THE CHARACTERISTICS OF SHALE RESERVOIR FROM QIONGZHUSI FORMATION IN LOWER CAMBRIAN IN QUJING AREA, EASTERN YUNNAN PROVINCE, CHINA:A CASE STUDY OF WELL QUYE NO.1
-
摘要: 下寒武统筇竹寺组页岩是南方页岩气勘查开发重点关注的层位之一,但滇东地区下寒武统筇竹寺组黑色页岩储层研究程度较低。样品采自2014年新钻的曲页1井,对下寒武统筇竹寺组黑色泥页岩进行全岩和粘土矿物X衍射分析、TOC、岩石物性、比表面积等测试和扫描电镜实验,综合分析了滇东曲靖地区筇竹寺组泥页岩储层特征及孔隙类型。结果表明:滇东曲靖地区下寒武统筇竹寺组泥页岩矿物组成主要是石英(44.75%)、粘土矿物(25.47%)、长石(16.44%);发育粒间孔、粒内孔和有机孔3种类型孔隙;有机质孔隙发育,以中孔为主,具有一定的页岩气勘探开发潜力;页岩储层自上而下孔隙体积有逐渐变小的趋势,但在井深400 m~500 m发育高孔隙体积;泥页岩储集性能的重要指标—孔隙度主要受有机质含量及发育程度的制约。Abstract: Shale from Qiongzhusi formation in Lower Cambrian is one of the most important focuses in shale gas exploration and development in South China; however, the black shale reservoir from Qiongzhusi formation in Lower Cambrian in eastern Yunnan province stays in a low level of study. Take Well Quye No.1 drilled in 2014 as an example, on the black shales from Qiongzhusi formation in Lower Cambrian, X-ray diffraction analysis of the whole rock and clay minerals are made; tests and SEM experiments like TOC, physical property and specific surface area are conducted; the characteristics and types of shale reservoir are analyzed comprehensively. The results show that shales are mainly composed of quartz (44.75%), clay minerals(25.47%)and feldspar (16.44%), consisting of three major pore types, which are intergranular pore, intragranular pore and organic-matter pore. It is worth mentioning that organic-matter pores are abundant and of great importance, in which mesopores are the main force with a certain potential of shale gas exploration and development. The volumes of pores decrease with the depth, and with increasing TOC, micropore volumes relatively increase. The porosity is mainly restricted by the organic-matter content and the development degree.
-
Key words:
- pore type /
- pore volume /
- characteristics of reservoir /
- shale /
- Qiongzhusi formation /
- Well Quye NO.1
-
南方海相下志留统龙马溪组已实现页岩气的商业化开发[1~4],近年来的勘探结果揭示[5~8],下寒武统筇竹寺组(又名“牛蹄塘组”)页岩是具有良好的页岩气勘探潜力。湘西北石门—慈利地区慈页1井获取100.88 m下寒武统牛蹄塘组黑色泥页岩,在井深2600~2749 m处泥页岩解析气量为0.33~0.95 m3/t,现场岩心解析气点火成功;川西南坳陷威远构造的金页1HF井试求产期间日产气4.73×104~7.08×104 m3;城口地区CD1井寒武系90 ℃现场解析气最高4 m3/t。前期研究结果显示[9~11],下寒武统筇竹寺组泥页岩在云南、贵州等地区分布广泛,但将页岩作为储层而言,缺乏对筇竹寺组泥页岩矿物组成、岩石物性和孔隙类型等方面的研究;尤其缺少对泥页岩的显微孔隙结构、孔隙形态及空间分布特点的研究。为弥补以上2方面的不足,以滇东曲靖地区曲页1井下寒武统筇竹寺组暗色泥页岩为研究对象,基于有机地化、孔隙度、渗透率及扫描电镜等分析测试,研究泥页岩孔隙类型与特征,探讨储层矿物组成和孔隙发育特征及其主控因素,为滇东曲靖地区下寒武统页岩气的勘探开发提供基础数据支撑。
1. 区域地质概况
滇东曲靖地区从震旦纪—志留纪基本处于较稳定的陆表海沉积环境[12]。该区经历多期构造运动,褶皱、断裂等构造非常发育,受控于一系列的南北向、北东向断裂带[13](见图 1)。
下寒武统在滇东地区广泛出露,自下而上发育渔户村组、筇竹寺组、沧浪铺组、龙王庙组,岩性主要是白云岩—粉砂岩—页岩,其中筇竹寺组为水体相对较深、能量较低的浅水陆棚沉积[6, 13, 14]。曲页1井是2014年中国地质调查局油气资源调查中心在该区针对筇竹寺组部署的一口页岩气地质调查井,完钻井深1106.15 m,自上而下钻遇第四系、下寒武统沧浪铺组、筇竹寺组、渔户村组、上震旦统灯影组、陡山沱组以及南沱组。该井钻遇筇竹寺组的厚度为323.38 m,岩性主要为深灰色、灰黑色粉砂质泥页岩、钙质泥页岩夹灰黑色钙质粉砂岩,部分裂隙发育,岩石破碎(见图 2)。
2. 样品采集与测试
研究采集了77块曲页1井245.75 m~535.91 m井段的深灰—灰黑色粉砂质泥页岩、钙质泥页岩夹灰黑色钙质粉砂岩,采样位置见图 2,进行了全岩和粘土矿物X衍射分析、总有机碳含量(TOC)、岩石物性、比表面积、扫描电镜等测试分析。
分析测试在四川省科源工程技术测试中心和中国矿业大学完成。全岩及粘土矿物X衍射分析测试采用X′Pert Powder衍射仪、依据SY/T5163-2010标准完成;岩石物性测试采用Coretest AP-608孔隙度—渗透率测试仪、依据SY/T5336-2006完成;TOC测试采用CS230碳硫仪、依据GB/T 19145-2003完成;比表面积测试采用QUDRASORB SI比表面分析仪、依据GB/T 21650.3-2011完成;扫描电镜分析采用FEI Quanta 250仪、依据SY/T 5162-2014器完成。
3. 测试结果
3.1 岩石矿物组成
从77块岩心样品中,按均匀分布的原则,选取33块样品X衍射全岩矿物分析结果表明,其矿物组成主要是粘土矿物、石英,其次是长石和碳酸盐类矿物,其中石英的平均含量为44.75%,粘土矿物的平均含量25.47%,长石的平均含量为16.44%,铁白云石平均含量为6.09%,方解石平均含量为4.89%、还有少量的黄铁矿等矿物(见图 3)。粘土矿物主要为伊利石、绿泥石,其次为伊蒙混层,其中伊利石平均含量为48.88%,绿泥石平均含量为43.29%,伊蒙混层平均为7.82%(见图 3)。
3.2 总有机碳含量
从77块岩心样品中,选取的67块泥页岩样品的TOC含量变化大,井深245.75~424.49 m TOC平均为0.18%/37块;井深429.57~558.27 m TOC平均为1.57%/30块。垂向上,TOC在井深400~500 m有明显增大的趋势,从0.2%增加至2.6%(见图 2)。
3.3 储层孔隙度和渗透率
筇竹寺组泥页岩样品的孔隙度介于0.26%~3.01%,平均为1.56%,且分布较集中,1%~2%的样品占样品总数的58.54%;渗透率介于(0.0030~0.0476)×10-3 μm2,平均为0.0183×10-3 μm2,属特低孔低渗储层(见表 1)。
表 1 曲页1井下寒武统筇竹寺组泥页岩孔隙度和渗透率Table 1. Porosity vs. permeability of shales in Qiongzhusi formation in lower Cambrian, Well Quye NO. 1样品
编号埋深
/m孔隙度
/%渗透率
/×10-3μm2QY1-Y57 276.03 1.78 0.0193 QY1-Y56 281.26 1.56 0.0184 QY1-J4 295.03 2.18 0.0136 QY1-J5 301.94 3.01 0.0275 QY1-Y52 302.95 1.94 0.0196 QY1-Y50 313.75 1.35 0.0476 QY1-Y48 324.29 1.73 0.0149 QY1-J9 326.42 2.45 0.0361 QY1-Y47 328.54 1.69 0.0190 QY1-Y46 333.39 1.14 0.0188 QY1-J13 362.48 2.57 0.0275 QY1-Y41 371.07 1.64 0.0170 QY1-Y40 378.8 2.24 0.0153 QY1-J16 388.19 2.00 0.0116 QY1-J18 402.37 1.18 0.0030 QY1-J19 415.83 0.77 0.0076 QY1-J21 430.6 1.82 0.0110 QY1-J23 442.31 0.86 0.0103 QY1-Y33 442.75 1.94 0.0429 QY1-J25 451.23 1.18 0.0121 QY1-J27 457.06 2.10 0.0088 QY1-Y32 457.66 2.34 0.0399 QY1-J29 463.02 1.59 0.0067 QY1-J31 469.14 1.61 0.0117 QY1-Y30 471.00 1.72 0.0308 QY1-J32 474.12 1.72 0.0078 QY1-Y28 484.47 2.17 0.0256 QY1-J34 484.64 1.81 0.0077 QY1-Y27 492.56 0.91 0.0211 QY1-J36 496.78 1.43 0.0113 QY1-Y26 498.44 0.38 0.0179 QY1-Y25 501.06 0.48 0.0279 QY1-J38 513.22 1.07 0.0103 QY1-Y22 523.81 1.88 0.0255 QY1-Y20 535.75 0.81 0.0276 QY1-J40 535.91 1.89 0.0073 QY1-Y18 547.95 0.26 0.0104 QY1-Y17 552.47 1.47 0.0150 QY1-Y16 556.93 0.37 0.0183 QY1-Y14 567.17 1.65 0.0162 QY1-Y13 572.19 1.15 0.0095 3.4 孔隙体积
245.75 m~535.91 m井段的15块筇竹寺组暗色泥页岩的平均孔隙直径2.7823~4.8119 nm(见表 2),根据国际理论和应用化学协会(IUPAC)的孔隙分类方案[15],认为筇竹寺组属中孔隙。孔隙体积为0.0030~0.0147 ml/g, 平均为0.0079 ml/g。
表 2 曲页1井下寒武统筇竹寺组泥页岩比表面积测试结果Table 2. Test results of specific surface area of shales in Qiongzhusi formation in lower Cambrian, Well Quye NO. 1样品编号 QY1-J1 QY1-J5 QY1-J9 QY1-J11 QY1-J13 QY1-J15 QY1-J19 QY1-J21 QY1-J23 QY1-J25 QY1-J27 QY1-J32 QY1-J36 QY1-J38 QY1-J40 井深/m 245.75 301.94 326.42 338.15 362.48 382.89 415.83 430.6 442.31 451.23 457.06 474.12 496.78 513.22 535.91 表面积/(m2/g) 5.3130 3.9960 4.0330 3.2980 2.0870 2.8000 10.5310 6.1420 1.8000 4.3920 4.2500 4.7990 8.2760 1.9500 2.6860 孔隙体积/(ml/g) 0.0103 0.0076 0.0074 0.0068 0.0050 0.0060 0.0147 0.0116 0.0030 0.0072 0.0096 0.0081 0.0118 0.0042 0.0054 平均孔径/nm 3.8690 3.7985 3.6923 4.1234 4.8119 4.2959 2.7823 3.7632 3.3439 3.2928 4.5177 3.3714 2.8579 4.2600 4.0343 4. 孔隙特征及其影响因素
4.1 矿物组分垂向变化特征
从曲页1井钻井剖面垂向变化趋势上看,随深度增加筇竹寺组泥页岩石英含量虽变化不明显,但整体趋势是含量增高,长石含量随深度增加逐渐升高,粘土矿物含量逐渐降低,但在井深301.94~363.22 m石英含量和粘土矿物含量的变化趋势相反(见图 4);粘土矿物随深度增加伊利石含量总体变低,绿泥石含量总体变高。
4.2 储集空间类型及特征
扫描电镜是研究泥页岩储层空间类型的主要分析方法。Ross and Bustin运用扫描电镜方法指出页岩孔隙由颗粒间孔隙、颗粒内孔隙、有机质孔隙组成[16]。蒲泊伶等认为川南地区龙马溪组孔裂隙主要为基质无机孔、有机孔和微裂缝三大类[17]。杨峰等运用氩离子抛光电镜观测到南方海相筇竹寺组页岩中发育大量多种形态纳米级孔,主要分布于有机质间和有机质内,直径为5~750 nm,平均100 nm[18]。于炳松等根据定性观察孔隙产状,提出了页岩气储层孔隙的产状—结构综合分类方案,将页岩气储层的孔隙类型划分为与岩石颗粒发育无关的和与岩石颗粒发育有关的两大类,前者为裂缝孔隙,后者为岩石基质孔隙,岩石基质孔隙进一步分成粒间孔隙和有机质孔隙,同时结合定量测定的孔隙结构信息,将孔隙划分为微孔隙、中孔隙和宏孔隙[19~20]。
基于扫描电镜分析方法,对筇竹寺组泥页岩储层进行了详细观察,结果表明筇竹寺组泥页岩孔隙发育较好,类型包括粒间孔、粒内孔和有机质孔3类。
粒间孔是矿物颗粒之间的孔隙,在脆性矿物颗粒间和粘土矿物颗粒间常见,孔隙形态和孔径分布范围较大,前者呈多角状、孔径多在几十微米到几百微米之间,后者多呈条状,孔径介于几百纳米与几微米左右(见图 5a)。粒内孔呈蜂窝状或分散状发育在颗粒内部,主要由颗粒部分或全部溶解而形成的铸模孔、粘土及云母矿物颗粒内的解理面孔和长石及方解石的溶蚀孔等孔隙组成(见图 5b、5c),这是筇竹寺组泥页岩储层中常见的孔隙类型。孔隙呈不规则状,大小不一,多为微米级别。有机质孔是有机质在热演化过程中收缩和排出气体时产生,干酪根的分布是此类孔隙发育的物质基础。研究发现筇竹寺组泥页岩储层发育大量的有机质孔,分布密集,形态多呈圆形或椭圆形,蜂窝状分布,彼此不连通,孔径50~300 nm(见图 5d)。
4.3 孔隙体积影响因素
孔隙体积是决定页岩储层评价的主要因素,因此分析孔隙体积的影响因素对页岩气的勘查开发具有重要的借鉴意义。曲页1井筇竹寺组暗色泥页岩随深度增加,其孔隙体积有逐渐变小,从301.94 m的0.0076 ml/g降至535.91 m的0.0054 ml/g,但在井深400~500 m发育高孔隙体积,孔隙体积平均为0.0097 ml/g(见图 6)。
比表面积结果显示,曲页1井的孔隙体积以中孔体积为主,通过对比曲页1井纵向上矿物含量、有机碳含量、中孔体积的变化曲线,试图寻求其相关关系。结果表明,中孔体积和有机碳含量呈良好的正相关关系(见图 7a),和石英含量呈一定的负相关(见图 7b)。筇竹寺组发育大量的有机孔,这与有机碳含量高导致泥页岩的比表面积增大是有直接关系的。石英是高成熟的刚性矿物,抗压实作用强,对原生孔隙的保存和后期裂缝的形成有积极作用。扫描电镜结果显示,石英颗粒间发育大量宏孔级别的粒间孔,这说明石英对宏孔的形成贡献较大,但对于中孔而言,石英的贡献如何是值得进一步探讨的。
5. 结论
滇东曲靖地区下寒武统筇竹寺组泥页岩厚度大,有机碳含量平均为1.56%,有机质孔隙发育,以中孔为主,具有一定的页岩气勘探开发潜力。
(1) 泥页岩储层矿物组成主要是石英(44.75%)、粘土矿物(25.47%)、长石(16.44%)及少量的碳酸盐岩矿物和黄铁矿,其中粘土矿物主要为伊利石、绿泥石;随深度增加,粘土矿物含量变少,而长石含量变高。
(2) 泥页岩储层属特低孔低渗储层,具备一定的储集能力,发育有机质孔、粒间孔和粒内孔3种类型;孔隙体积以中孔体积为主,自上而下逐渐变小,在井深400~500 m发育高异常的孔隙体积发育带。
(3) 泥页岩储层中孔隙体积受总有机碳含量影响明显,因此,泥页岩储集性能的重要指标—孔隙度主要受有机质含量及发育程度的制约。
-
表 1 曲页1井下寒武统筇竹寺组泥页岩孔隙度和渗透率
Table 1. Porosity vs. permeability of shales in Qiongzhusi formation in lower Cambrian, Well Quye NO. 1
样品
编号埋深
/m孔隙度
/%渗透率
/×10-3μm2QY1-Y57 276.03 1.78 0.0193 QY1-Y56 281.26 1.56 0.0184 QY1-J4 295.03 2.18 0.0136 QY1-J5 301.94 3.01 0.0275 QY1-Y52 302.95 1.94 0.0196 QY1-Y50 313.75 1.35 0.0476 QY1-Y48 324.29 1.73 0.0149 QY1-J9 326.42 2.45 0.0361 QY1-Y47 328.54 1.69 0.0190 QY1-Y46 333.39 1.14 0.0188 QY1-J13 362.48 2.57 0.0275 QY1-Y41 371.07 1.64 0.0170 QY1-Y40 378.8 2.24 0.0153 QY1-J16 388.19 2.00 0.0116 QY1-J18 402.37 1.18 0.0030 QY1-J19 415.83 0.77 0.0076 QY1-J21 430.6 1.82 0.0110 QY1-J23 442.31 0.86 0.0103 QY1-Y33 442.75 1.94 0.0429 QY1-J25 451.23 1.18 0.0121 QY1-J27 457.06 2.10 0.0088 QY1-Y32 457.66 2.34 0.0399 QY1-J29 463.02 1.59 0.0067 QY1-J31 469.14 1.61 0.0117 QY1-Y30 471.00 1.72 0.0308 QY1-J32 474.12 1.72 0.0078 QY1-Y28 484.47 2.17 0.0256 QY1-J34 484.64 1.81 0.0077 QY1-Y27 492.56 0.91 0.0211 QY1-J36 496.78 1.43 0.0113 QY1-Y26 498.44 0.38 0.0179 QY1-Y25 501.06 0.48 0.0279 QY1-J38 513.22 1.07 0.0103 QY1-Y22 523.81 1.88 0.0255 QY1-Y20 535.75 0.81 0.0276 QY1-J40 535.91 1.89 0.0073 QY1-Y18 547.95 0.26 0.0104 QY1-Y17 552.47 1.47 0.0150 QY1-Y16 556.93 0.37 0.0183 QY1-Y14 567.17 1.65 0.0162 QY1-Y13 572.19 1.15 0.0095 表 2 曲页1井下寒武统筇竹寺组泥页岩比表面积测试结果
Table 2. Test results of specific surface area of shales in Qiongzhusi formation in lower Cambrian, Well Quye NO. 1
样品编号 QY1-J1 QY1-J5 QY1-J9 QY1-J11 QY1-J13 QY1-J15 QY1-J19 QY1-J21 QY1-J23 QY1-J25 QY1-J27 QY1-J32 QY1-J36 QY1-J38 QY1-J40 井深/m 245.75 301.94 326.42 338.15 362.48 382.89 415.83 430.6 442.31 451.23 457.06 474.12 496.78 513.22 535.91 表面积/(m2/g) 5.3130 3.9960 4.0330 3.2980 2.0870 2.8000 10.5310 6.1420 1.8000 4.3920 4.2500 4.7990 8.2760 1.9500 2.6860 孔隙体积/(ml/g) 0.0103 0.0076 0.0074 0.0068 0.0050 0.0060 0.0147 0.0116 0.0030 0.0072 0.0096 0.0081 0.0118 0.0042 0.0054 平均孔径/nm 3.8690 3.7985 3.6923 4.1234 4.8119 4.2959 2.7823 3.7632 3.3439 3.2928 4.5177 3.3714 2.8579 4.2600 4.0343 -
[1] 李新民. 我国首个超千亿立方米页岩气田诞生[OL]. http://www.mlr.gov.cn/xwdt/mtsy/xinhuanet/201407/t20140722_1324552.htm.LI Xinmin. The birth of China's first billion cubic meters of shale gas field[OL]. http://www.mlr.gov.cn/xwdt/jrxw/201407/t20140722_1324457.htm.2014, 7.22. (in Chinese) [2] 郭旭升.南方海相页岩气"二元富集"规律-四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报, 2014, 88(7):1209~1218. https://mall.cnki.net/qikan-DZXE201407001.htmlGUO Xusheng. Rules of two~factor enrichiment for marine shale gas in Sourthern China-Understanding from the Longmaxi formation shale gas in Sichuan basin and its surroungding area[J]. Geological Journal, 2014, 88(7):1209~1218. (in Chinese with English abstract) https://mall.cnki.net/qikan-DZXE201407001.html [3] 郭彤楼, 张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 2014, 41(1):28~36. doi: 10.11698/PED.2014.01.03GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin[J]. Petroleum Exploration and Development, 2014, 41(1):28~36. (in Chinese with English abstract) doi: 10.11698/PED.2014.01.03 [4] 王玉芳, 翟刚毅, 王劲铸, 等.四川盆地及周缘龙马溪组页岩产气效果影响因素[J].地质力学学报, 2017, 23(4):540~547. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170405&flag=1WANG Yufang, ZHAI Gangyi, WANG Jinzhu, et al. Factors influencing gas production effectiveness of Longmaxi formation shale in Sichun basin and adjacent areas[J]. Journal of Geomechanics, 2017, 23(4):540~547. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170405&flag=1 [5] 程克明, 王世谦, 董大忠, 等.上扬子区下寒武统筇竹寺组页岩气成藏条件[J]..天然气工业, 2009, 29(5):40~44. http://www.oalib.com/paper/4982341CHENG Keming, WANG Shiqian, DONG Dazhong, et al. Accumulation conditions of shale gas reservoirs in the lower Cambrian Qiongzhusi formation, the upper Yangtze region[J]. Natural Gas Industry, 2009, 29(5):40~44. (in Chinese with English abstract) http://www.oalib.com/paper/4982341 [6] 张聪, 包书景, 石砥石, 等.云南曲靖地区下寒武统筇竹寺组页岩气成藏地质条件及有利区预测[J].海相油气地质, 2017, 22(1):69~74. http://www.oalib.com/paper/4982341ZHANG Cong, BAO Shujing, SHI Dishi, et al. Geological conditions for shale gas accumulation and favorable area prediction in Qujing of Eastern Yunnan[J]. Marine Origin Petroleum Geology, 2017, 22(1):69~74. (in Chinese with English abstract) http://www.oalib.com/paper/4982341 [7] 王丽波, 久凯, 曾维特, 等.上扬子黔北地区下寒武统海相黑色泥页岩特征及页岩气远景区评价[J].岩石学报, 2013, 29(9):3263~3278. http://d.wanfangdata.com.cn/Periodical/ysxb98201309024WANG Libo, JIU kai, ZENG Weiye, et al. Characteristics of lower Cambrian marine black shales and evaluation of shale gas prospective area in Qianbei area, upper Yangtze region[J]. Acta Petrologica Sinica, 2013, 29(9):3263~3278. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/ysxb98201309024 [8] 周新桂, 刘和甫, 王宗秀, 等.我国叠合盆地油气调查战略思考[J].地质力学学报, 2011, 17(2):111~120. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20110201&flag=1ZHOU Xingui, LIU Hepu, WANG Zongxiu, et al. Thoughts of strategic Hydrocabron survey on superimposed basins in China[J]. Journal of Geomechanics, 2011, 17(2):111~120. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20110201&flag=1 [9] 杨勤生.滇东下古生界页岩气成藏层位及远景[J].云南地质, 2010, 29(1):1~6. http://www.cqvip.com/qk/95791X/201001/33201747.htmlYANG Qinsheng. The horizon & potentiality of lower Palaeozoic shale gas deposit in East Yunnan[J]. Yunnan Geology, 2010, 29(1):1~6. (in Chinese with English abstract) http://www.cqvip.com/qk/95791X/201001/33201747.html [10] 梁兴, 叶熙, 张介辉, 等.滇黔北下古生界海相页岩气藏赋存条件评价[J].海相油气地质, 2011, 16(4):11~21. http://www.cnki.com.cn/Article/CJFDTotal-HXYQ201104004.htmLIANG Xing, YE Xi, ZHANG Jiehui, et al. Evaluation of preservation conditions of lower Paleozoic marine shale gas reservoirs in the Northern part of Dianqianbei depression[J]. Marine Origin Petroleum Geology, 2011, 16(4):11~21.(in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-HXYQ201104004.htm [11] 梁兴, 叶熙, 张介辉, 等.滇黔北坳陷威信凹陷页岩气成藏条件分析与有利区优选[J].石油勘探与开发, 2011, 38(6):641~6519. http://www.wenkuxiazai.com/doc/c2c0399ddd88d0d233d46a31-2.htmlLIANG Xing, YE Xi, ZHANG Jiehui, et al. Reservoir forming conditions and favorable exploration zones of shale gas in the Weixin sag, Dianqianbei depression[J]. Petroleum Exploration and Development, 2011, 38(6):693~699. (in Chinese with English abstract) http://www.wenkuxiazai.com/doc/c2c0399ddd88d0d233d46a31-2.html [12] 云南省地质矿产局.云南省岩石地层[M].北京:中国地质大学出版社, 1996. 21~45.Bureau of Geology and Mineral Resources of Yunnan Province. Rock Strata in Yunnan Province[M]. Beijing:China University of Geosciences Press, 1996, 21~45. (in Chinese) [13] 云南省地质矿产局.云南省区域地质志[M].北京:地质出版社, 1990. 1~728.Bureau of Geology and Mineral Resources of Yunnan Province. Regional Geology of Yunnan Province[M]. Beijing:Geological Publishing House, 1990. 1~728. (in Chinese) [14] 云南省地质矿产局.云南省岩相古地理图集[M].昆明:云南科技出版社, 1995. 53~60.Bureau of Geology and Mineral Resources of Yunnan Province. Atlas of the Palaeo Geography of Yunnan Province[M]. Kunming:Yunnan Science and Technology Press, 1995. 53~60. (in Chinese) [15] Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids[J]. Pure Applied Chemistry, 1994, 66(8):1739~1758. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.460.3717 [16] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6):916~927. doi: 10.1016/j.marpetgeo.2008.06.004 [17] 蒲泊伶, 董大忠, 耳闯, 等.川南地区龙马溪组页岩有利储层发育特征及其影响因素[J].天然气工业, 2013, 33(12):41~47. http://www.doc88.com/p-4562199214457.htmlPU Boling, DONG Dazhong, ER Chuang, et al. Favorable reservoir characteristics of the Longmaxi shale in the southern Sichuan basin and their influencing factors[J]. Natural Gas Industry, 2013, 33(12):41~47. (in Chinese with English abstract) http://www.doc88.com/p-4562199214457.html [18] 杨峰, 宁正福, 胡昌蓬, 等.页岩储层微观孔隙结构特征[J].石油学报, 2013, 34(2):301~311. doi: 10.7623/syxb201302012YANG Feng, NING Zhengfu, HU Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2):301~311. (in Chinese with English abstract) doi: 10.7623/syxb201302012 [19] 于炳松.页岩气储层的特殊性及其评价思路和内容[J].地学前缘, 2012, 19(3):252~258. http://d.wanfangdata.com.cn/Periodical/dxqy201203027YU Bingsong. Particularity of shale gas reservoir and its evaluation[J]. Earth Science Frontiers, 2012, 19(3):252~258. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dxqy201203027 [20] 于炳松.页岩气储层孔隙分类与表征[J].地学前缘, 2013, 20(4):211~220. https://mall.cnki.net/qikan-CXYY201715138.htmlYU Bingsong. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013, 20(4):211~220. (in Chinese with English abstract) https://mall.cnki.net/qikan-CXYY201715138.html -