留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木寨岭深埋隧道北段地应力测量与围岩稳定性分析

张鹏 孙治国 王秋宁 丰成君 孙明乾 谭成轩 吴永东 甘惟平

张鹏, 孙治国, 王秋宁, 等, 2017. 木寨岭深埋隧道北段地应力测量与围岩稳定性分析. 地质力学学报, 23 (6): 893-903.
引用本文: 张鹏, 孙治国, 王秋宁, 等, 2017. 木寨岭深埋隧道北段地应力测量与围岩稳定性分析. 地质力学学报, 23 (6): 893-903.
ZHANG Peng, SUN Zhiguo, WANG Qiuning, et al., 2017. IN-SITU STRESS MEASUREMENT AND STABILITY ANALYSIS OF SURROUNDING ROCKS IN THE NORTH SECTION OF DEEP BURIED TUNNEL IN MUZHAILING. Journal of Geomechanics, 23 (6): 893-903.
Citation: ZHANG Peng, SUN Zhiguo, WANG Qiuning, et al., 2017. IN-SITU STRESS MEASUREMENT AND STABILITY ANALYSIS OF SURROUNDING ROCKS IN THE NORTH SECTION OF DEEP BURIED TUNNEL IN MUZHAILING. Journal of Geomechanics, 23 (6): 893-903.

木寨岭深埋隧道北段地应力测量与围岩稳定性分析

基金项目: 

中国地质调查局项目 12120113038000

中国地质调查局项目 DD20160271

中国地质调查局项目 1212010914025

中国地质调查局项目 DD20160267

中国地质调查局项目 12120113012100

详细信息
    作者简介:

    张鹏(1986-), 男, 博士, 助理研究员; 主要从事地应力测量与监测、区域地壳稳定性评价、构造应力场等研究工作。E-mail:zhangpeng0713@163.com

  • 中图分类号: TU45

IN-SITU STRESS MEASUREMENT AND STABILITY ANALYSIS OF SURROUNDING ROCKS IN THE NORTH SECTION OF DEEP BURIED TUNNEL IN MUZHAILING

  • 摘要: 基于兰渝铁路木寨岭深埋隧道工程区活动断裂调查和3个钻孔水压致裂地应力测量,获得了木寨岭隧道工程区北段的现今地应力分布特征,结果表明,北段工程区最大水平主应力为38.38 MPa,属于高地应力区;三个主应力的关系为SH > Sh > Sv,表明该区地壳浅表层现今构造活动以水平运动为主,主应力关系有利于逆断层的发育和活动;最大水平主应力优势方向为NE,反映穿越隧道北段的NWW向主要断裂带具有逆冲兼反时针扭动活动特征。根据地应力测量结果、相关理论及判据认为:隧道北段横截面形状以水平长轴、垂直短轴,且长短轴之比近似于隧道截面上侧压力系数的椭圆形为宜;隧道北段在埋深范围开挖时,硬岩具有岩爆发生的可能性,软岩具有发生严重挤压变形的背景。该成果为深入研究隧道区应力场特征,分析隧道围岩稳定性,科学设计隧道断面形状、结构和强度等工程地质问题提供了依据。

     

  • 图  1  兰渝铁路木寨岭隧道区域地质构造单元划分图

    Figure  1.  Distribution of regional geological tectonics of the Muzhailing railway tunnel

    图  2  木寨岭隧道工程地质图和北段地应力测量平面图

    a-工程地质图; b-最大主应力方向分布图

    Figure  2.  Engineering geological plan and in-situ stress measurement of the north section of the Muzhailing tunne

    图  3  木寨岭隧道北段测量点及岩性分布图

    Figure  3.  Distribution of Lithology and measuring spots in the north section of the Muzhailing tunnel

    图  4  木寨岭隧道北段钻孔随深度段水压致裂测量曲线

    Figure  4.  Curves of hydraulic fracturing in-situ stress measurement with depth in the boreholes in the north section of the Muzhailing tunnel

    图  5  木寨岭隧道北段钻孔随深度段印模定向测量结果

    Figure  5.  Impression orientation measurement results with depth in the boeholes in the north section of the Muzhailing tunnel

    图  6  主应力大小随深度分布图

    Figure  6.  Curves of in-situ stress with depth in the boreholes

    图  7  水平主应力与隧洞轴线夹角关系图

    Figure  7.  Correlation between horizontal principal stress and axis angles of the tunnel

    表  1  木寨岭隧道地应力测量点概况

    Table  1.   Survey of in-situ stress measurement spots in the Muzhailing tunnel

    钻孔编号 钻孔深度/m 钻孔岩性
    B1 66 砂岩夹板岩
    B2 63.1 砂岩夹板岩
    B3 67.4 砂岩夹板岩
    下载: 导出CSV

    表  2  钻孔水压致裂地应力试验测试结果

    Table  2.   Results of hydraulic fracturing in-situ stress measurement in the boreholes

    钻孔编号 测段序号 深度/m 压裂参数/MPa 主应力值/MPa SH/Sv 破裂方向/°
    PH P0 Pb Pr Ps T SH Sh Sv
    B1 1 15.50 3.16 1.16 18.76 14.86 10.18 3.90 14.52 10.18 8.36 1.74
    2 21.00 3.21 2.21 19.46 14.52 10.36 4.94 14.35 10.36 8.51 1.69 N35°E
    3 37.80 3.38 2.38 24.93 18.59 15.73 6.34 26.22 15.73 8.95 2.93
    4 51.80 3.52 2.52 24.16 19.12 17.17 5.04 29.87 17.17 9.32 3.20 N42°E
    B2 1 35.16 3.35 2.35 20.90 17.65 14.66 3.25 23.98 14.66 8.88 2.70
    2 48.66 3.49 2.49 24.94 21.04 18.70 3.90 32.57 18.70 9.24 3.52 N40°E
    3 51.70 3.52 2.52 27.35 21.28 18.97 6.07 33.13 18.97 9.32 3.55
    B3 1 40.50 3.41 2.41 3.41 23.17 21.09 0.00 37.69 21.09 9.02 4.18
    2 41.94 3.42 2.42 27.87 22.40 20.92 5.47 37.93 20.92 9.06 4.19 N53°E
    3 44.50 3.45 2.45 32.05 23.73 21.52 8.32 38.38 21.52 9.13 4.20
    下载: 导出CSV

    表  3  木寨岭隧道典型工程区地应力环境和工程岩体分级

    Table  3.   Crustal stress environment and engineering rock mass classification in typical engineering area of the Muzhailing tunnel

    岩性 SH/MPa Rc/MPa Rc/SH 应力环境 坚硬程度
    砂岩 33.68 94.5~98.5 2.81~2.92 高应力区 坚硬岩
    板岩 33.68 10.48~12.56 0.31~0.37 高应力区 软岩
    下载: 导出CSV

    表  4  岩爆等级划分表

    Table  4.   Classification of rockburst grades

    E.Hoek法 Turchaninov法 陶振宇法
    σmax/Rc 岩爆等级 (σmax+σL)/Rc 岩爆等级 Rc/SH 说明
    < 0.34 无岩爆 ≤0.3 无岩爆 ≥14.5 无岩爆发生
    0.34~0.42 少量岩爆 0.3~0.5 可能有岩爆 5.5~14.5 低岩爆活动
    0.56~0.70 中等岩爆 0.5~0.8 肯定有岩爆 2.5~5.5 中等岩爆活动
    > 0.70 强烈岩爆 > 0.8 有严重岩爆 < 2.5 高岩爆活动
    下载: 导出CSV

    表  5  隧道围岩岩爆发生可能性分析

    Table  5.   Possibility analysis of rockburst of tunnel surrounding rocks

    位置 主应力/MPa α σmax/MPa σL/MPa Rc/MPa E.Hoek Turchani-nov 陶振宇法
    SH Sh Sv
    B1 26.22 15.73 8.95 3.5 69.59 26.18 94.5~98.5 强烈岩爆 严重岩爆 中等岩爆
    29.87 17.17 9.32 3.5 80.15 29.82 强烈岩爆 严重岩爆 中等岩爆
    B2 23.98 14.66 8.88 5 62.85 23.91 94.5~98.5 中等岩爆 严重岩爆 中等岩爆
    32.57 18.7 9.24 5 88.15 32.46 强烈岩爆 严重岩爆 中等岩爆
    33.13 18.97 9.32 5 89.75 33.02 强烈岩爆 严重岩爆 中等岩爆
    B3 37.69 21.09 9.02 18 99.29 36.10 94.5~98.5 强烈岩爆 严重岩爆 中等岩爆
    37.93 20.92 9.06 18 99.86 36.31 强烈岩爆 严重岩爆 中高岩爆
    38.38 21.52 9.13 18 101.18 36.77 强烈岩爆 严重岩爆 中高岩爆
    注:表 4表 5σmax为隧道围岩切向应力,根据实测的原地应力,利用线弹性理论计算得到σmax=3σ1-σ3Rc为岩石的抗压强度;σL为隧道横截面方向的水平应力;α为隧道轴线方向与水平最大主应力方向的夹角。
    下载: 导出CSV

    表  6  隧洞板岩区围岩大变形分析

    Table  6.   Analysis of large deformation of surrounding rocks in the slate area of the tunnel

    分组 埋深/m SH/MPa Sh/MPa SV/MPa Rc/MPa εt/% 变形等级
    300 29.15 17.05 7.95 1.73~2.39 41.37~68.83 极度挤压变形
    300 38 21.18 7.95 1.73~2.39 62.81~104.51 极度挤压变形
    下载: 导出CSV
  • [1] 铁道第一勘察设计院. 新建铁路兰州至重庆线兰州至广元段施工图预设计木寨岭隧道说明书[R]. 西安, 2008. 1~30.

    China Railway First Survey and Design Institute Group. Preliminary Design of Construction Drawing of Lanzhou to Chongqing Line of Lanzhou to Guangyuan Line of New Railway[R].Xi'an, 2008. 1~30. (in Chinese)
    [2] 黄勇.综合勘查技术在木寨岭特长隧道中的应用[J].重庆交通大学学报, 2009, 28(6):1011~1015. http://www.cqvip.com/qk/89446x/200904/32596978.html

    HUANG Yong. Application of comprehensive investigation in Muzhailing super long tunnel[J]. Journalof ChongqingJiaotong University(Nature Science), 2009, 28(6):1011~1015. (in Chinese with English abstract) http://www.cqvip.com/qk/89446x/200904/32596978.html
    [3] 赵玉凤.木寨岭隧道地质分析及预防措施[J].科协论坛, 2011, (12):4~6. doi: 10.3969/j.issn.1007-3973.2011.12.003

    ZHAO Yufeng. Geological analysis and preventive measures of the wood walled Ridge Tunnel[J]. Science & Technology Association Forum, 2011, (12):4~6. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-3973.2011.12.003
    [4] 张献伟.木寨岭隧道炭质板岩段大变形控制技术[J].隧道建设, 2010, (6):683~686. http://d.wanfangdata.com.cn/Periodical_sdjs201006015.aspx

    ZHANG Xianwei. Large deformation control technology of carbonaceous slate section in Mu Ling tunnel[J]. Tunnel Construction, 2010, (6):683~686. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical_sdjs201006015.aspx
    [5] 邹翀, 王超鹏, 张文新等.兰渝铁路木寨岭隧道炭质板岩段应力控制实验研究[J].隧道建设, 2010, 30(2):120~124. http://www.cqvip.com/Main/Detail.aspx?id=33756654

    ZOU Chong, WANG Chaopeng, ZHANG Wenxin, et al. Experimental study on stress control of carbonaceous slate section of tunnel in Lanzhou Chongqing Railway[J]. Tunnel Construction, 2010, 30(2):120~124. (in Chinese with English abstract) http://www.cqvip.com/Main/Detail.aspx?id=33756654
    [6] 张文新, 张建国, 唐绍武, 等.木寨岭隧道地应力特征及对隧道变形影响的研究[J].隧道建设, 2013, 33(2):116~121. http://d.wanfangdata.com.cn/Periodical/sdjs201302005

    ZHANG Wenxin, ZHANG Jianguo, TANG Shaowu, et al. Study on characteristics of ground stress and influence on tunnel deformation[J]. Tunnel Construction, 2013, 33(2):116~121. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/sdjs201302005
    [7] 杨会军, 王梦恕.隧道围岩变形影响因素分析[J].铁道学报, 2006, 28(3):92~96. http://www.cnki.com.cn/Article/CJFDTotal-TMGC2015S1053.htm

    YANG Huijun, WANG Mengshu. Analysis of influencing factors of tunnel surrounding rock deformation[J]. Journal of the China Railway Society, 2006, 28(3):92~96. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-TMGC2015S1053.htm
    [8] 刘高, 张帆宇, 李新招, 等.木寨岭隧道大变形特征及机理分析[J].岩石力学与工程学报, 2005, 24(S2):5521~5526. http://www.cqvip.com/qk/96026X/2005A02/21394062.html

    LIU Gao, ZHANG Fanyu, LI Xinzhao, etal. Characteristics and mechanism analysis of large deformation of the Mu Ling tunnel[J]. Chinese Journal of Rock Mechanics and Mechanics and Engineering, 2005, 24(S2):5521~5526. (in Chinese with English abstract) http://www.cqvip.com/qk/96026X/2005A02/21394062.html
    [9] 夏玉胜, 李智敏, 屠泓为, 等.东昆仑断裂带古地震综合研究[J].地球物理学进展, 2013, 28(1):146~154. doi: 10.6038/pg20130115

    XIA Yusheng, LI Zhiyi, TU Hongwei, et al. A comprehensive study of the Paleo Earthquake in the eastern Kunlun fault zone[J]. Progress in Geophysics, 2013, 28(1):146~154. (in Chinese with English abstract) doi: 10.6038/pg20130115
    [10] 陈长云, 贺建明.西秦岭北缘断裂分段运动变形特征分析[J].大地测量与地球动力学, 2016, 36(9):784~788. http://www.cqvip.com/QK/95685A/201609/68758866504849544857484855.html

    CHEN Changyun, HE Jianming. Deformation characteristics of sectional movement in northern margin of West Qinling Mountains[J]. Journal of Geodesy and Geodynamics, 2016, 36(9):784~788. (in Chinese with English abstract) http://www.cqvip.com/QK/95685A/201609/68758866504849544857484855.html
    [11] 刘锁旺, 甘家思, 姚运生, 等.西秦岭北缘断裂和海原断裂的走滑转换变形及其与陇山地块的相互作用[J].地壳形变与地震, 1997, 17(3):73~83. (in Chinese with English abstract). http://www.cqvip.com/QK/95685X/199703/2662105.html

    LIU Suowang, GAN Jiasi, YAO Yunsheng, et al. Strike-slip transform deformation along the northern boundary fault of weatern Qinling MT and Haiyuan fault and interaction between them and Longshan block[J]. Crustal Deformation and Earthquake, 1997, 17(3):73~83. (in Chinese with English abstract) http://www.cqvip.com/QK/95685X/199703/2662105.html
    [12] 邵延秀, 袁道阳, 王爱国, 等.西秦岭北缘断裂破裂分段与地震危险性评估[J].地震地质, 2011, 33(1):79~90. http://d.wanfangdata.com.cn/Periodical/dzdz201101008

    SHAO Yanxiu, YUAN Daoyang, QANG Aiguo, et al. The Segmentation of rupture and estimate of earthquake risk along the north margin of western Qinling fault zone[J].Seismology and Geology, 2011, 33(1):79~90. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dzdz201101008
    [13] 何文贵, 郑文俊, 王爱国, 等.临潭-宕昌断裂新活动特征与岷县漳县Ms6.6级地震关系研究[J].地震工程学报, 2013, 35(4):751~760. http://d.wanfangdata.com.cn/Periodical/xbdzxb201304006

    HE Wengui, ZHENG Wenjun, WANG Aiguo, et al. A study on the characteristics of Minxian Ms6.6 earthquake activity in LintanZhangxian new Dangchang fracture[J]. China Earthquake Engineering Journal, 2016, 35(4):751~760. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/xbdzxb201304006
    [14] 高明星, 陈桂华, 徐锡伟.地貌参数指示的临潭-宕昌断裂带最新构造隆升差异与地震活动[J].地震地质, 2015, 37(3):709~718. https://mall.cnki.net/qikan-DZDZ201503004.html

    GAO Mingxing, CHEN Guihua, XU Xiwei. Geomorphic indices indicated recent differential tectonic uplift of the Lintan-Dangchan fault and the Minxian-Zhangxian earthquake[J]. Seismology and Geology, 2015, 37(3):709~718. (in Chinese with English abstract) https://mall.cnki.net/qikan-DZDZ201503004.html
    [15] Haimson B C, Cornet F H. ISRM suggested methods for rock stress estimation. Part 3:Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7/8):1011~1020. http://www.sciencedirect.com/science/article/pii/S1365160903001254
    [16] 丰成君, 张鹏, 孙炜峰, 等.日本MW9.0级地震对中国华北-东北大陆主要活动断裂带的影响及地震危险性初步探讨[J].地学前缘, 2013, 20(6):123~140. doi: 10.1360/N972015-00602

    FENG Chengjun, ZHANG Peng, SUN Weifeng, et al. The impact of the Japan MW9.0 earthquake on the main active fault zones in North China and Northeast China and the preliminary exploration of seismic risk[J]. Chinese Journal of Scientific and Technical Periodicals, 2013, 20(6):123~140. (in Chinese with English abstract) doi: 10.1360/N972015-00602
    [17] 张鹏, 秦向辉, 丰成君, 等.郯庐断裂带东段深孔地应力测量及其现今活动性分析[J].岩土力学, 2013, 34(8):2329~2335. http://www.cqvip.com/QK/94551X/201308/46668496.html

    ZHANGPeng, QINXianghui, FENGChengjun, et al. Deep crustal stress measurement and its present activity analysis in Shandong section of Tan Lu fault belt[J]. Rock and Soil Mechanics, 2013, 34(8):2329~2335. (in Chinese with English abstract) http://www.cqvip.com/QK/94551X/201308/46668496.html
    [18] 谭成轩, 孙叶, 王连捷.地应力测量值得注意的若干问题[J].地质力学学报, 2003, 9(3):275~280. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20030335&flag=1

    TAN Chengxuan, SUN Ye, WANG Lianjie. Some problems of in-situ crustal stress measurements[J]. Journal of Geomechanics, 2003, 9(3):275~280. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20030335&flag=1
    [19] 丰成君, 陈群策, 谭成轩, 等.龙门山断裂带东北段现今地应力环境研究[J].地球物理学进展, 2013, 28(3):1109~1121. doi: 10.6038/pg20130302

    FENG Chengjun, CHENG Qunce, TAN Chengxuan, etal. Analysis on current in-situ stress state in northern segment of Longmenshan fault belt[J]. Progress in Geophysics, 2013, 28(3):1109~1121. (in Chinese with English abstract) doi: 10.6038/pg20130302
    [20] 陈庆宣, 王伟襄, 孙叶.岩石力学与构造应力场分析[M].北京:地质出版社, 1998.159~186.

    CHEN Qingxuan, WANG Weixiang, SUN Ye, et al. Rock Mechanics and Analysis on Tectonic Stress Field[M]. Beijing:Geological Publishing House, 1998. 159~186.(in Chinese)
    [21] 张鹏, 曲亚明, 郭长宝, 等.西藏林芝地应力测量监测与尼泊尔Ms8.1级强震远场响应分析[J].现代地质, 2017, 31(5):900~910. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201705003&dbname=CJFD&dbcode=CJFQ

    ZHANG Peng, QU Yaming, GUO Changbao, et al. The analysis of in-situ stress measurement, real-time monitoring results and its response to Nepal Ms8.1 earthquake, Nyching, Tibetan Plateau, China[J]. Geoscience, 2017, 31(5):900~910. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201705003&dbname=CJFD&dbcode=CJFQ
    [22] 张鹏, 胡秋韵, 丰成君, 等.海峡西岸长乐-南澳断裂带中段现今原位地应力测量[J].地球学报, 2015, 36(4):483~490. doi: 10.3975/cagsb.2015.04.11

    ZHANG Peng, HU Qiuyun, FENG Chengjun, et al. Present in-situ stress measurement in middle segment of Changle-Nan'ao fracture belt along the western coastal region of Taiwan strait and an analysis of its activity[J]. ActaGeoscienticaSinica, 2015, 36(4):483~490. (in Chinese with English abstract) doi: 10.3975/cagsb.2015.04.11
    [23] 王建军, 黄勇. 兰渝铁路木寨岭隧道工程地质勘察报告[R]. 西安: 中铁第一勘察设计院集团有限公司, 2009.

    WANG Jianjun, HUANGYong. Report on engineering geological investigation of Mu Ling tunnel in Lanzhou Chongqing Railway[R].Xi'an:China Railway First Survey and Design Institute Group, 2009. (in Chinese)
    [24] 巨小强.木寨岭隧道越岭区区域地应力特征分析及应用[J].铁道勘察, 2010, (2):33~35. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tlhc201002012&dbname=CJFD&dbcode=CJFQ

    JU Xiaoqiang.Analysis on characteristics of ground stress in Muzhailing tunnel around mountainous areas as well as its application[J]. Railway Investigation, 2010, (2):33~35.(in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tlhc201002012&dbname=CJFD&dbcode=CJFQ
    [25] 孙叶, 谭成轩, 李开善, 等.区域地壳稳定性定量化评价[M].北京:地质出版社, 1998.

    SUN Ye, TAN Chengxuan, LI Kaishan, etal. Quantitative Assessment and Zonation of Regional Stability in Tangshan[M]. Beijing:Geological Publishing House, 1998.(in Chinese)
    [26] 谭成轩, 孙叶, 吴树仁, 等."5.12"汶川Ms8.0大地震后关于我国区域地壳稳定性评价的思考[J].地质力学学报, 2009, 15(2):142~150. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20090204&flag=1

    TAN Chengxuan, SUN Ye, WU Shuren, et al. A consideration on regional crustal stability assessment after n Ms8.0 Wenchuan strong earthquake in China[J]. Journalof Geomechanics, 2009, 15(2):142~150.(in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20090204&flag=1
    [27] 武建广.木寨岭隧道软岩段大变形原因分析及对策[J].西部探矿工程, 2011, 23(2):199~202. http://www.cqvip.com/Main/Detail.aspx?id=36405491

    WU Jianguang. Cause analysis and countermeasures of large deformation in soft rock section of wooden mountain tunnel[J]. West-China Exploration Engineering, 2011, 23(2):199~202.(in Chinesewith English abstract) http://www.cqvip.com/Main/Detail.aspx?id=36405491
    [28] 张波.木寨岭隧道板岩变形机理研究[J].铁道建设, 2014, (5):57~59. http://www.cqvip.com/QK/91645X/201405/49793182.html

    ZHANG Bo. Study on the deformation mechanism of slate rock tunnel[J]. Tunnel Construction, 2014, (5):57~59.(in Chinesewith English abstract) http://www.cqvip.com/QK/91645X/201405/49793182.html
    [29] 中华人民共和国国家标准编写组. GB 50218-94工程岩体分级标准[S]. 北京: 国家计划出版社, 1995.

    Compilation Group of National Standards of the People's Republic of China.GB 50218-94 Standard for engineering classification of rock masses[S].Beijing:The Country Plans to Press, 1995.(in Chinese)
    [30] 余莉, 尤哲敏, 陈建平, 等.高地应力地区隧道围岩分级研究[J].现代隧道技术, 2015, 52(3):23~30. http://d.wanfangdata.com.cn/Periodical_xdsdjs201503004.aspx

    YU Li, YOU Zhemin, CHEN Jianping, et al. Rock classification for tunnels in high geostress areas[J]. Modern Tunnelling Technology, 2015, 52(3):23~30.(in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical_xdsdjs201503004.aspx
    [31] 冯夏庭, 陈炳瑞, 明华军, 等.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 2012, 31(3):433~444. http://d.wanfangdata.com.cn/Periodical/yslxygcxb201203014

    FENG Xiating, CHEN Bingrui, MING Huajun, et al. Evolution law and mechanism of rockbursts in deep tunnels:immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):433~444.(in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/yslxygcxb201203014
    [32] 谭以安.岩爆形成机理研究[J].水文地质工程地质, 1989, (1):34~38, 54. http://www.oalib.com/paper/4585285

    TAN Yi'an. The mechanism research of rockburst[J]. Hydrogeology and Engineering Geology, 1989, (1):34~38, 54. (in Chinese with English abstract) http://www.oalib.com/paper/4585285
    [33] 蔡美峰, 冀东, 郭奇峰.基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J].岩石力学与工程学报, 2013, 32(10):1973~1980. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201508002098.htm

    CAI Meifeng, JI Dong, GUO Qifeng. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance[J].Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10):1973~1980.(in Chinese with English abstract) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201508002098.htm
    [34] 张镜剑, 傅冰骏.岩爆及其判据和防治[J].岩石力学与工程学报, 2008, 27(10):2034~2042. doi: 10.3321/j.issn:1000-6915.2008.10.010

    ZHANG Jingjian, FU Bingjun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10):2034~2042.(in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.10.010
    [35] 杜子建. 岩爆预测理论与应用研究[D]. 武汉: 武汉科技大学, 2007. 13~30.

    DU Zijian. Study on theory and application of rockburst prediction[D]. Wuhan:Wuhan University of Science and Technology, 2007. 13~20.(in Chinese with English abstract)
    [36] 王青海, 李晓红, 顾义磊, 等.地下工程中岩爆灾害的成因及防治措施[J].重庆大学学报, 2003, 26(7):116~120. doi: 10.11835/j.issn.1000-582X.2003.07.030

    WANG Qinghai, LI Xiaohong, GUYilei, et al. Rockburst hazard and its forcast and treatments in underground engineering[J]. Journal of Chongqing University, 2003, 26(7):116~120.(in Chinese with English abstract) doi: 10.11835/j.issn.1000-582X.2003.07.030
    [37] 刘志春, 朱永全, 李文江, 等.挤压性围岩隧道大变形机理及分级标准研究[J].岩土工程学报, 2008, 30(5):690~697. http://d.wanfangdata.com.cn/Periodical_ytgcxb200805012.aspx

    LIU Zhichun, ZHU Yongquan, LI Wenjiang, et al. Mechanism and classification criterion for large deformation of squeezing ground tunnels[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5):690~697.(in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical_ytgcxb200805012.aspx
    [38] 宋章, 蒋良文, 杜宇本, 等.成兰铁路软岩隧道大变形特征及成因机制探析[J].工程地质学报, 2016, 24(S1):11~16.

    SONG Zhang, JIANG Liangwen, DU Yuben, et al. Analysis on characteristic and dormation mechanism of larger deformation for the tunnel of Chengdu-Lanzhou railway[J]. Journal of Engineering Geology, 2016, 24(S1):11~16.(in Chinese with English abstract)
    [39] 包林海, 王成虎, 郭啓良, 等.巴基斯坦某隧洞地应力状态及围岩大变形研究[J].现代隧道技术, 2015, 52(1):38~44. http://www.cqvip.com/QK/91778A/201501/663845426.html

    BAOLinhai, WANG Chenghu, GUOQiliang, et al. Research on the geostress state and large-rock deformation of a water conveyance tunnel in Pakistan[J]. Modern Tunnelling Technology, 2015, 52(1):38~44.(in Chinese with English abstract) http://www.cqvip.com/QK/91778A/201501/663845426.html
    [40] Singh B, JethwaJL, Dube AK, et al. Correlation between observed support pressure and rock mass quality[J]. Tunneling andUnderground Space Technology, 1992, 7(1):59~74. doi: 10.1016/0886-7798(92)90114-W
    [41] 胡元芳, 刘志强, 王建宇.高地应力软岩条件下挤压变形预测及应用[J].现代隧道技术, 2011, 48(3):28~34. http://www.wenkuxiazai.com/doc/b3875ae2f5335a8103d22029.html

    HU Yuanfang, LIU Zhiqiang, WANG Jianyu. Squeezing deformation prediction of soft rocks under high ground stress and its application[J]. Modern Tunnelling Technology, 2011, 48(3):28~34.(in Chinese with English abstract) http://www.wenkuxiazai.com/doc/b3875ae2f5335a8103d22029.html
    [42] Hoek E, Marinos P. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J].Tunnels and Tunnelling International, 2000, 32(11):45~51. http://geotechpedia.com/Publication/Show/3823/PREDICTING-TUNNEL-SQUEEZING-PROBLEMS--IN-WEAK-HETEROGENEOUS-ROCK-MASSES
    [43] Malan DF, Basson FRP. Ultra-deep mining:The increased potential for squeezing conditions[J]. Journal-South African Institute of Mining and Metallurgy, 1998, 98(7):353~363. http://followscience.com/content/510242/ultra-deep-mining-the-increased-potential-for-squeezing-saimm/
    [44] 李国良, 刘志春, 朱永全, 等.兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J].现代隧道技术, 2015, 52(1):62~68. http://d.wanfangdata.com.cn/Periodical/xdsdjs201501009

    LI Guoliang, LIU Zhichun, ZHU Yongquan, et al. On the large squeezing deformation law and classification criteria for the Lanzhou-Chongqing railway tunnels in soft and high geostress rocks[J]. Modern Tunnelling Technology, 2015, 52(1):62~68. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/xdsdjs201501009
    [45] 张梅, 何志军, 张民庆, 等.高地应力软岩隧道变形控制设计与施工技术[J].现代隧道技术, 2012, 49(6):13~22. http://www.cqvip.com/QK/91778A/201206/44317806.html

    ZHANG Mei, HE Zhijun, ZHANG Mingqing, et al. Design and construction technologies to control the deformation of a soft rock tunnel with high ground stress[J]. Modern Tunnelling Technology, 2012, 49(6):13~22.(in Chinese with English abstract) http://www.cqvip.com/QK/91778A/201206/44317806.html
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  269
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-30
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回