GEOCHRONOOGICAL AND GEOCHEMICAL STUDY OF THE LATE TRIASSIC LAYERED MAFIC-ULTRAMFIC INTRUSIONS IN BEISHAN AREA OF WUSHI COUNTY, SOUTHWEST TIANSHAN
-
摘要: 镁铁-超镁铁质层状杂岩体被认为是岩石圈伸展的重要标志之一,携带有丰富的地幔信息,是研究地幔物质组成、深部地质作用的绝佳对象。西南天山乌什县北巴勒的尔喀克沟地区新发现的镁铁-超镁铁质岩体具有层状杂岩特征,获得辉长岩锆石U-Pb年龄为224±4 Ma,属于晚三叠世。岩石地球化学分析显示富水、富碱、轻稀土富集、重稀土亏损以及明显富集Th、U、Nb、Ta、La、Ce不相容元素等特征,指示其源自于含水的富集型地幔源区,是石榴石二辉橄榄岩较低程度部分熔融的产物。其原生岩浆可能为富铁、钛的高镁玄武质岩浆,岩石系列主要受分离结晶作用控制,同化混染作用影响小。该期岩浆活动于南天山洋盆闭合、板块的碰撞造山活动之后的陆内造山阶段,代表了板块拉伸背景下幔源岩浆演化的产物,指示西南天山地区在三叠纪末可能存在一期岩石圈伸展事件。Abstract: Layered Mafic-ultramafic intrusions, which carry abundant information of mantle and provide an excellent approach to probe the mantle material composition, plate tectonic and deep geological process, are generally considered to be an important symbol of lithosphere extension, We discovered a suit of layered Mafic-ultramafic intrusions in Southwest Tianshan area, and obtained the zircon U-Pb age of gabbros of 224±4 Ma. These rocks are characterized by the enrichment of LREE, H2O, Na2O+K2O and incompatible elements such as Th, U, Nb, Ta, etc., and depleted in HREE. They might be derived from enriched mantle, which is formed by low degree partial melting of garnet lherzolite. The primary magma may be high Mg basaltic magma which was rich in iron and titanium and mainly controlled by the fractional crystallization. This magam in the continental orogenic stage was actived in the environment of intracontinent orogen after the closure of the South Tianshan ocean and post collisional orogeny, which derived from mantle in the envirnment of extensional environment. We can concluded that the Southwest Tianshan area was under an extensional tectonic seting during late Triassic.
-
Key words:
- Southwest Tianshan area /
- mafic-ultramafic /
- layered intrusions
-
0. 引言
影响滑坡稳定的因素较多, 且各因素存在复杂性及不确定性, 目前对其研究大多从地形地貌、岩土体性质、岩土体结构面、地下水、地震、工程影响等方面进行分析评价[1~2]。在一定的滑坡工程地质条件下, 有些因素对滑坡失稳影响较大, 而有些则较小, 这就是说, 影响因素对滑坡失稳的贡献是不同的。
滑坡稳定影响因素的敏感性分析就是定量分析影响滑坡稳定性的各因素与滑坡稳定系数之间的相关性, 即分析各因素的变化对于滑坡稳定系数的影响。分析滑坡影响因素的变化与滑坡稳定性的相关关系以及滑坡在不同外界条件下的稳定性, 不但可以找出滑坡失稳的主导因素, 而且根据敏感性分析得出的主要影响因素, 在滑坡治理及优化设计中就可以有针对性的采取相应的整治措施, 使滑坡治理达到安全、经济和有效的目的。因此, 在滑坡及滑坡治理工程中, 影响因素的敏感性分析显得非常重要。
1. 王良寺滑坡概况及其工程地质条件[3]
1.1 滑坡工程概况
王良寺滑坡位于延安市宝塔区桥沟镇东十里铺村, 延河河谷北岸山坡上, 西距延安市中心延河大桥约5.5km, 东临延安飞机场, 南约1km为210国道。
该滑波在延安市宝塔区政府修建的经济适用房场区———又称窑洞小区。窑洞小区投资2亿多元, 共分三期, 其中第一期已交付使用, 在建的第二期工程顺坡台阶式展布, 共六排四列, 多为跃层式别墅房, 少者两层半, 多者四层半, 占地面积100余亩。据现场勘察和走访调查, 第二期工程场地位于一老滑坡体(即王良寺滑坡)上, 其滑坡体体积超过100 × 104m3, 按滑坡规模和物质组成划分, 该滑坡属于大型黄土滑坡。在平场切坡开挖前是稳定的高陡滑坡, 由于第二期工程的大量开挖活动的影响, 改变了滑坡的应力分布, 使滑坡失稳破坏。
1.2 滑坡工程地质条件
1.2.1 地形地貌
滑坡区地貌单元属黄土梁峁斜坡区, 总体由西北向东南延河河谷倾斜, 平均坡降约20.5 %。
1.2.2 地层岩性
根据工程地质测绘及钻探资料, 滑坡岩土体自上而下共分为两个岩土层, 对其特征分述如下:
① 层新黄土(Q3eol):厚15~25m, 滑坡体的主要组成部分, 土质较均, 岩性为粉质粘土, 褐黄~黄褐色, 硬塑~坚硬, 分布有棕褐色古土壤条带, 多含有钙质结核, 直径3~8cm, 局部呈富集状, 孔隙不发育。
② 层老黄土(Q1-2eol):厚20~25m, 多呈黄褐色, 土质均一, 可塑~硬塑, 针状孔隙发育, 含较多钙质结核, 夹杂有棕褐色古土壤层。
1.2.3 水文地质条件
据钻探及井探资料显示, 滑坡区为贫水区, 地下水位埋深较大, 在滑体前缘的井探中发现地下水(据地面8m)。由此可见, 坡体大部分在地下水位以上。地下水主要接受大气降水补给, 以径流方式向延河排泄。
2. 滑坡稳定敏感性分析的计算方法[3]
敏感性分析是系统分析中分析系统稳定的一种方法。对于滑坡系统, 敏感性分析可转化为以滑坡稳定系数FS为考察对象的单指标多因素的显著性分析。本文分析拟采用正交分析法。
单指标多因素的显著性分析可采用线性模型如下:
(1) 式中:β0为常数项; βi为自变量Xi的回归系数; e为随机误差, 服从标准正态分布。
如果在模型中令某些因素的主效应或交互效应为零, 而其余效应的最小二乘估计不受影响, 即与在不假定上述效应为零时所得的估计一致。这保证对每个效应的估计不受到其它效应的影响。则设计矩阵X必须满足如下条件:
(2) 式中:S11、S22、…、Srr都是方阵, 每一块相应于一组效应。
对于某个因素变量Xi对指标Y的显著性次序分析, 不要求做定量结论, 只要求辨明自变量Xi对因变量Y的显著性影响次序。因此无须求解(1)式中的回归系数, 只需按式(2)对各影响因素进行试验设计。此时, 正交试验可满足模型要求。
设A、B、…表示不同的因素; r为各因素水平数; Ai表示因素A的第i水平(i =1, 2, L, r); Xij表示因素j的第i水平的值(i =1, 2, L, r; j =A, B, L)。
在Xij下进行试验得到因素j第i水平的试验结果指标Yij, Yij是服从正态分布的随机变量。在Xij下做了n次试验得到n个试验结果, 分别为Yijk (k =1, 2, L, n)。有计算参数如下:
(3) 式中:Kij为因素j在i水平下的统计参数; n为因素j在i水平下的试验次数; Yijk为因素j在i水平下第k个试验结果指标值。
评价因素显著性的参数为极差Rj, 其计算公式如下:
(4) 极差越大说明该因素的水平改变对试验结果影响也越大。极差最大的因素也就是最主要的因素, 极差较小的因素为较次要的因素, 依此类推。
利用正交分析法可以解决以下几个问题:
(1) 分清各因素对指标影响的主次顺序, 即分清哪些是主要因素, 哪些是次要因素;
(2) 找出优化的设计方案, 即考察的每个因素各取什么水平才能达到试验指标的要求;
(3) 分析因素与指标间的关系, 即当因素变化时指标是怎样变化的, 找出指标随因素的变化规律和趋势。
3. 滑坡稳定敏感性分析
3.1 正交试验设计
王良寺滑坡稳定系数的计算, 采用圆弧条分法中的简化Bishop法[4]。在对其进行正交试验设计时, 考虑的因素主要有粘聚力(c)、内摩擦角(φ)、重度(γ)、地下水位(hw)、坡高(h)等5种参数变化。各影响因素分析均只考虑土体参数的自相关性, 不考虑其的互相关性影响。为了减少由于水平次序引起的系统误差, 各因素水平的次序应随机排列。参数取值范围和按抽签方式确定的因素水平次序如表 1所示。
表 1 各参数取值范围Table 1. The range of each parameter假设各因素间无交互作用, 可选5因素正交表安排试验。对于4水平5因素正交试验, 最少试验次数为16次, 记为L16 (45)。
3.2 计算结果分析
选用数理统计L16 (45)正交表[5], 按表 1确定的试验方案, 对王良寺滑坡进行以稳定系数为指标的多因素显著性计算分析。正交试验因素水平概化值及计算结果如表 2所示。
表 2 正交试验计算结果Table 2. Results of orthogonality test对于因素γ, 它的第一水平(γ=16)下的4次计算(表 2中试验号1, 2, 3, 4)求得的稳定系数之和K1j=3.955;第二水平(γ=18)下的4次计算(试验号5, 6, 7, 8)求得的稳定系数之和K2j =3.825;依此类推, 如表 3。
表 3 不同重度值的稳定性系数Table 3. Stability coefficient of different weights对于因素c, 它的第一水平(c =57)下的4次计算(表 2中试验号1, 5, 9, 13)求得的稳定系数之和K1 j =4.417;第二水平(c =43)下的4次计算(试验号2, 6, 10, 14)求得的稳定系数之和K2j =3.891;依此类推, 如表 4。
表 4 不同粘聚力的稳定性系数Table 4. Stability coefficient of different cohesive forces用同样的方法计算φ、h、hw相应的稳定系数之和K1j、K2j、K3j、K4j, 如表 5、表 6、表 7。
表 5 不同内摩擦角的稳定性系数Table 5. Stability coefficient of different internal friction angles表 6 不同坡高的稳定性系数Table 6. Stability coefficient of different slope heights表 7 不同地下水位的稳定性系数Table 7. Stability coefficient of different groundwater levels各参数的极差分析如表 8所示。
表 8 各参数极差分析Table 8. Range analysis of parameters正交试验设计中各因素不同水平之间的搭配是均衡的, 例如根据因素γ的4种不同水平分成的4组计算的每一组计算中, c、φ等其他因素的不同水平皆出现一次。因此γ的K1j、K2j、K3j、K4j之间的差异可以认为主要是γ取不同水平造成的。同理, 哪个因素的极差R大, 就可以认为该因素水平不同对滑坡稳定性产生的影响就大, 影响最大的因素即最敏感因素。从表 8中的极差值可以看出, φ是最敏感的因素, 其他依次为c、hw、γ、h。
4. 滑坡治理措施探讨
王良寺滑坡为一大型黄土老滑坡因不适当开挖引发复活, 滑坡后部宽约130m, 前部宽约270m, 南北长约350m。坡体中部及前部为拟建的经济适用窑小区, 8排24幢房屋, 建成后将有千余人入住, 依据《建筑边坡工程技术规范》 (GB05330-2002), 其安全等级为Ⅱ级。
根据滑坡稳定影响因子敏感性分析结果, 本工程采用上部截排地表水、滑体后部推力段依势适当削坡、下部抗滑桩支挡三种工程相结合的综合治理措施。抗滑桩位置的选择既考虑坡体的整体稳定又能防止坡体的局部剪出。
4.1 截、排水工程
上部截水沟在滑坡后壁后侧, 依滑坡后壁走势布置, 内截面倒梯形, 长度约400m, 排水沟纵向坡率为3 ‰, 水沟材料采用浆砌片石, 等级为M10。
4.2 削坡、护坡工程
削坡工程充分利用黄土局部直立性能好的特点, 分级削坡, 每级坡高为10m, 坡比为1: 1.5, 共5级, 两级削坡间设3m宽平台。部分削坡土方回填于下部抗滑桩后, 既减少土方运距又可适当压脚。护坡工程采用2m ×2m尺寸的菱形网格格构, 格体采用M10浆砌片石构筑, 截面尺寸为300mm×400mm。
4.3 支挡工程
支挡工程采用半悬臂式抗滑桩。设计中采用的土体力学参数为:滑面以上土体重度γ= 16kN/m3, 粘聚力c =31kPa, 内摩擦角φ=23°; 滑体后部滑动带土体重度γ=18kN/m3, 粘聚力c =25kPa, 内摩擦角φ=18°; 滑面以下土体重度为γ=18kN/m3, 粘聚力c =31kPa, 内摩擦角φ=23°。取边坡稳定安全系数为1.25, 采用圆弧滑动法计算, 滑面以上适当考虑桩前土的抗力作用, 桩后剩余下滑力和桩前土抗力均按矩形分布, 滑面下按弹性地基梁计算, 地基水平抗力系数m=2000kN/m4。设计抗滑桩截面尺寸为2.5m×3.5m, 中至中间距为6m。
5. 结论
采用概率统计原理和计算机电算技术的正交分析法对滑坡稳定影响因子进行敏感性分析, 其工作量小、易于完成, 具有一定的通用性, 对工程技术人员来说是一种较实用的分析方法。实例分析表明, 运用正交分析法得到的结论与一般工程经验相符, 因此该方法具有一定的可靠性。
本文在对滑坡稳定性影响因子进行敏感性分析时, 没有考虑参数的相关性对其稳定性的影响, 在今后的工作可以考虑改进正交分析法以进行因素间有交互作用时的分析。实际上岩土体参数c、φ通常呈负相关性, 考虑参数的相关性可以使稳定性分析模型更接近于工程实际, 提高对滑坡稳定系数的计算精度, 以期达到安全、可靠, 经济、合理的治理效果。
-
图 1 研究区区域地质示意图(a, 底图修改自杨树锋等[28])及研究区地质简图(b)
Figure 1. Regional geological map and geological sketch map of study area
图 5 Zr/TiO2*0.0001-Nb/Y图解[32]
Figure 5. Zr/TiO2*0.0001-Nb/Y diagram
图 9 Th/Nb-SiO2、Nb/La-SiO2、K2O/TiO2-SiO2、La/Sm-La图解(图例同图 6)
Figure 9. Diagrams of Th/Nb-SiO2, Nb/La-SiO2, K2O/TiO2-SiO2 and La/Sm-La
图 10 哈克图解(图例同图 6)
Figure 10. Harker variation diagram
表 1 辉长岩(5004-3) 锆石U-Pb同位素分析结果
Table 1. Zircon U-Pb Isotopic analysis composition of gabbro (5004-3)
分析号 Pb/10-6 Th/10-6 U/10-6 Th/U 年龄/Ma 比值 协和度 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 5004/3/1 105 172 595 0.29 487.2 122.49 244.3 12.18 219.7 3.69 0.0569 0.003 0.2720 0.015 0.03467 0.0006 0.11 5004/3/2 36 116 198 0.59 328.9 157.34 237.1 15.14 227.8 4.34 0.0530 0.004 0.2631 0.019 0.03597 0.0007 0.04 5004/3/3 29 91 161 0.56 325.5 227.15 234.3 22.01 225.1 5.64 0.0529 0.006 0.2596 0.027 0.03554 0.0009 0.04 5004/3/4 80 194 443 0.44 221.7 155.43 229.8 14.21 230.4 4.30 0.0506 0.004 0.2540 0.018 0.03639 0.0007 0 5004/3/5 177 328 1057 0.31 575.7 80.48 249.8 8.24 216.3 2.98 0.0592 0.002 0.2789 0.010 0.03412 0.0005 0.15 5004/3/6 51 230 270 0.85 269.6 173.93 221.8 15.63 217.1 4.46 0.0516 0.004 0.2442 0.019 0.03425 0.0007 0.02 5004/3/7 47 235 251 0.94 174.0 188.49 214.5 16.22 218.0 4.62 0.0496 0.004 0.2353 0.020 0.03439 0.0007 -0.02 5004/3/8 112 265 632 0.42 467.5 120.60 251.1 12.21 228.1 3.81 0.0564 0.003 0.2805 0.015 0.03602 0.0006 0.1 5004/3/9 150 663 811 0.82 220.1 142.26 229.0 12.90 229.6 4.05 0.0505 0.003 0.2530 0.016 0.03625 0.0007 0 5004/3/10 108 613 546 1.12 339.5 114.16 237.7 10.86 227.2 3.59 0.0533 0.003 0.2638 0.014 0.03587 0.0006 0.05 5004/3/11 532 543 3293 0.16 468.5 77.53 245.7 7.68 222.9 3.15 0.0564 0.002 0.2738 0.010 0.03518 0.0005 0.1 5004/3/12 63 117 354 0.33 253.6 323.41 221.3 30.24 218.2 7.91 0.0513 0.008 0.2435 0.037 0.03443 0.0013 0.01 5004/3/13 79 619 379 1.63 253.6 368.79 233.5 36.71 231.6 6.55 0.0513 0.009 0.2585 0.046 0.03658 0.0015 0.01 5004/3/14 50 209 264 0.79 435.0 178.48 246.3 18.10 227.2 5.10 0.0556 0.005 0.2746 0.023 0.03588 0.0008 0.08 5004/3/15 112 306 653 0.47 382.1 115.05 239.1 11.14 225.1 3.77 0.0543 0.003 0.2655 0.014 0.03553 0.0006 0.06 5004/3/16 84 217 465 0.47 595.1 137.03 263.6 14.93 228.1 4.41 0.0598 0.004 0.2964 0.019 0.03602 0.0007 0.16 5004/3/17 70 275 397 0.69 238.6 165.99 224.3 14.95 223.3 4.53 0.0510 0.004 0.2472 0.018 0.03525 0.0007 0 表 2 样品全岩主量(%)及微量元素(10-6)分析结果
Table 2. Major elements and trace elements analysis data
样品编号 5009-9 5009-10 5009-18 5009-19 5009-20 5016-2 5016-4 5016-7 5002-5 5016-4 5011-2 5011-3 5042-3 HF-39-3 5004-3 5015-4 5013-1 岩性 橄辉岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 辉石岩 辉石岩 辉石岩 辉石岩 辉石岩 辉石岩 辉长岩 辉长岩 辉长岩 辉长岩 SiO2 42.55 42.63 44.83 44.52 44.18 44.38 43.73 44.62 42.32 43.73 41.20 40.50 42.16 46.34 48.02 42.86 39.89 AI2O3 6.95 7.08 6.42 6.53 6.67 7.96 10.42 6.80 11.36 10.42 9.64 9.82 10.36 11.43 12.64 10.61 10.82 Fe2O3 4.05 3.40 2.78 2.73 2.46 2.45 1.80 2.82 2.46 1.80 1.82 1.89 1.84 2.03 2.15 1.69 1.71 FeO 8.25 8.60 8.10 8.35 8.65 9.35 10.20 8.82 10.90 10.20 9.65 10.70 10.35 9.10 8.05 9.80 10.00 CaO 8.92 10.20 10.61 10.90 11.37 10.44 9.11 11.75 6.62 9.11 10.52 9.82 7.07 6.52 6.58 6.74 7.92 MgO 19.65 19.08 18.81 18.41 18.07 16.08 12.63 16.86 12.59 12.63 13.53 14.12 14.88 9.29 8.36 10.33 10.35 K2O 0.09 0.10 0.14 0.16 0.15 0.70 1.13 0.50 0.84 1.13 0.88 0.74 0.59 1.38 2.99 0.10 0.26 Na2O 0.22 0.22 0.34 0.33 0.30 0.90 1.67 0.44 2.08 1.67 1.43 1.23 0.23 1.47 2.76 1.10 1.17 TiO2 1.94 1.79 1.83 1.95 1.95 2.39 2.76 2.22 2.97 2.76 2.63 2.76 3.38 3.00 3.02 2.75 2.80 P2O5 0.23 0.25 0.26 0.26 0.28 0.35 0.43 0.29 0.45 0.43 0.28 0.40 0.54 0.49 0.53 0.42 0.46 MnO 0.13 0.14 0.16 0.17 0.19 0.17 0.19 0.18 0.19 0.19 0.19 0.21 0.22 0.15 0.14 0.17 0.19 灼失※ 6.52 6.04 5.23 5.21 5.30 4.44 5.59 4.28 7.00 5.59 7.86 7.43 8.03 8.52 4.46 13.12 14.12 H2O+ 5.12 3.96 3.04 3.76 3.52 2.16 2.86 2.34 4.12 2.86 2.56 2.82 4.60 2.96 2.46 4.56 3.00 FeOt 11.89 11.66 10.60 10.81 10.86 11.55 11.82 11.36 13.11 11.82 11.29 12.40 12.01 10.93 9.98 11.32 11.54 Fe2O3t 13.22 12.96 11.78 12.01 12.07 12.84 13.14 12.62 14.57 13.14 12.54 13.78 13.34 12.14 11.10 12.58 12.82 Mg# 77.60 77.44 78.82 78.13 77.72 74.48 69.14 75.69 66.81 69.14 71.54 70.48 72.22 64.07 63.71 65.68 65.29 La 22.50 26.20 28.00 26.70 25.90 33.20 27.6 34.3 48 46.4 42.2 42.8 63.1 47.00 51.30 46.50 48.50 Ce 50.40 55.40 56.40 55.80 56.00 68.30 58.4 72.6 97.2 94.1 87 87.2 131 96.70 105.00 91.80 95.90 Pr 6.62 6.780 7.08 7.11 7.24 8.74 7.52 9.22 11.8 11.4 10.6 10.6 15.9 11.60 12.90 11.00 11.40 Nd 27.20 26.80 27.60 29.00 28.50 36.20 30.00 35.9 46.5 44.4 42.1 42.1 63.1 47.60 52.20 41.90 42.10 Sm 5.92 5.40 5.72 5.95 6.02 7.40 6.58 7.68 8.74 8.93 8.38 8.12 11.2 9.55 9.92 8.10 8.55 Eu 1.87 1.77 1.75 1.83 1.82 2.20 1.89 2.12 2.72 2.77 2.51 2.28 3.32 2.65 3.06 2.15 2.30 Gd 5.08 4.68 5.00 4.95 5.02 6.32 5.78 6.79 7.58 7.43 7.05 6.93 8.83 8.31 8.00 6.77 7.12 Tb 0.79 0.71 0.77 0.78 0.76 0.96 0.80 0.95 1.17 1.11 1 0.95 1.34 1.14 1.23 0.95 0.95 Dy 3.71 3.39 3.53 3.61 3.72 4.45 4.16 4.85 5.38 5.26 5.05 4.92 6.03 5.66 5.83 4.79 4.97 Ho 0.64 0.62 0.63 0.62 0.67 0.82 0.70 0.92 0.94 0.95 0.92 0.88 1.04 1.04 1.02 0.85 0.84 Er 1.60 1.55 1.57 1.55 1.67 1.98 1.70 2.32 2.4 2.31 2.25 2.22 2.66 2.64 2.58 2.12 2.16 Tm 0.22 0.21 0.21 0.22 0.24 0.26 0.24 0.33 0.32 0.31 0.3 0.3 0.35 0.37 0.35 0.29 0.3 Yb 1.29 1.25 1.25 1.31 1.40 1.56 1.37 2.05 1.93 1.85 1.89 1.77 2.18 2.27 2.14 1.70 1.84 Lu 0.19 0.18 0.18 0.20 0.21 0.22 0.20 0.31 0.28 0.26 0.26 0.24 0.3 0.34 0.32 0.24 0.26 Y 15.50 14.6 15.20 15.20 15.90 18.80 17.00 21.6 22.5 21.7 21.6 20.8 24.7 25.00 25.30 20.30 21.50 ∑REE 143.53 149.54 154.89 154.83 155.07 191.41 163.94 201.94 257.46 249.18 233.11 232.11 335.05 261.87 281.15 239.46 248.69 LREE 114.51 122.35 126.55 126.39 125.48 156.04 131.99 161.82 214.96 208.00 192.79 193.10 287.62 215.10 234.38 201.45 208.75 HREE 29.02 27.19 28.34 28.44 29.59 35.37 31.95 40.12 42.50 41.18 40.32 39.01 47.43 46.77 46.77 38.01 39.94 LREE/HREE 3.95 4.50 4.47 4.44 4.24 4.41 4.13 4.03 5.06 5.05 4.78 4.95 6.06 4.60 5.01 5.30 5.23 δEu 1.02 1.05 0.98 1.00 0.98 0.96 0.92 0.88 1.00 1.01 0.97 0.91 0.99 0.89 1.02 0.86 0.88 LaN/YbN 12.51 15.03 16.07 14.62 13.27 15.27 14.45 12.00 17.84 17.99 16.02 17.34 20.76 14.85 17.20 19.62 18.91 LaN/SmN 2.45 3.13 3.16 2.90 2.78 2.90 2.71 2.88 3.55 3.35 3.25 3.40 3.64 3.18 3.34 3.71 3.66 GdN/YbN 3.26 3.10 3.31 3.13 2.97 3.35 3.49 2.74 3.25 3.32 3.09 3.24 3.35 3.03 3.09 3.29 3.20 Cu 123 105.00 222.00 265.00 127.00 95.80 141.00 78.8 124 151 98.60 154 150 92.50 276.00 89.2 88.2 Pb 2.71 2.59 3.52 3.83 3.02 2.89 2.70 7.72 3.84 12.6 3.27 6.8 4.68 9.63 2.77 5.64 6.21 Zn 97.40 89.30 96.50 98.30 110.00 118 108.00 139 136 120 116 129 183 170.00 90.80 121.00 124.00 Cr 1740.00 1860.00 1740.00 1660.00 1620.00 1340 1520.00 980.00 691.00 744.00 915.00 1060.00 652 452.00 202.00 578.00 521.00 Ni 703.00 790.00 759.00 725.00 704.00 485 542.00 456 397 326.00 392.00 458 313.00 159.00 115.00 262.00 248.00 Co 83.60 83.00 90.60 87.60 81.30 68.7 73.60 72.5 68.1 57.80 60.60 66.3 60.50 46.40 42.10 55.60 53.60 Li 25.40 19.50 21.10 21.90 14.30 44.9 38.80 51.3 30.2 46.40 55.70 60.9 46.50 46.80 20.10 102.00 100.00 Rb 5.34 4.00 5.48 6.13 6.59 49.3 41.00 32.2 38.5 47.40 19.70 20.8 43.90 90.20 58.60 6.03 6.50 Cs 1.50 1.47 1.28 2.13 1.37 13.6 9.24 7.08 8.66 2.19 2.50 3.54 7.70 17.40 4.16 0.86 0.45 Sr 87.40 88.20 94.80 91.20 88.80 112 96.8 163 255 323 792 499.00 173.00 402.00 402.00 439.00 523.00 Ba 44.60 47.40 61.10 54.80 45.00 81.7 91.2 145 302 724 779.00 510.00 86.40 290.00 1360.00 92.80 139.00 V 236.00 224.00 205.00 214.00 216.00 256 250 293 261 301 273.00 304 313.00 310.00 301.00 284.00 293.00 Sc 29.00 32.70 36.40 40.40 40.80 35.4 37.4 28 20.9 30.6 29.10 29.9 28.90 27.00 22.00 25.80 26.70 Nb 22.90 23.00 24.40 23.50 24.30 29.5 24.9 36.9 45.8 43.6 42.70 38.5 56.20 50.40 49.80 43.50 46.30 Ta 2.02 2.04 2.04 2.02 2.05 2.26 1.95 2.82 3.46 3.1 2.90 2.7 4.06 3.78 3.35 3.02 3.12 Zr 146.00 145.00 158.00 160.00 167.00 201 170 218 275 246 250.00 236 349 272 290 261 270 Hf 4.49 4.24 4.71 4.69 4.85 5.64 4.97 5.94 7.22 7.09 7.00 6.63 9.60 7.34 7.89 6.90 7.18 Be 0.37 0.70 0.87 0.93 0.88 1.11 1.02 1.59 1.61 1.52 2.08 1.82 1.56 1.54 1.33 1.19 1.30 Ga 12.30 13.30 12.30 12.8 13.60 15.2 13.6 18.8 20.2 18 16.30 18.3 19.00 19.40 17.50 17.6 18.80 Ge 2.18 2.34 2.06 2.06 2.20 2.07 2.18 2.1 1.57 1.83 1.50 1.77 1.98 2.22 1.91 2.74 2.68 U 0.64 0.66 0.73 0.76 0.76 0.89 0.78 1.27 1.22 1.31 1.18 1.13 1.56 1.65 1.28 1.23 1.29 Th 2.54 2.74 2.98 3.05 3.20 3.68 2.92 4.78 5.2 5.24 5.02 4.74 6.93 6.06 5.93 5.39 5.70 表 3 样品全岩主量(%)及微量(10-6)元素分析结果
Table 3. Major elements and trace elements analysis data
样品编号 5031-1 HF-41-1 5045-1 HF-46-2 HF-46-4 5028-2 5015-1 5015-3 5031-3 5031-3 5013-4 HF-36-7 PM07-51-2 PM07-51-3 PM07-51-4 PM07-51-5 PM07-51-6 岩性 岩脉 岩脉 辉长岩 辉长闪长岩 辉长闪长岩 辉长闪长岩 辉长闪长岩 辉长闪长岩 辉长闪长岩 辉长闪长岩 辉长闪长岩 辉长闪长岩 闪长岩 闪长岩 闪长岩 闪长岩 闪长岩 SiO2 39.11 45.62 41.90 48.44 42.17 47.19 47.82 47.81 42.44 42.44 44.24 49.92 50.69 50.38 50.59 51.79 51.23 AI2O3 10.18 10.06 10.76 13.75 13.07 14.03 14.50 14.62 15.22 15.22 15.30 13.42 15.96 16.21 15.34 15.39 15.3 Fe2O3 1.63 1.76 1.64 2.60 2.22 2.86 3.36 2.69 2.01 2.01 2.07 1.42 1.78 1.41 1.53 1.73 1.59 FeO 10.85 9.82 9.75 10.25 10.55 7.90 7.90 7.40 8.25 8.25 8.25 5.55 7.84 8.27 8.14 7.94 7.81 CaO 7.60 6.20 7.23 3.55 7.19 5.56 4.92 5.64 7.92 7.92 5.07 7.25 4.17 3.96 4.34 3.72 4.4 MgO 10.97 11.96 12.04 5.97 6.64 5.50 4.79 4.43 4.70 4.70 6.90 6.42 4.11 4.19 4.48 4.3 4.21 K20 0.31 0.38 2.32 0.48 0.46 3.66 1.92 2.04 2.33 2.33 3.08 2.58 0.34 0.33 0.33 0.31 0.32 Na2O 0.38 0.11 0.69 3.75 2.90 3.53 4.71 4.83 3.84 3.84 2.04 3.89 5.34 5.57 5.45 5.53 5.52 TiO2 2.92 2.70 2.47 4.15 4.01 3.41 3.07 2.78 3.75 3.75 3.74 2.05 2.74 2.86 2.88 2.96 2.87 P2O5 0.40 0.41 0.41 0.46 0.43 0.60 1.50 1.52 0.75 0.75 0.76 0.67 0.75 0.83 0.78 0.87 0.8 MnO 0.18 0.15 0.16 0.17 0.19 0.16 0.20 0.18 0.17 0.17 0.12 0.12 0.17 0.18 0.17 0.17 0.19 灼失※ 15.13 10.48 10.32 6.13 9.90 5.33 5.08 5.82 8.40 8.40 8.18 6.51 5.96 5.76 5.95 5.25 5.73 H2O+ 3.97 5.39 2.18 3.50 2.18 4.44 2.98 2.62 3.20 3.20 3.48 2.16 2.91 3.22 3.23 2.81 2.62 FeOt 12.32 11.40 11.23 12.59 12.55 10.47 10.92 9.82 10.06 10.06 10.11 6.83 9.44 9.54 9.52 9.50 9.24 Fe2O3t 13.7 12.7 12.5 14.0 13.9 11.6 12.1 10.9 11.2 11.2 11.2 7.6 10.5 10.6 10.6 10.6 10.3 Mg# 65.1 68.7 69.2 49.9 52.6 52.4 47.9 48.6 49.5 49.5 58.9 66.4 47.7 47.9 49.7 48.7 48.9 La 41.9 43.4 53.4 44.3 44.7 73.2 62.7 64.9 67.5 79.6 71.1 77.5 69.7 76.3 74.4 70.8 69 Ce 84.2 88.8 106 91.7 92.4 142 134 139 142 166 147 150 154 162 162 152 145 Pr 10.2 11 12.3 11.3 11.4 16.3 16.2 16.9 16.5 19.7 16.9 17.4 18.1 19.4 19.4 18.7 17.4 Nd 40.2 43.4 45.2 45.2 46.3 61.3 64.2 66.2 64.2 78.2 63.2 65.2 69.6 73.5 73.2 69.2 66.8 Sm 7.92 8.47 8.53 9.12 9.42 11.8 13.6 13.9 11.9 16.1 12.5 12.2 12.8 13.7 13.8 13.1 12.9 Eu 1.92 2.85 2.46 2.45 2.57 3.52 4.12 4.32 3.51 3.79 3.32 3.22 3.91 3.97 4.18 3.74 3.7 Gd 6.6 7.16 7.26 7.96 7.8 9.95 12.2 12.5 11.2 14.8 10.4 10.4 10.8 11.9 12 11.2 10.9 Tb 0.91 1.08 1 1.1 1.12 1.35 1.8 1.79 1.45 1.95 1.46 1.4 1.72 1.71 1.77 1.61 1.59 Dy 4.65 5.06 5.08 5.32 5.56 6.83 8.95 8.78 7.3 10.5 7.38 6.94 8.48 8.67 8.91 8.46 8.21 Ho 0.82 0.9 0.9 0.96 1.02 1.2 1.63 1.58 1.26 1.79 1.29 1.25 1.54 1.62 1.62 1.56 1.49 Er 2.06 2.26 2.22 2.38 2.57 3.05 3.96 3.85 3.12 4.15 3.28 3.23 4 4.12 4.06 3.95 3.85 Tm 0.28 0.3 0.31 0.33 0.35 0.43 0.54 0.52 0.42 0.53 0.44 0.46 0.58 0.57 0.56 0.55 0.54 Yb 1.69 1.8 1.99 2.04 2.04 2.6 3.18 3.21 2.7 3.11 2.69 2.89 3.47 3.54 3.44 3.29 3.32 Lu 0.24 0.26 0.28 0.31 0.28 0.38 0.44 0.44 0.4 0.42 0.39 0.44 0.52 0.51 0.49 0.49 0.46 Y 19.8 21.6 22.3 22.5 22.8 28.1 39.1 36.2 30.7 42.3 30.8 30.6 34.1 36.2 35.6 34.1 34 ∑ REE 223.39 238.34 269.23 246.97 250.33 362.01 366.62 374.09 364.16 442.94 372. 383.13 393.32 417.71 415.43 392.75 379.16 LREE 186.34 197.92 227.89 204.07 206.79 308.12 294.82 305.22 305.61 363.39 314. 325.52 328.11 348.87 346.98 327.54 314.8 HREE 37.05 40.42 41.34 42.9 43.54 53.89 71.8 68.87 58.55 79.55 58.13 57.61 65.21 68.84 68.45 65 21 64.36 LREE/HREE 5.03 4.90 5.51 4.76 4.75 5.72 4.11 4.43 5.22 4.57 5.40 5.65 5.03 5.07 5.07 5.02 4.89 Eu* 0.79 1.09 0.93 0.86 0.89 0.97 0.96 0.98 0.91 0.74 0.87 0.85 0.99 0.93 0.97 0.92 0.93 LaN/YbN 17.78 17.29 19.25 15.58 15.72 20.19 14.14 14.50 17.93 18.36 18.96 19.24 14.41 15.46 15.51 15.44 14.91 LaN/SmN 3.42 3.31 4.04 3.14 3.06 4.00 2.98 3.01 3.66 3.19 3.67 4.10 3.52 3.60 3.48 3.49 3.45 GdN/YbN 3.23 3.29 3.02 3.23 3.16 3.17 3.17 3.22 3.43 3.94 3.20 2.98 2.57 2.78 2.89 2.82 2.72 Cu 89.1 106 111 277 272 147 28.2 26.8 88.9 29.4 91.6 39.4 32.4 32.5 35.9 38.7 32.6 Pb 3.9 6.04 1.92 5.6 5.2 10.7 3.7 7.01 6.17 2.2 5.02 12.1 5.08 5.06 4.32 5.24 5.25 Zn 142 126 110 119 149 169 138 130 125 138 125 84 112 125 114 116 115 Cr 649 721 696 35.9 28.3 27.4 3.3 25.3 1.43 17.4 7.47 31.9 22.3 13.9 39.5 24.4 20.6 Ni 294 342 321 114 110 63.1 5.49 15.4 12.8 10.4 18.6 88.8 10.3 8.63 18.8 12.5 10.5 Co 58.5 61.1 53.3 53.1 46.1 34.3 10.2 9.97 28.2 9 28.7 28.4 25.8 23.8 25.8 26.7 23.9 Li 108 39.4 48 34 39 16 25.9 26.5 25.6 54.6 52.8 19.5 122 112 42 44 40.9 Rb 11.6 32 191 29.6 19.2 145 103 96.7 49.9 6.3 80.9 75.5 10.5 9.66 9.35 8.6 8.71 Cs 0.86 3.93 25.3 1.67 1.47 23.5 50.2 32.5 0.75 1.24 1.53 4.03 1.41 1.28 0.74 0.73 0.58 Sr 396 240 238 546 667 685 842 957 600 335 238 812 598 614 583 572 613 Ba 158 95.7 175 411 405 1610 1440 1940 984 155 506 902 397 410 393 398 421 V 322 283 270 431 457 297 226 197 357 294 347 151 263 264 274 271 258 Sc 24 28.8 25.7 18 19.4 14.2 10.4 12.8 18.8 13.9 13 8.35 14.3 13.8 14.5 13.8 15.2 Nb 39.8 44.1 48.6 44.1 42.6 71.7 45.8 45.7 65.5 48.4 67 71.2 73.7 79 76.8 77 75.5 Ta 2.67 3.18 3.24 3.36 3.29 5.01 3.03 3.06 4.5 3.21 4.52 5.12 5.06 5.46 5.29 5.41 5.42 Zr 241 232 252 275 267 421 265 264 326 276 340 433 335 350 374 350 349 Hf 6.6 6.32 6.86 7.78 7.5 10.7 7.26 7.35 8.68 7.66 8.78 10.6 9.76 10.3 10.6 10.5 10.2 Be 1.07 1.42 2.33 1.4 1.52 1.96 2.18 1.46 1.32 3.1 1.9 2.05 2.6 2.84 2.35 2.82 2.18 Ga 19.4 16.8 17.8 20.3 22.4 22 24 22.7 22.8 26.2 23.8 15 23.9 23.7 24.6 24.2 23.6 Ge 2.96 2.02 1.86 1.86 2.08 1.62 1.7 1.6 1.39 2.64 2.03 1.42 1.74 1.67 2 1.91 1.72 U 1.2 1.18 1.34 1.17 1.2 1.98 1.4 1.46 1.7 1.39 1.67 2.17 1.82 2.05 2.31 2 1.98 Th 4.49 5.4 6.38 5.07 4.73 8.51 6.61 6.7 6.77 7.02 6.51 9.11 7.15 8.46 9.84 8.23 8.24 -
[1] Day J M D, Pearson D G, Hulbert L J. Rhenium-Osmium isotope and platinum-group element constrains on the origin and evolution of the 1.27Ga Muskox layered intrusion[J]. Journal of Petrology, 2008, 49(7):1255~1295. doi: 10.1093/petrology/egn024 [2] Niu Y L, Wilson M, Humphreys E R, et al. The origin of intra-plate ocean island basalts (OIB):The lid effect and its geodynamic implications[J]. Journal of Petrology, 2011, 52(7/8):1443~1468. [3] Spandler C, Mavrogenes J, Arculus R. Orign of chromitiel in layered instrusions:Evidence from hromite-hosted meit inclusion from the still water complex[J]. Geology, 2005, 33:893~896. doi: 10.1130/G21912.1 [4] Maier W D, Barnes S J, Bandyayera D, et al. Early Kibaran rift-related mafic-ultramafic magmatism in western Tanzania and Burundi:Petrogenesis and ore potential of the Kapalagulu and Musongati layered intrusions[J]. Lithos, 2008, 101(1/2):24~53. [5] White R S, Smith L K, Roberts A W. Lower-crustal intrusion on the North Atlantic continental margin[J]. Nature, 2008, 452:460~464. doi: 10.1038/nature06687 [6] 宋谢炎, 张成江, 胡瑞忠, 等.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系[J].矿物岩石, 2005, 25(4):35~44. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200504006.htmSONG Xie-yan, ZHANG Cheng-jiang, HU Rui-zhong, et al. Genetic links of magmatic deposits in the Emeishan Large Igneous Province with dynamics of mantle plume[J]. Journal of Mineralogy and Petrology, 2005, 25(4):35~44. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200504006.htm [7] 徐义刚, 何斌, 罗震宇, 等.我国大火成岩省和地幔柱研究进展与展望[J].矿物岩石地球化学通报, 2013, 32(1):25~39. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201301003.htmXU Yi-gang, HE Bin, LUO Zhen-yu, et al. Study on mantle plume and large igneous provinces in chine:An overview and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(1):25~39. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201301003.htm [8] Mao J W, Pirajno F, Zhang Z H, et al. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China):Principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 2008, 32(2/4):184~203. [9] Schilling J G. Upper mantle heterogeneiries and dynamics[J]. Nature, 1985, 314:62~67. doi: 10.1038/314062a0 [10] Hofmann A W. Mantle geochemistry:The message from oceanic volcanism[J]. Nature, 1997, 385:219~229. doi: 10.1038/385219a0 [11] 汤耀庆, 肖序常, 赵民.古中亚复合巨型缝合带南缘构造演化[M].北京:科学技术出版社, 1991:109~124.TANG Yao-qing, XIAO Xu-chang, ZHAO Min. The tectonic evolution of southern margin of the paleo Asia giant composite suture[M]. Beijing:Science and Technology Press, 1991:109~124. [12] 肖序常, 汤耀庆, 李锦轶, 等.新疆北部及邻区大地构造[M].北京:地质出版社, 1992:1~169.XIAO Xu-chang, TANG Yao-qing, LI Jin-yi, et al, Tectonics of northern Xinjiang and its adjacent area[M]. Beijing:Geological Publishing House, 1992:1~169. [13] 夏林圻, 夏祖春, 徐学义, 等.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因[J].西北地质, 2008, 04:1~68. doi: 10.3969/j.issn.1009-6248.2008.01.001XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Petrogenesis of Caboniferous-Early Permian rift-related volcanic rocks in the Tianshan and its neighboring areas, Northwestern China[J]. Northwestern Geology, 2008, 4:1~68. doi: 10.3969/j.issn.1009-6248.2008.01.001 [14] 肖序常, 汤耀庆, 王军, 等.中国南天山造山带蓝片岩及其构造意义[J].地球学报, 1994, Z2:54~64. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB4Z2.006.htmXIAO Xu-chang, TANG Yao-qing, WANG Jun, et al. Blue schist belts and their tectonic implications of the South Tianshan Mts., NW China[J]. Acta Geologica Sinica, 1994, Z2:54~64. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB4Z2.006.htm [15] 蔡东升, 卢华复, 贾东, 等.南天山古生代板块构造演化[J].地质论评, 1995, 05:432~443. doi: 10.3321/j.issn:0371-5736.1995.05.006CAI Dong-sheng, LU Hua-fu, JIA Dong, et al. Paleozoic plate tectonic evolution of southern Tianshan[J]. Geological Review, 1995, 05:432~443. doi: 10.3321/j.issn:0371-5736.1995.05.006 [16] 夏林圻, 张国伟, 夏祖春.天山古生代洋盆开启、闭合时限的岩石学约束-来自震旦纪、石炭纪火山岩的证据[J].地质通报, 2002, 21(2):55~62. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200202001.htmXIA Lin-qi, ZHANG Guo-wei, XIA Zi-chun. Constrain on the timing of opening and closing of the Tianshan Paleozoic basin:Evidence from Sinian and Carbonifercous volcanic rocks[J]. Geological Bulletin of China, 2002, 21(2):55~62. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200202001.htm [17] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304:370~395. doi: 10.2475/ajs.304.4.370 [18] 李永军, 李注苍, 佟丽莉, 等.论天山古洋盆关闭的地质时限——来自伊宁地块石炭系的新证据[J].岩石学报, 2010, 10:2905~2912. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010003.htmLI Yong-jun, LI Zhu-cang, TONG Li-li, et al. Revisit the constraints on the closure of the Tianshan ancient oceanic basin:New evidence from Yining block of the Carboniferous[J]. Acta Petrologica Sinica, 2010, 10:2905~2912. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010003.htm [19] 李文明, 任秉琛, 杨兴科, 等.东天山中酸性侵入岩浆作用及其地球动力学意义[J].西北地质, 2002, 04:41~64. doi: 10.3969/j.issn.1009-6248.2002.01.005LI Wen-ming, REN Bing-chen, YANG Xing-ke, et al. The intermediate-acid intrusive magmatism and its geodynamic significance in Eastern Tianshan region[J]. Northwestern Geology, 2002, 04:41~64. doi: 10.3969/j.issn.1009-6248.2002.01.005 [20] 江思宏, 聂凤军.北山地区花岗岩类的40Ar/39Ar同位素年代学研究[J].岩石学报, 2006, 11:2719~2732. doi: 10.3969/j.issn.1000-0569.2006.11.010JIANG Si-hong, NIE Feng-jun, 40Ar/39Ar geochronology of the granitoids in Beishan Moutain, NW China[J]. Acta Petrologica Sinica, 2006, 11:2719~2732. doi: 10.3969/j.issn.1000-0569.2006.11.010 [21] 郭瑞清, 秦切, 张晓帆, 等.新疆库鲁克塔格阔克塔格西碱性岩年代学、岩石地球化学特征及其地质意义[J].吉林大学学报:地球科学版, 2013, 02:457~468. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201302014.htmGUO Rui-qing, QIN Qie, ZHANG Xiao-fan, et al. Geochronology, petrogeochemistry of western Kuoktagh alkaline rocks in Quruqtagh area in Xinjiang and its geolohical implications[J]. Journal of Jilin University:Earth Science Edition, 2013, 02:457~468. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201302014.htm [22] 刘畅, 赵泽辉, 郭召杰.甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论[J].岩石学报, 2006, 05:1294~1306. doi: 10.3321/j.issn:1000-0569.2006.05.019LIU Chang, ZHAO Ze-hui, GUO Zhao-jie. Chronology and geochemistry of lamprophyre dykes from Beishan area, Gansu province and implications for the crust-mantle interaction[J]. Acta Petrologica Sinica, 2006, 05:1294~1306. doi: 10.3321/j.issn:1000-0569.2006.05.019 [23] 张遵忠, 顾连兴, 吴昌志, 等.东天山印支早期尾亚石英正长岩:成岩作用及成岩意义[J].岩石学报, 2006, 05:1135~1149. doi: 10.3321/j.issn:1000-0569.2006.05.007ZHANG Zun-zhong, GU Lian-xing, WU Chang-zhi, et al. Weiya quartz syenite in early Indosinina from eastern Tianshan Moutains:Petrogenesis and tectonic implications[J]. Acta Petrologica Sinica, 2006, 05:1135~1149. doi: 10.3321/j.issn:1000-0569.2006.05.007 [24] 张遵忠, 顾连兴, 吴昌志, 等.中天山东段尾亚印支早-中期石英闪长岩-陆内俯冲与原生下陆壳部分熔融[J].地质学报, 2011, 09:1420~1434. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201109004.htmZHANG Zun-zhong, GU Lian-xing, WU Chang-zhi, et al. Early-Middle Indosinian Weiya quartz diorite, eastern segment of the Middle Tianshan Mountains, NW China:Implications for intra-continent subduction and partial melting of juvenile lower crust[J]. Acta Geologica Sinica, 2011, 09:1420~1434. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201109004.htm [25] 朱志新, 董连慧, 王克卓, 等.西天山造山带构造单元划分与构造演化[J].地质通报, 2013, Z1:297~306. doi: 10.3969/j.issn.1671-2552.2013.02.009ZHU Zhi-xin, DONG Lian-hui, WANG Ke-zhuo, et al. Tectonic division and regional tectonic evolution of West Tianshan organic belt[J]. Geological Bulletin of China, 2013, Z1:297~306. doi: 10.3969/j.issn.1671-2552.2013.02.009 [26] 邹亚锐, 塔吉古丽, 邢作云, 等.塔里木新元古代-古生代沉积盆地演化[J].地球科学:中国地质大学学报, 2014, 08:1200~1216. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408020.htmZOU Ya-rui, TAJI Gu-li, XING Zuo-yun, et al. Evolution of sedimentary basins in Tarim during Neoprpterpzoic-Paleozoic[J]. Earth Science:Journal of China University of Geosciences, 2014, 08:1200~1216. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408020.htm [27] 高小芬, 林晓, 徐亚东, 等.南天山古生代-中生代沉积盆地演化[J].地球科学:中国地质大学学报, 2014, 08:1119~1128. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408013.htmGAO Xiao-fen, LIN Xiao, XU Ya-dong, et al. Evolution of sedimentary basins in South Tianshan during Paleozoic-Mesozoic[J]. Earth Science:Journal of China University of Geosciences, 2014, 08:1119~1128. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408013.htm [28] 杨树锋, 陈汉林, 厉子龙, 等.塔里木早二叠世大火成岩省[J].中国科学:地球科学, 2014, 02:187~199. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201402001.htmYANG Shu-feng, CHEN Han-lin, LI Zi-long, et al. Early Permian Tarim Large Igneous Province in northwest China[J]. Science in China:Earth Sciences, 2014, 02:187~199. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201402001.htm [29] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59~79. doi: 10.1016/S0009-2541(02)00195-X [30] Luddwig KR. Isoplot:A plotting and regression program for radiogenic-isotope data[R]. US Geological Survey Open-File Report, 1991:91~445. [31] Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184:123~138. doi: 10.1016/S0009-2541(01)00355-2 [32] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325~343. doi: 10.1016/0009-2541(77)90057-2 [33] Sun S, Mcdonough W F. Chemical and isotopic systematics of oceanic Sun S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313~345. doi: 10.1144/GSL.SP.1989.042.01.19 [34] 邓宇峰, 宋谢炎, 陈列锰, 等.东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究[J].岩石学报, 2011, 27(12):3640~3652. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112012.htmDENG Yu-feng, SONG Xie-yan, CHEN Lie-meng, et al. Features of the mantle source of the Huangshanxi Ni-Cu sulfide-bearing mafic-ultramafic intrusion, eastern Tianshan[J]. Acta Petrologica Sinica, 2011, 27(12):3640~3652. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112012.htm [35] Ao S J, Xiao W J, Han C M. Geochronology and geochemistry of early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China:Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 2010, 1:004. [36] 姜常义, 贾承造, 李良辰.新疆麻扎尔塔格地区铁富集型高镁岩浆的源区[J].地质学报, 2004, 78(6):770~780. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200406007.htmJIANG Chang-yi, JIA Cheng-zao, LI Liang-chen. Source of the Fe-riched-type high-Mg magma in Mazhartag Region, Xinjiang[J]. Acta Geologica Sinica, 2004, 78(6):770~780. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200406007.htm [37] 张传林, 周刚, 王洪燕, 等.塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区[J].地质通报, 2010, 29(6):779~794. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201006002.htmZHANG Chuan-lin, ZHOU Gang, WANG Hong-yan, et al. A review on two types of mantle domains of the Permian large igneous province in Tarim and the western section of Central Asian orogenic belt[J]. Geological Bulletin of China, 2010, 29(6):779~794. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201006002.htm [38] 喻学惠, 赵志丹, 莫宣学, 等.甘肃西秦岭新生代钾霞橄黄长岩和碳酸岩的微量、稀土和Sr, Nd, Pb同位素地球化学:地幔柱-岩石圈交换的证据[J].岩石报报, 2004, 3:483~494. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403012.htmYU Xue-hui, ZHAO Zhi-dan, MO Xuan-xue, et al. Trace elements, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugite and carbonatite from west Qinling, Gamsu province:Implication of plume-liyhosphere interaction[J]. Acta Petrologica Sinica, 2004, 3:483~494. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403012.htm [39] Woodhead J D, Hergt J M, Davidson J P. Hafnium isotope evidence for conservative element mobility during subduction zone processes. Earth and Planetary Science Letters, 2001, 192(3):331~346. doi: 10.1016/S0012-821X(01)00453-8 [40] Le Roex A O, Dick H J B. Geochemistry, mineralogy and petrogenensis of levaserupted along the southwest Indian Ridge between the Bouvet tripe junction and 11 degrees east[J]. Journal of Petrology, 2003, 24(3):267~318. [41] Wang K, Plant T, Walker J D. A mantle melting profile across the basin and range, SW USA[J]. Journal of Geophysical Research, 2002, 107(10):1029. [42] Hardarson B S, Fitton J G. Increased mantle melting beneath Snaefellsjokull volcano during Late Pleistocene deglaciation[J]. Nature, 1991, 353:62~64. doi: 10.1038/353062a0 [43] 钟宏, 胡瑞忠, 朱维光.层状岩体的成因及成矿作用[J].地学前缘, 2007, 14(2):159~172. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702012.htmZHONG Hong, HU Rui-zhong, ZHU Wei-guang. Genesis and mineralization of layered intrusions[J]. Earth Science Frontiers, 2007, 14(2):159~172. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702012.htm [44] Green D H. Genesis of archean peridotitic magmas and constraints on archean geothermal gradients and tectonics[J]. Geology, 1975, 3:15~18. doi: 10.1130/0091-7613(1975)3<15:GOAPMA>2.0.CO;2 [45] Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M. Mantle flow and melt generation at mid-ocean ridges.Geophysical Monograph, American Geophysical Union, 1992, 71:67~102. [46] Frey F A, Green D H, Roy S D. Integrated models of basalts petrogenesis:A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrolog y, 1978, 19:463~513. doi: 10.1093/petrology/19.3.463 [47] Macdonald R, Rogers N W, Fitton J G. Plume-lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa[J]. Journal of Petrology, 2001, 42:877~900. doi: 10.1093/petrology/42.5.877 [48] Hofmann W. Chemical differentiation of the earth:The realationship between mantle, continental crust and oceanic crust[J]. Earth and Planetary Science Letters, 1986, 90:297~314. [49] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313~345. doi: 10.1144/GSL.SP.1989.042.01.19 [50] 韩吟文, 马振东, 张宏飞.地球化学[M].第二版.北京:地质出版社, 2003:227~228.HAN Yin-wen, MA Zhen-dong, ZHANG Hong-fei. Geochemistry[M]. Beijing:Geological Publishing House, 2003:227~228. [51] Toplis M J, Carroll M R. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferrobasaltic systems[J].Journal of Petrology, 1995, 36:1137~1170. doi: 10.1093/petrology/36.5.1137 [52] 杨树锋, 余星, 陈汉林, 等.塔里木盆地巴楚小海子二叠纪超基性脉岩的地球化学特征及其成因探讨[J].岩石学报, 2007, 23(5):1087~1096. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705022.htmYANG Shu-feng, YU Xing, CHEN Han-lin, et al. Geochemical characteristics and petrogenesis of Permian Xiaohaizi ultrabasic dyke in Bachu area, Tarim basin[J]. Acta Petrologica Sinica, 2007, 23(5):1087~1096. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705022.htm [53] 励音骐, 厉子龙, 孙亚莉励音骐, 厉子龙, 孙亚莉, 等.塔里木瓦吉里塔格超镁铁质隐爆角砾岩铂族元素和微量元素地球化学特征及其岩石成因探讨[J].岩石学报, 2010, 11:3307~3318. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011013.htmLI Yin-qi, LI Zi-long, SUN Ya-li, et al. PGE and geochemistry of Wajilitag ultramafic cryptoexplosive brecciated rocks from Tarim Basin:Implicatons for petrogenesis[J].Acta Petrologica Sinica, 2010, 11:3307~3318. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011013.htm [54] 陈汉林, 杨树锋, 厉子龙, 等.塔里木盆地二叠纪大火成岩省发育的时空特点[J].新疆石油地质, 2009, 30(2):179~182. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200902013.htmCHEN Han-lin, YANG Shu-feng, LI Zi-long, et al. Spatial and temporal characteristics of Permian Large Igneous Province in Tarim Basin[J]. Xinjiang Petroleum Geology, 2009, 30(2):179~182. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200902013.htm [55] Wei X, Xu Y G, Luo Z Y, et al. Composition of the Tarim mantle plume:Constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China[J]. Lithos, 2015, 205:69~81. [56] Xu Y G, Wei X, Luo Z Y, et al. The Early Permian Tarim Large Igneous Province:Main characteristics and a plume incubation model[J]. Lithos, 2014, 204:20~35. doi: 10.1016/j.lithos.2014.02.015 [57] Agust Gudmundsson, Ingrid F Loetveit. Dyke emplacement in a layered and faulted rift zone[J]. Journal of Volcanology and Geothermal Research, 2005, 144(1/4):311~327. [58] Kiselev A I, Ernst R E, Yarmolyuk V V, et al. Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian Craton[J]. Journal of Asian Earth Sciences, 2012, 45:1~16. doi: 10.1016/j.jseaes.2011.09.004 [59] 曾广策, 邱家骧.碱性岩的概念及其分类命名综述[J].地质科技情报, 1996, 01:31~37. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199601009.htmZENG Guang-ce, QIU Jia-xiang, Conception of alkaline rocks and their nomenclature[J]. Geological Science and Technology Information, 1996, 01:31~37. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199601009.htm [60] 李曰俊, 孙龙德, 吴浩若, 等.中国南天山西端乌帕塔尔坎群发现石炭纪一二叠纪放射虫化石[J].地质科学, 2005, 40(2):220~226. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501017.htmLI Yue-jun, SUN Long-de, WU Hao-ruo, et al. Permo-Carboniferous radiolaria from the Wupatarkan Group, west terminal of Chinese south Tianshan[J]. Chinese Journal of Geology, 2005, 40(2):220~226. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501017.htm [61] 李曰俊, 杨海军, 赵岩, 等.南天山区域大地构造与演化[J].大地构造与成矿学, 2009, 33(1):94~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901013.htmLI Yue-jun, YANG Hai-jun, ZHAO Yan, et al. Tectonic framework and evolution of south Tianshan, NW China[J]. Geotectonica et Metallogenia, 2009, 33(1):94~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901013.htm [62] 张立飞, 杜瑾雪, 吕增, 等.新疆西南天山超高压变质带的空间分布、峰期变质时代和P-T轨迹特征[J].科学通报, 2013, 22:2107~2112. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201322000.htmZHANG Li-fei, DU Jin-xue, LÜ Zeng, et al. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China:Peak metamorphic age and P-T path[J].Chinese Science Bulletin, 2013, 22:2107~2112. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201322000.htm [63] 郑建平, 罗照华, 余淳梅, 等.新疆托云麻粒岩捕虏体地球化学和锆石年代学:岩石成因及西南天山下地壳性质[J].科学通报, 2005, 50(12), 1242~1251. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200508012.htmZHENG Jian-ping, LUO Zhao-hua, YU Chun-mei, et al. Geochemistry and zircon U-Pb ages of granulite xenolith from Tuoyun basalts, Xinjiang:Implications for the petrogenesis and the lower crustal nature beneath the southwestern Tianshan[J].Chinese Science Bulletin, 2005, 50(12), 1242~1251. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200508012.htm [64] Henderson P. Rare earth element geochemistry[M]. Netherlands:Elsevier Science Publishers B V, 1984:23~28. [65] 罗金海, 车自成, 周新源, 等.塔里木盆地西部中生代早期伸展作用的辉绿岩证据[J].中国地质, 2006, 33(3):566~571. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603012.htmLUO Jin-hai, CHE Zi-cheng, ZHOU Xin-yuan, et al. Diabase evidence for the early Mesozoic extension in the western Tarim basin, NW China[J]. Geology In China, 2006, 33(3):566~571. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603012.htm -