留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TTG岩石成因与早期板块构造

王孝磊 丁宁 熊定一

王孝磊,丁宁,熊定一,2025. TTG岩石成因与早期板块构造[J]. 地质力学学报,31(5):1044−1062 doi: 10.12090/j.issn.1006-6616.2025150
引用本文: 王孝磊,丁宁,熊定一,2025. TTG岩石成因与早期板块构造[J]. 地质力学学报,31(5):1044−1062 doi: 10.12090/j.issn.1006-6616.2025150
WANG X L,DING N,XIONG D Y,2025. TTG petrogenesis and early plate tectonics[J]. Journal of Geomechanics,31(5):1044−1062 doi: 10.12090/j.issn.1006-6616.2025150
Citation: WANG X L,DING N,XIONG D Y,2025. TTG petrogenesis and early plate tectonics[J]. Journal of Geomechanics,31(5):1044−1062 doi: 10.12090/j.issn.1006-6616.2025150

TTG岩石成因与早期板块构造

doi: 10.12090/j.issn.1006-6616.2025150
基金项目: 国家自然科学基金项目(42025202)
详细信息
    作者简介:

    王孝磊(1979—),男,博士,教授,主要从事寒武纪地质与花岗岩研究。Email:wxl@nju.edu.cn

  • 中图分类号: P581;P548

TTG petrogenesis and early plate tectonics

Funds: This research is financially supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 42025202).
More Information
    Author Bio:

    王孝磊,南京大学教授、博士生导师,中国矿物岩石地球化学学会理事、岩浆岩专业委员会主任,《岩石学报》副主编,《地质力学学报》等期刊编委。获国家自然科学基金委杰出青年和优秀青年基金、中国矿物岩石地球化学学会侯德封奖。主要从事岩石学和前寒武纪地质学研究,在NatureScience AdvancesNature CommunicationsNational Science ReviewGeology等发表学术论文140余篇,参与出版教材2部,部分成果获教育部自然科学奖一等奖(排名第1)和二等奖(排名第2),2021—2024连续四年入选爱思唯尔“中国高被引学者”榜单

  • 摘要: TTG(英云闪长岩–奥长花岗岩–花岗闪长岩)作为太古宙大陆地壳的主要组成,是揭示早期大陆形成–演化和早期板块构造体制机制的关键载体。文章系统回顾了TTG的岩石学定义、分类方案、实验岩石学约束、源区特征及成因机制,重点探讨了TTG成因与早期板块构造之间的关系。传统上,高压型TTG被视为太古宙俯冲作用的证据,但新兴的“晶粥模型”和地球动力学数值模拟表明,TTG的成分多样性可能显著受后期岩浆过程(如晶体–熔体分离)改造,且其形成也可通过非俯冲机制(如地壳滴坠、地幔柱)实现。近年来,非传统稳定同位素(如B、Si、K、Ca)、大数据分析与机器学习在早期地球的应用为示踪TTG源区性质(如表壳物质加入)和早期地球的构造环境提供了新的思路。文章指出,未来TTG研究应进一步整合岩石学、地球化学与数值模拟,加强对原始岩浆成分的识别,发展能够有效区分不同成因机制(如俯冲、地幔柱等)的地球化学指标,并在典型地区开展多尺度、多学科综合研究,以深化对早期地球构造演化和大陆地壳生长机制的认识。

     

  • 图  1  TTG与灰色片麻岩的野外露头

    a—华北鲁西地区约25亿年的TTG片麻岩;b—南非卡普瓦尔克拉通巴伯顿地区约34亿年的Eerstehoek岩体;c—卡普瓦尔克拉通巴伯顿地区Stolzburg岩体,约34亿年的灰白色片麻状TTG被约32亿年的灰黑色TTG侵入,黑色为斜长角闪岩;d—湖北宜昌崆岭地区约30亿年的条带状片麻岩

    Figure  1.  Field outcrops of TTG and grey gneisses

    (a) ~2.5 Ga TTG gneisses from western Shandong, North China Craton; (b) ~3.4 Ga Eerstehoek pluton in the Barberton area, Kaapvaal Craton, South Africa; (c) ~3.4 Ga grey–white gneissic TTG intruded by ~3.2 Ga grey–black TTG in the Stolzburg pluton, Barberton area, Kaapvaal Craton, with black amphibolite layers; (d) ~3.0 Ga banded gneiss from the Kongling area, Yichang, Hubei Province

    图  2  TTG的分类与稀土分异图解(据Laurent et al.,2024修改)

    a —TTG的岩石分类图解;b —TTG与不同构造背景花岗岩的稀土元素分异图(横坐标为稀土元素);c —TTG的Sr/Y与La/Yb协变图

    Figure  2.  Classification and REE fractionation diagrams for TTGs (modified from Laurent et al., 2024).

    (a) TTG rock classification diagram; (b) REE differentiation diagram of TTG and granites from different tectonic settings; (c) Sr/Y vs. La/Yb covariation diagram of TTG

    图  3  太古宙玄武岩的相平衡模拟与TTG的形成温压限定(据Ge et al.,2018修改)

    初始玄武岩成分为太古宙富集拉斑玄武岩(平均值);彩色黑框符号为全球不同克拉通早期TTG形成的温度压力限定,其中红色圆形为塔里木克拉通阿克塔什TTG,紫色方形为北大西洋克拉通Itsaq TTG,绿色菱形为华北克拉通鞍山TTG,蓝色三角为苏必利尔克拉通Acasta TTG

    Figure  3.  Phase equilibrium modelling of Archean basalts and PT constraints for TTG formation (modified from Ge et al., 2018

    The modelling uses an enriched Archean tholeiitic basalt composition (average) as the starting material. Coloured symbols with black outlines represent PT conditions for the formation of early TTGs from various cratons worldwide: red circles for the Aktashi TTG, Tarim Craton; purple squares for the Itsaq TTG, North Atlantic Craton; green diamonds for the Anshan TTG, North China Craton; and blue triangles for the Acasta TTG, Superior Craton.

    图  4  太古宙地球动力学模型(据Sizova et al.,2015修改)

    Figure  4.  Archean geodynamic models (modified from Sizova et al., 2015)

    图  5  TTG形成的晶粥模型(据Laurent et al.,2020修改)

    Figure  5.  The mush model for TTG formation (modified from Laurent et al., 2020)

    图  6  关于板块构造启动时间的不同认识(据Palin et al.,2020修改)

    Figure  6.  Different perspectives on the timing of plate tectonic onset (modified from Palin et al., 2020)

    表  1  TTG岩石的主要分类方案及特征

    Table  1.   Major classification schemes and characteristics of TTG rocks

    分类依据类型主要特征可能的形成机制
    形成压力高压型(~2.0 GPa)高Sr/Y、La/Yb,重稀土强烈亏损源区残留相为金红石+石榴子石+辉石,可能与俯冲有关
    中压型(~1.5 GPa)中等Sr/Y、La/Yb源区残留相为石榴子石+辉石/角闪石
    低压型(1.0~1.2 GPa)低Sr/Y、La/Yb相对较浅的熔融,源区残留相为斜长石+角闪石
    铝含量高铝型(Al2O3 > 15%)高铝、高La/Yb、低Yb高压熔融,石榴子石、角闪石残留
    低铝型(Al2O3 < 15%)低铝、低La/Yb相对低压熔融
    下载: 导出CSV
  • [1] AARONS S M, REIMINK J R, GREBER N D, et al., 2020. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex[J]. Science Advances, 6(50): eabc9959. doi: 10.1126/sciadv.abc9959
    [2] ANDRÉ L, ABRAHAM K, HOFMANN A, et al., 2019. Early continental crust generated by reworking of basalts variably silicified by seawater[J]. Nature Geoscience, 12(9): 769-773. doi: 10.1038/s41561-019-0408-5
    [3] ANTONELLI M A, KENDRICK J, YAKYMCHUK C, et al., 2021. Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust[J]. Nature Communications, 12(1): 2534. doi: 10.1038/s41467-021-22748-2
    [4] ARTH J G, HANSON G N, 1975. Geochemistry and origin of the early Precambrian crust of northeastern Minnesota[J]. Geochimica et Cosmochimica Acta, 39(3): 325-362. doi: 10.1016/0016-7037(75)90200-8
    [5] ARTH J G, BARKER F, PETERMAN Z E, et al., 1978. Geochemistry of the gabbro—diorite—tonalite—trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas[J]. Journal of Petrology, 19(2): 289-316. doi: 10.1093/petrology/19.2.289
    [6] ARTH J G, 1979. Chapter 3-Some trace elements in trondhjemites-their implications to magma genesis and paleotectonic setting[J]. Developments in Petrology, 6: 123-132.
    [7] BACHMANN O, HUBER C, 2016. Silicic magma reservoirs in the Earth’s crust[J]. American Mineralogist, 101(11): 2377-2404. doi: 10.2138/am-2016-5675
    [8] BARKER F, 1979. Chapter 1-trondhjemite: definition, environment and hypotheses of origin[J]. Developments in Petrology, 6: 1-12.
    [9] BENN K, MOYEN J F, 2008. The Late Archean Abitibi-Opatica terrane, Superior Province: A modified oceanic plateau[J]. Geological Society of America Special Papers, 440: 173-197.
    [10] BYERLY G R, LOWE D R, HEUBECK C, 2019. Chapter 24-geologic evolution of the Barberton greenstone belt—a unique record of crustal development, surface processes, and early life 3.55-3.20 Ga[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's oldest rocks. 2nd ed. Amsterdam: Elsevier: 569-613.
    [11] CAPITANIO F A, NEBEL O, CAWOOD P A, et al., 2019. Reconciling thermal regimes and tectonics of the early Earth[J]. Geology, 47(10): 923-927. doi: 10.1130/G46239.1
    [12] CAWOOD P A, CHOWDHURY P, MULDER J A, et al., 2022. Secular evolution of continents and the Earth system[J]. Reviews of Geophysics, 60(4): e2022RG000789. doi: 10.1029/2022RG000789
    [13] CHAMPION D C, SMITHIES R H, 2007. Chapter 4.3-Geochemistry of paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth[J]. Developments in Precambrian Geology, 15: 369-409. doi: 10.1016/S0166-2635(07)15043-X
    [14] CHEN G X, KUSKY T, LUO L, et al., 2023. Hadean tectonics: insights from machine learning[J]. Geology, 51(8): 718-722. doi: 10.1130/G51095.1
    [15] CHEN H, LIU X M, WANG K, 2020. Potassium isotope fractionation during chemical weathering of basalts[J]. Earth and Planetary Science Letters, 539: 116192. doi: 10.1016/j.jpgl.2020.116192
    [16] CHOWDHURY P, CAWOOD P A, MULDER J A, 2025. Subaerial emergence of continents on Archean Earth[J]. Annual Review of Earth and Planetary Sciences, 53: 443-478. doi: 10.1146/annurev-earth-040722-093345
    [17] CONDIE K C, 2005. TTGs and adakites: are they both slab melts?[J]. Lithos, 80(1-4): 33-44. doi: 10.1016/j.lithos.2003.11.001
    [18] CONNOLLY J A D, PETRINI K, 2002. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions[J]. Journal of Metamorphic Geology, 20(7): 697-708. doi: 10.1046/j.1525-1314.2002.00398.x
    [19] DE CAPITANI C, BROWN T H, 1987. The computation of chemical equilibrium in complex systems containing non-ideal solutions[J]. Geochimica et Cosmochimica Acta, 51(10): 2639-2652. doi: 10.1016/0016-7037(87)90145-1
    [20] DE CAPITANI C, PETRAKAKIS K, 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American Mineralogist, 95(7): 1006-1016. doi: 10.2138/am.2010.3354
    [21] DENG Z B, CHAUSSIDON M, GUITREAU M, et al., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes[J]. Nature Geoscience, 12(9): 774-778. doi: 10.1038/s41561-019-0407-6
    [22] DESSIMOZ M, MÜNTENER O, ULMER P, 2012. A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades)[J]. Contributions to Mineralogy and Petrology, 163(4): 567-589. doi: 10.1007/s00410-011-0685-5
    [23] DHUIME B, HAWKESWORTH C J, CAWOOD P A, et al., 2012. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 335(6074): 1334-1336. doi: 10.1126/science.1216066
    [24] DHUIME B, WUESTEFELD A, HAWKESWORTH C J, 2015. Emergence of modern continental crust about 3 billion years ago[J]. Nature Geoscience, 8(7): 552-555. doi: 10.1038/ngeo2466
    [25] DING N, HAWKESWORTH C, WANG X L, et al., 2025. Tectonic thickening in stagnant to mobile lid transition facilitated the stabilization of Archean cratons[J]. Chemical Geology, 696: 123093. doi: 10.1016/j.chemgeo.2025.123093
    [26] DING N, WANG X L, DU D H, et al. , 2024. Compositional diversity of TTGs controlled by heterogeneous accumulation of accessory minerals[J]. Lithos, 482-483: 107718.
    [27] DOUCET L S, LAURENT O, IONOV D A, et al., 2020. Archean lithospheric differentiation: insights from Fe and Zn isotopes[J]. Geology, 48(10): 1028-1032. doi: 10.1130/G47647.1
    [28] ERIKSSON K A, KRAPEZ B, FRALICK P W, 1994. Sedimentology of Archean greenstone belts: signatures of tectonic evolution[J]. Earth-Science Reviews, 37(1-2): 1-88. doi: 10.1016/0012-8252(94)90025-6
    [29] FOLEY B J, 2024. Generation of Archean TTGs via sluggish subduction[J]. Geology, 52(9): 656-660. doi: 10.1130/G52196.1
    [30] GARÇON M, 2021. Episodic growth of felsic continents in the past 3.7 Ga[J]. Science Advances, 7(39): eabj1807. doi: 10.1126/sciadv.abj1807
    [31] GE R F, ZHU W B, WILDE S A, et al., 2018. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 4(2): eaao3159. doi: 10.1126/sciadv.aao3159
    [32] GE R F, WILDE S A, ZHU W B, et al., 2023. Earth’s early continental crust formed from wet and oxidizing arc magmas[J]. Nature, 623(7986): 334-339. doi: 10.1038/s41586-023-06552-0
    [33] GOUMANS J, SMIT M A, MUSIYACHENKO K A, et al., 2025. Boron isotopes trace an increase in subduction-driven recycling of fluid-mobile elements in the Neoarchean[J]. Geochimica et Cosmochimica Acta, 408: 1-11. doi: 10.1016/j.gca.2025.09.021
    [34] HARTNADY M I H, JOHNSON T E, SCHORN S, et al., 2022. Fluid processes in the early Earth and the growth of continents[J]. Earth and Planetary Science Letters, 594: 117695. doi: 10.1016/j.jpgl.2022.117695
    [35] HASTIE A R, FITTON J G, BROMILEY G D, et al., 2016. The origin of Earth’s first continents and the onset of plate tectonics[J]. Geology, 44(10): 855-858. doi: 10.1130/G38226.1
    [36] HASTIE A R, LAW S, BROMILEY G D, et al., 2023. Deep formation of Earth’s earliest continental crust consistent with subduction[J]. Nature Geoscience, 16(9): 816-821. doi: 10.1038/s41561-023-01249-5
    [37] HEARD A W, AARONS S M, HOFMANN A, et al., 2021. Anoxic continental surface weathering recorded by the 2.95 Ga Denny Dalton Paleosol (Pongola Supergroup, South Africa)[J]. Geochimica et Cosmochimica Acta, 295: 1-23. doi: 10.1016/j.gca.2020.12.005
    [38] HERZBERG C, CONDIE K, KORENAGA J, 2010. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 292(1-2): 79-88. doi: 10.1016/j.jpgl.2010.01.022
    [39] HOARE L, RZEHAK L J A, KOMMESCHER S, et al., 2023. Titanium isotope constraints on the mafic sources and geodynamic origins of Archean crust[J]. Geochemical Perspectives Letters, 28: 37-42. doi: 10.7185/geochemlet.2342
    [40] HU Y, TENG F Z, PLANK T, et al., 2020. Potassium isotopic heterogeneity in subducting oceanic plates[J]. Science Advances, 6(49): eabb2472. doi: 10.1126/sciadv.abb2472
    [41] HU Y, TENG F Z, HELZ R T, et al., 2021. Potassium isotope fractionation during magmatic differentiation and the composition of the mantle[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB021543. doi: 10.1029/2020JB021543
    [42] HUANG G Y, MITCHELL R N, PALIN R M, et al., 2025. Modelling partial melting in sinking greenstone belts with implications for Archaean continental crust formation[J]. Journal of Geophysical Research: Solid Earth, 130(4): e2024JB030204. doi: 10.1029/2024JB030204
    [43] HUANG T Y, TENG F Z, RUDNICK R L, et al., 2020. Heterogeneous potassium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 278: 122-136. doi: 10.1016/j.gca.2019.05.022
    [44] JAGOUTZ O, SCHMIDT M W, ENGGIST A, et al., 2013. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust[J]. Contributions to Mineralogy and Petrology, 166(4): 1099-1118. doi: 10.1007/s00410-013-0911-4
    [45] JAHN B M, GLIKSON A Y, PEUCAT J J, et al., 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 45(9): 1633-1652. doi: 10.1016/S0016-7037(81)80002-6
    [46] JAHN B M, VIDAL P, KRÖNER A, 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland: a case for long crustal residence time[J]. Contributions to Mineralogy and Petrology, 86(4): 398-408. doi: 10.1007/BF01187143
    [47] JIANG J L, ZOU X Y, MITCHELL R N, et al., 2024. Sediment subduction in Hadean revealed by machine learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 121(30): e2405160121.
    [48] JOHNSON T E, BROWN M, KAUS B J P, et al., 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities[J]. Nature Geoscience, 7(1): 47-52. doi: 10.1038/ngeo2019
    [49] JOHNSON T E, BROWN M, GARDINER N J, et al., 2017. Earth’s first stable continents did not form by subduction[J]. Nature, 543(7644): 239-242. doi: 10.1038/nature21383
    [50] JOHNSON T E, GARDINER N J, MILJKOVIĆ K, et al., 2018. An impact melt origin for Earth’s oldest known evolved rocks[J]. Nature Geoscience, 11(10): 795-799. doi: 10.1038/s41561-018-0206-5
    [51] KELLER C B, SCHOENE B, 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago[J]. Nature, 485(7399): 490-493. doi: 10.1038/nature11024
    [52] KENDRICK J, DUGUET M, YAKYMCHUK C, 2022. Diversification of Archean tonalite-trondhjemite-granodiorite suites in a mushy middle crust[J]. Geology, 50(1): 76-80. doi: 10.1130/G49287.1
    [53] KIRKLAND C L, JOHNSON T E, BROWN M, et al., 2025. The evolution of Earth’s early continental crust[J]. Nature Reviews Earth & Environment, 6(9): 612-625.
    [54] KLEINHANNS I C, KRAMERS J D, KAMBER B S, 2003. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa[J]. Contributions to Mineralogy and Petrology, 145(3): 377-389. doi: 10.1007/s00410-003-0459-9
    [55] KRÖNER A, ELIS HOFFMANN J, XIE H Q, et al., 2013. Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa[J]. Earth and Planetary Science Letters, 381: 188-197. doi: 10.1016/j.jpgl.2013.08.029
    [56] LAURENT O, MARTIN H, MOYEN J F, et al., 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 205: 208-235. doi: 10.1016/j.lithos.2014.06.012
    [57] LAURENT O, BJÖRNSEN J, WOTZLAW J F, et al., 2020. Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 13(2): 163-169. doi: 10.1038/s41561-019-0520-6
    [58] LAURENT O, GUITREAU M, BRUAND E, et al., 2024. At the dawn of continents: Archean tonalite-trondhjemite-granodiorite suites[J]. Elements, 20(3): 174-179. doi: 10.2138/gselements.20.3.174
    [59] LAURIE A, STEVENS G, 2012. Water-present eclogite melting to produce Earth's early felsic crust[J]. Chemical Geology, 314-317: 83-95.
    [60] LEI K, WANG H, WANG X L, et al., 2023. Decoupled zircon Si–O isotopes tracing the supracrustal silicification and komatiitic-derived fluids in the source of TTGs[J]. Geophysical Research Letters, 50(16): e2023GL104002. doi: 10.1029/2023GL104002
    [61] LI W S, LIU X M, WANG K, et al., 2022. Potassium isotope signatures in modern marine sediments: insights into early diagenesis[J]. Earth and Planetary Science Letters, 599: 117849. doi: 10.1016/j.jpgl.2022.117849
    [62] LIOU P, GUO J H, 2019. Generation of Archaean TTG gneisses through amphibole-dominated fractionation[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3605-3619. doi: 10.1029/2018JB017024
    [63] LIOU P, WANG Z C, MITCHELL R N, et al., 2022. Fe isotopic evidence that “high pressure” TTGs formed at low pressure[J]. Earth and Planetary Science Letters, 592: 117645. doi: 10.1016/j.jpgl.2022.117645
    [64] LIU B, MA J X, LI P F, et al., 2025. First boron isotopes in the southern Jilin TTG series uncover a Neoarchean oceanic arc in the eastern North China Craton[J]. Gondwana Research, 139: 243-259. doi: 10.1016/j.gr.2024.11.008
    [65] LIU H Y, XUE Y Y, ZHANG G L, et al., 2021. Potassium isotopic composition of low-temperature altered oceanic crust and its impact on the global K cycle[J]. Geochimica et Cosmochimica Acta, 311: 59-73. doi: 10.1016/j.gca.2021.08.001
    [66] LIU Y D, GUO Z X, TIAN H C, et al., 2023. Potassium isotopic fractionation during multistage alteration of oceanic crust in the southern Mariana Trench[J]. Chemical Geology, 620: 121350. doi: 10.1016/j.chemgeo.2023.121350
    [67] LIU Y S, HE D T, CHEN K, et al., 2025. Top-down water enrichment caused by the proto-crust thickening triggered the first TTG formation[J]. Science Bulletin, 70(21): 3557-3565. (in Chinese with English abstract)
    [68] LONG X P, ZHAO G C, ZHAI M G, et al., 2024. Research progresses and key scientific issues of pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 69(12): 1572-1585. (in Chinese with English abstract)
    [69] LU D G, LIU J, XIA Q K, et al., 2025. Earth's Hadean crust formed via operation of convergent tectonics[J]. National Science Review, 12(8): nwaf230. doi: 10.1093/nsr/nwaf230
    [70] MARTIN E, SIGMARSSON O, 2007. Low-pressure differentiation of tholeiitic lavas as recorded in segregation veins from Reykjanes (Iceland), Lanzarote (Canary Islands) and Masaya (Nicaragua)[J]. Contributions to Mineralogy and Petrology, 154(5): 559-573. doi: 10.1007/s00410-007-0209-5
    [71] MARTIN H, CHAUVEL C, JAHN B M, 1983. Major and trace element geochemistry and crustal evolution of Archaean granodioritic rocks from eastern Finland[J]. Precambrian Research, 21(3-4): 159-180. doi: 10.1016/0301-9268(83)90039-6
    [72] MARTIN H, 1994. Chapter 6-The Archean grey gneisses and the genesis of continental crust[J]. Developments in Precambrian Geology, 11: 205-259.
    [73] MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of Adakite, Tonalite–Trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048
    [74] MATHIEU L, 2022. Modeling the chemical heterogeneity of tonalite-trondhjemite-granodiorite intrusive suites[J]. Lithos, 422-423: 106744.
    [75] MOORBATH S, 1975. Evolution of Precambrian crust from strontium isotopic evidence[J]. Nature, 254(5499): 395-398. doi: 10.1038/254395a0
    [76] MOYEN J F, STEVENS G, 2006. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[M]//BENN K, MARESCHAL J C, CONDIE K C. Archean geodynamics and environments. Washington: American Geophysical Union: 149-175.
    [77] MOYEN J F, 2011. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 123(1-4): 21-36. doi: 10.1016/j.lithos.2010.09.015
    [78] MOYEN J F, MARTIN H, 2012. Forty years of TTG research[J]. Lithos, 148: 312-336. doi: 10.1016/j.lithos.2012.06.010
    [79] MOYEN J F, van HUNEN J, 2012. Short-term episodicity of Archaean plate tectonics[J]. Geology, 40(5): 451-454. doi: 10.1130/G322894.1
    [80] MOYEN J F, LAURENT O, 2018. Archaean tectonic systems: a view from igneous rocks[J]. Lithos, 302-303: 99-125.
    [81] MUKHOPADHYAY J, CROWLEY Q G, GHOSH S, et al., 2014. Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India[J]. Geology, 42(10): 923-926. doi: 10.1130/G36091.1
    [82] NÆRAA T, SCHERSTÉN A, ROSING M T, et al., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago[J]. Nature, 485(7400): 627-630. doi: 10.1038/nature11140
    [83] NAGEL T J, HOFFMANN J E, MÜNKER C, 2012. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust[J]. Geology, 40(4): 375-378. doi: 10.1130/G32729.1
    [84] PALIN R M, WHITE R W, GREEN E C R, 2016. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling[J]. Precambrian Research, 287: 73-90. doi: 10.1016/j.precamres.2016.11.001
    [85] PALIN R M, SANTOSH M, CAO W T, et al., 2020. Secular change and the onset of plate tectonics on Earth[J]. Earth-Science Reviews, 207: 103172. doi: 10.1016/j.earscirev.2020.103172
    [86] PETERMAN Z E, BARKER F, 1976. Rb-Sr whole-rock age of trondhjemites and related rocks of the southwestern Trondheim region, Norway[R]. Open-File Report 76-670, Washington: U. S. Geological Survey.
    [87] POWELL R, HOLLAND T J B, 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program[J]. Journal of Metamorphic Geology, 6(2): 173-204. doi: 10.1111/j.1525-1314.1988.tb00415.x
    [88] POWELL R, HOLLAND T, WORLEY B, 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC[J]. Journal of Metamorphic Geology, 16(4): 577-588. doi: 10.1111/j.1525-1314.1998.00157.x
    [89] POWELL R, HOLLAND T J B, 2008. On thermobarometry[J]. Journal of Metamorphic Geology, 26(2): 155-179. doi: 10.1111/j.1525-1314.2007.00756.x
    [90] QIAN Q, HERMANN J, 2013. Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation[J]. Contributions to Mineralogy and Petrology, 165(6): 1195-1224. doi: 10.1007/s00410-013-0854-9
    [91] RAPP R P, NORMAN M D, LAPORTE D, et al., 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt–rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids)[J]. Journal of Petrology, 51(6): 1237-1266. doi: 10.1093/petrology/egq017
    [92] REIMINK J R, DAVIES J H F L, IELPI A, 2021. Global zircon analysis records a gradual rise of continental crust throughout the Neoarchean[J]. Earth and Planetary Science Letters, 554: 116654. doi: 10.1016/j.jpgl.2020.116654
    [93] REIMINK J R, DAVIES J H F L, MOYEN J F, et al., 2023. A whole-lithosphere view of continental growth[J]. Geochemical Perspectives Letters, 26: 45-49. doi: 10.7185/geochemlet.2324
    [94] RICHARDS J P, KERRICH R, 2007. Special Paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis[J]. Economic Geology, 102(4): 537-576. doi: 10.2113/gsecongeo.102.4.537
    [95] ROBERTS N M W, SANTOSH M, 2018. Capturing the mesoarchean emergence of continental crust in the Coorg Block, southern India[J]. Geophysical Research Letters, 45(15): 7444-7453. doi: 10.1029/2018GL078114
    [96] ROLLINSON H, MARTIN H, 2005. Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation: introduction to the Special Issue[J]. Lithos, 79(1-2): ix-xii. doi: 10.1016/j.lithos.2004.09.001
    [97] ROMAN A, ARNDT N, 2020. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 278: 65-77. doi: 10.1016/j.gca.2019.07.009
    [98] ROZEL A B, GOLABEK G J, JAIN C, et al., 2017. Continental crust formation on early Earth controlled by intrusive magmatism[J]. Nature, 545(7654): 332-335. doi: 10.1038/nature22042
    [99] SANTIAGO RAMOS D P, COOGAN L A, MURPHY J G, et al., 2020. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater[J]. Earth and Planetary Science Letters, 541: 116290. doi: 10.1016/j.jpgl.2020.116290
    [100] SAVAGE P S, GEORG R B, WILLIAMS H M, et al., 2011. Silicon isotope fractionation during magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 75(20): 6124-6139. doi: 10.1016/j.gca.2011.07.043
    [101] SIZOVA E, GERYA T, STÜWE K, et al., 2015. Generation of felsic crust in the Archean: a geodynamic modeling perspective[J]. Precambrian Research, 271: 198-224. doi: 10.1016/j.precamres.2015.10.005
    [102] SMIT M A, SCHERSTÉN A, NÆRAA T, et al., 2019. Formation of Archean continental crust constrained by boron isotopes[J]. Geochemical Perspectives Letters, 12: 23-26.
    [103] SMITH T E, CHOUDHRY A G, HUANG C H, 1983. The geochemistry and petrogenesis of the Archean Gamitagama Lake igneous complex, southern Superior province[J]. Precambrian Research, 22(3-4): 219-244. doi: 10.1016/0301-9268(83)90050-5
    [104] SMITHIES R H, CHAMPION D C, VAN KRANENDONK M J, 2007. Chapter 4.2 The oldest well-preserved felsic volcanic rocks on earth: geochemical clues to the early evolution of the Pilbara supergroup and implications for the growth of a Paleoarchean protocontinent[J]. Developments in Precambrian Geology, 15: 339-367. doi: 10.1016/S0166-2635(07)15042-8
    [105] SMITHIES R H, CHAMPION D C, VAN KRANENDONK M J, 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt[J]. Earth and Planetary Science Letters, 281(3-4): 298-306. doi: 10.1016/j.jpgl.2009.03.003
    [106] SMITHIES R H, LU Y J, JOHNSON T E, et al., 2019. No evidence for high-pressure melting of Earth’s crust in the Archean[J]. Nature Communications, 10(1): 5559. doi: 10.1038/s41467-019-13547-x
    [107] SMITHIES R H, LU Y J, KIRKLAND C L, et al., 2021. Oxygen isotopes trace the origins of Earth’s earliest continental crust[J]. Nature, 592(7852): 70-75. doi: 10.1038/s41586-021-03337-1
    [108] SPRINGER W, SECK H A, 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas[J]. Contributions to Mineralogy and Petrology, 127(1-2): 30-45. doi: 10.1007/s004100050263
    [109] SUN Y, TENG F Z, HU Y, et al., 2020. Tracing subducted oceanic slabs in the mantle by using potassium isotopes[J]. Geochimica et Cosmochimica Acta, 278: 353-360. doi: 10.1016/j.gca.2019.05.013
    [110] TAMBLYN R, HERMANN J, HASTEROK D, et al., 2023. Hydrated komatiites as a source of water for TTG formation in the Archean[J]. Earth and Planetary Science Letters, 603: 117982. doi: 10.1016/j.jpgl.2022.117982
    [111] TANG M, CHEN K, RUDNICK R L, 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271): 372-375. doi: 10.1126/science.aad5513
    [112] TENG F Z, HU Y, MA J L, et al., 2020. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance[J]. Geochimica et Cosmochimica Acta, 278: 261-271. doi: 10.1016/j.gca.2020.02.029
    [113] TRAIL D, BOEHNKE P, SAVAGE P S, et al., 2018. Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(41): 10287-10292.
    [114] TULLER-ROSS B, SAVAGE P S, CHEN H, et al., 2019. Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite[J]. Chemical Geology, 525: 37-45. doi: 10.1016/j.chemgeo.2019.07.017
    [115] TURNER S, WOOD B, JOHNSON T, et al., 2025. Formation and composition of Earth’s Hadean protocrust[J]. Nature, 640(8058): 390-394. doi: 10.1038/s41586-025-08719-3
    [116] VAN KRANENDONK M J, KIRKLAND C L, CLIFF J, 2015. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga[J]. Lithos, 228-229: 90-98.
    [117] VANDENBURG E D, NEBEL O, SMITHIES R H, et al., 2023. Spatial and temporal control of Archean tectonomagmatic regimes[J]. Earth-Science Reviews, 241: 104417. doi: 10.1016/j.earscirev.2023.104417
    [118] WANG X L, TANG M, MOYEN J, et al., 2022. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary[J]. National Science Review, 9(3): nwab136. doi: 10.1093/nsr/nwab136
    [119] WEI C J, GUAN X, DONG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)
    [120] WU Z Q, ZHAO G C, 2022. Hydrous plumes in the Archean and the origin of continents[J]. Science Bulletin, 67(20): 2023-2025. doi: 10.1016/j.scib.2022.09.016
    [121] WU Z Q, SONG J, ZHAO G C, et al., 2023. Water-induced mantle overturns leading to the origins of Archean continents and subcontinental lithospheric mantle[J]. Geophysical Research Letters, 50(22): e2023GL105178. doi: 10.1029/2023GL105178
    [122] WU Z Q, 2024. Water induced mantle overturn and origin of the Archean crust[J]. Advances in Earth Science, 39(6): 551-564. (in Chinese with English abstract)
    [123] XIANG H, CONNOLLY J A D, 2022. GeoPS: an interactive visual computing tool for thermodynamic modelling of phase equilibria[J]. Journal of Metamorphic Geology, 40(2): 243-255. doi: 10.1111/jmg.12626
    [124] XIONG D Y, WANG X L, LI W, et al., 2025. Potassium isotope evidence for origin of Archean TTG rocks from seawater-hydrothermally altered oceanic crust[J]. Geochemistry, Geophysics, Geosystems, 26(1): e2024GC011892. doi: 10.1029/2024GC011892
    [125] XIONG X L, KEPPLER H, AUDÉTAT A, et al., 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis[J]. American Mineralogist, 94(8-9): 1175-1186. doi: 10.2138/am.2009.3158
    [126] YANG W, TENG F Z, LI W Y, et al., 2016. Magnesium isotopic composition of the deep continental crust[J]. American Mineralogist, 101(2): 243-252. doi: 10.2138/am-2016-5275
    [127] YU C Y, YANG T, ZHANG J, et al., 2022. Coexisting diverse P–T–t paths during Neoarchean Sagduction: insights from numerical modeling and applications to the eastern North China Craton[J]. Earth and Planetary Science Letters, 586: 117529. doi: 10.1016/j.jpgl.2022.117529
    [128] ZHAI M G, ZHANG Q, CHEN G N, et al., 2016. Adventure on the research of continental evolution and related granite geochemistry[J]. Chinese Science Bulletin, 61(13): 1414-1420. (in Chinese with English abstract) doi: 10.1360/N972015-01272
    [129] ZHAI M G, PENG P, 2020. Origin of early continents and beginning of plate tectonics[J]. Science Bulletin, 65(12): 970-973. doi: 10.1016/j.scib.2020.03.022
    [130] ZHAI M G, ZHAO L, ZHU X Y, et al., 2020. Review and overview for the frontier hotspot: early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 36(8): 2249-2275. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.08.01
    [131] ZHANG C Z, ZHANG Q, JIN W J, et al., 2018. Can Archean TTG compare with Adakite? Global data gives results[J]. Chinese Journal of Geology, 53(4): 1254-1266. (in Chinese with English abstract)
    [132] ZHANG Q, ZHAI M G, 2012. What is the Archean TTG?[J]. Acta Petrologica Sinica, 28(11): 3446-3456. (in Chinese with English abstract)
    [133] ZHANG Q, ZHAO L, ZHOU D W, et al., 2023a. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago[J]. Science Advances, 9(26): eadf0693. doi: 10.1126/sciadv.adf0693
    [134] ZHANG S B, ZHANG L, YAO X Y, et al., 2025. Formation of early continental crust by remelting of hydrothermally altered oceanic crust: evidence from potassium and oxygen isotopes[J]. Chemical Geology, 690: 122888. doi: 10.1016/j.chemgeo.2025.122888
    [135] ZHANG Z J, DAUPHAS N, JOHNSON A C, et al., 2023b. Titanium and iron isotopic records of granitoid crust production in diverse Archean cratons[J]. Earth and Planetary Science Letters, 620: 118342. doi: 10.1016/j.jpgl.2023.118342
    [136] ZHAO D Y, CAWOOD P A, TENG F Z, et al., 2025. A two-stage mantle plume-sagduction origin of Archean continental crust revealed by water and oxygen isotopes of TTGs[J]. Science Advances, 11(24): eadr9513. doi: 10.1126/sciadv.adr9513
    [137] ZHAO G C, ZHANG G W, 2021. Origin of continents[J]. Acta Geologica Sinica, 95(1): 1-19. (in Chinese with English abstract) doi: 10.1111/1755-6724.14621
    [138] ZHAO G C, ZHANG J, YIN C Q, et al., 2023. Pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 68(18): 2312-2323. (in Chinese with English abstract) doi: 10.1360/TB-2022-0249
    [139] ZHENG Y F, ZHAO G C, 2020. Two styles of plate tectonics in Earth’s history[J]. Science Bulletin, 65(4): 329-334. doi: 10.1016/j.scib.2018.12.029
    [140] ZHENG Y F, 2023. Plate tectonics in the twenty-first century[J]. Science China Earth Sciences, 66(1): 1-40. doi: 10.1007/s11430-022-1011-9
    [141] ZHENG Y F, 2024. Plate tectonics in the Archean: observations versus interpretations[J]. Science China Earth Sciences, 67(1): 1-30. doi: 10.1007/s11430-023-1210-5
    [142] ZHENG Y F, 2025. Origin of continental crust on early Earth[J]. National Science Review, 12(9): nwaf341. doi: 10.1093/nsr/nwaf341
    [143] 刘勇胜, 何德涛, 陈康, 等, 2025. 原始地壳增厚驱动水反向富集与早期TTG形成[J]. 科学通报, 70(21): 3557-3565.
    [144] 龙晓平, 赵国春, 翟明国, 等, 2024. 前板块构造与大陆起源研究进展及关键科学问题[J]. 科学通报, 69(12): 1572-1585.
    [145] 魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404.
    [146] 吴忠庆, 2024. 水诱导的地幔反转与大陆起源[J]. 地球科学进展, 39(6): 551-564.
    [147] 翟明国, 张旗, 陈国能, 等, 2016. 大陆演化与花岗岩研究的变革[J]. 科学通报, 61(13): 1414-1420.
    [148] 翟明国, 赵磊, 祝禧艳, 等, 2020. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 36(8): 2249-2275.
    [149] 张昌振, 张旗, 金维浚, 等, 2018. 太古宙TTG能否与埃达克岩对比?: 全球数据给出的结果[J]. 地质科学, 53(4): 1254-1266.
    [150] 张旗, 翟明国, 2012. 太古宙TTG岩石是什么含义?[J]. 岩石学报, 28(11): 3446-3456.
    [151] 赵国春, 张国伟, 2021. 大陆的起源[J]. 地质学报, 95(1): 1-19.
    [152] 赵国春, 张健, 尹常青, 等, 2023. 前板块构造与大陆起源[J]. 科学通报, 68(18): 2312-2323.
    [153] 郑永飞, 2023. 21世纪板块构造[J]. 中国科学: 地球科学, 53(1): 1-40.
    [154] 郑永飞, 2024. 太古宙地质与板块构造: 观察与解释[J]. 中国科学: 地球科学, 54(1): 1-30.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  37
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-10
  • 修回日期:  2025-10-28
  • 录用日期:  2025-10-29
  • 预出版日期:  2025-10-31
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回