳态渗流研究进展[J].岩石力学与工程学报, 2009, 28(9): 1839~1847. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909016.htmXIONG Xiangbin, ZHANG Chuhan, WANG Enzhi. A review of steady state seepage in a single fracture of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1839~1847. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909016.htm [15] 颜其彬, 陈明江, 汪娟, 等.碳酸盐岩储层渗透率与孔隙度、喉道半径的关系[J].天然气工业, 2015, 35(6): 30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201506005.htmYAN Qibin, CHEN Mingjiang, WANG Juan, et al. Correlation among permeability, porosity and pore throat radius of carbonate reservoirs[J]. Natural Gas Industry, 2015, 35(6): 30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201506005.htm [16] Baghbanan A, Jing L R. Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1320~1334. doi: 10.1016/j.ijrmms.2008.01.015