留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受断裂控制的热液矿床矿体(群)侧伏规律及力学机制

韩润生 张艳 罗进 黄保胜 胡体才

韩润生,张艳,罗进,等,2025. 受断裂控制的热液矿床矿体(群)侧伏规律及力学机制[J]. 地质力学学报,31(5):886−897 doi: 10.12090/j.issn.1006-6616.2025121
引用本文: 韩润生,张艳,罗进,等,2025. 受断裂控制的热液矿床矿体(群)侧伏规律及力学机制[J]. 地质力学学报,31(5):886−897 doi: 10.12090/j.issn.1006-6616.2025121
HAN R S,ZHANG Y,LUO J,et al.,2025. Plunge law and mechanical mechanisms of fault-controlled ore bodies (clusters) in hydrothermal deposits[J]. Journal of Geomechanics,31(5):886−897 doi: 10.12090/j.issn.1006-6616.2025121
Citation: HAN R S,ZHANG Y,LUO J,et al.,2025. Plunge law and mechanical mechanisms of fault-controlled ore bodies (clusters) in hydrothermal deposits[J]. Journal of Geomechanics,31(5):886−897 doi: 10.12090/j.issn.1006-6616.2025121

受断裂控制的热液矿床矿体(群)侧伏规律及力学机制

doi: 10.12090/j.issn.1006-6616.2025121
基金项目: 国家自然科学基金项目(42172086,42472127);云南省矿产资源预测与评价工程研究中心项目(2011);云南省昆明理工大学创新团队项目(2012)
详细信息
    作者简介:

    韩润生(1964—),男,研究员,博士生导师,从事构造成矿动力学与隐伏矿预测、矿床学研究。Email:554670042@qq.com

    通讯作者:

    张 艳(1981—), 女,教授,博士生导师,从事隐伏矿预测、矿床学研究。Email:78598874@qq.com

  • 中图分类号: P548

Plunge law and mechanical mechanisms of fault-controlled ore bodies (clusters) in hydrothermal deposits

Funds: This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42172086 and 42472127), the Project of the Yunnan Provincial Engineering Research Center for Mineral Resources Prediction and Assessment (2011), and the Project of the Yunnan Kunming University of Science and Technology Innovation Team (2012).
More Information
    Author Bio:

    韩润生,昆明理工大学二级教授、博士生导师,享受国务院特殊津贴,入选“新世纪百千万人才工程”国家级人选、教育部新世纪优秀人才、云岭学者等。现任云南省矿产资源预测评价工程研究中心主任、云南省地质过程与矿产资源创新团队首席教授。长期从事成矿动力学与隐伏矿预测、矿床学方向的教学与研究工作。主持国家重点研发计划课题、国家自然科学基金(重点)项目、科技支撑计划课题、国家危机矿山专项及教育部、财政部、省级和校企科技合作项目50余项;以第一或第二作者出版专著5部;在Scientific ReportOre Geology Reviews、《地学前缘》《地质学报》等中外刊物发表学术论文200余篇;获发明专利授权22件;获省部级特等奖1项(R1)、一等奖6项(4R1、2R2)、二等奖5项(2R1、1R2、2R6),并获得中国产学研合作创新奖及第三届“黄汲清青年地质科学技术奖”等。兼任国际大地构造与成矿委员会委员、中国地球物理学会构造物理化学委员会副主任、中国岩石矿物地球化学学会理事、应用地球化学委员会副主任、矿床地球化学委员会委员、中国有色地质学术委员会副主任等

    Corresponding author: 张艳,昆明理工大学教授、博士生导师,兼任中国有色金属学会地质专业委员会副秘书长,入选“云南省兴滇英才支持计划”产业创新、青年人才项目,现任云南省矿产资源预测评价工程研究中心副主任。主要从事隐伏矿预测与矿床学的教学与科研工作。主持深地国家重大专项子课题、国家自然科学基金(面上、青年)项目、博士后面上一等资助项目共4项,以及省重大专项课题、产学研合作重点项目等10余项。科研成果获云南省科技进步特等奖1项(R6),其它省部级科技奖励4项、地厅级奖励2项,获国家发明专利授权10项。以第一作者或通信作者发表高水平论文50余篇,作为第二作者出版78万字学术专著1部。曾获全国大学青年教师地质课程教学比赛一等奖、昆明理工大学首届课程思政教学比赛特等奖。
  • 摘要: 热液矿床中,矿体(群)的侧伏规律是构造−流体耦合成矿系统在三维空间的具体表现,但确定其侧伏向和侧伏角一直是找矿预测的难题之一。文章聚焦矿体(群)侧伏规律及其力学机制研究中存在的主要问题(多期构造叠加造成的矿体侧伏识别难、矿体群侧伏控制机制不清、深部矿体侧伏模型实证研究不足等),基于矿田地质力学理论与方法,突破多期构造识别、矿体群侧伏控制机制等瓶颈,研究总结了压扭性、张扭性/扭张性、剪切带/扭性为主断裂带及复合构造控制的矿体(群)的侧伏规律,并解析其力学机制,提出矿体(群)侧伏确定方法。研究表明,成矿断裂构造的力学、运动学及其倾向、倾角共同控制矿体(群)侧伏产状,其侧伏向与成矿断裂下降盘运动方向一致,侧伏角受成矿构造应力场水平分量或成矿构造运动方向与断裂走向夹角的大小控制;不同级序构造控制的矿体群与单个矿体的侧伏规律不完全一致。在此基础上,认为成矿构造解析、矿化蚀变分带趋势追索、矿柱中心点投影及勘查工程数据三维空间分析是推断隐伏矿体(群)侧伏的主要方法,构造地球化学和地球物理异常分析等方法,可显著提升深部隐伏矿体(群)侧伏预测的可靠性,有望打开深部找矿新局面,取得事半功倍之功效。该研究在指导矿山深部和外围找矿预测与勘查区矿产评价、优化勘查工程部署、深化热液矿床成矿动力学机制及准确估算资源储量等方面具有重要意义。

     

  • 图  1  不同类型断裂带控制的矿体(群)侧伏规律和力学机制示意图

    a—压扭性断裂控制的矿体(群)侧伏规律和力学机制示意图;b—张扭性断裂控制的矿体(群)侧伏规律和力学机制示意图;c—扭张性断裂控制的矿体(群)侧伏规律和力学机制示意图

    Figure  1.  Schematic diagrams of ore body (cluster) plunge law and mechanical mechanisms controlled by different types of fault zones

    (a) Schematic diagrams of ore body (cluster) plunge law and mechanical mechanisms controlled by compresso–shear fault structure; (b) Schematic diagrams of ore body (cluster) plunge law and mechanical mechanisms controlled by tensional-shear fault structure; (c) Schematic diagrams of ore body (cluster) plunge law and mechanical mechanisms controlled by shear-tensional fault structure

    图  2  川滇黔典型铅锌矿床的矿体(群)纵投影图(据韩润生和张艳,2025修改)

    a—毛坪铅锌矿床的矿体(群)纵投影图;b—会泽矿山厂铅锌矿床的矿体(群)纵投影图;c—会泽麒麟厂铅锌矿床的矿体(群)纵投影图;d—杉树林铅锌矿床的矿体(群)纵投影图;e—大梁子铅锌矿床的矿体(群)纵投影图a—c为压扭性断裂控制的矿体群侧伏典例,d为张扭性断裂控制的矿体群侧伏典例,e为扭张性断裂控制的矿体群侧伏典例

    Figure  2.  Longitudinal projection of ore bodies (clusters) in typical lead-zinc deposits in the Sichuan-Yunnan-Guizhou region (modified from Han and Zhang, 2025)

    (a) Longitudinal projection of ore bodies (clusters) in the Maoping lead-zinc deposits; (b) Longitudinal projection of ore bodies (clusters) in the Kuangshanchang lead-zinc deposits in Huize; (c) Longitudinal projection of ore bodies (clusters) in the Qilinchang lead-zinc deposits in Huize; (d) Longitudinal projection of ore bodies (clusters) in the Shanshulin lead-zinc deposits; (e) Longitudinal projection of ore bodies (clusters) in the Daliangzi lead-zinc deposits(a)–(c) show typical examples of plunging ore body clusters controlled by compresso-shear faults; (d) shows typical examples of plunging ore body clusters controlled by tensional-shear faults; (e) shows typical examples of plunging ore body clusters controlled by shear-tensional faults.

    表  1  不同类型断裂构造控制的矿体(群)侧伏规律

    Table  1.   Ore body (cluster) plunge law of various fault structure types

    控矿构造类型主导控制因素主要侧伏规律矿产勘探意义
    压扭性/
    扭压性
    断裂带
    断裂力学性质和扭动方向(右行/左行)及剪切分量右行扭动→右侧伏;左行扭动→左侧伏压扭性断裂控制的矿体侧伏规律清晰且普遍,
    是侧伏预测的主要依据
    张扭性/扭张性断裂带断裂力学性质和扭动方向及剪切分量张扭性构造控制的矿体(群)侧伏规律性较弱,矿体(群)斜列侧伏或沿通道倾斜延深;扭张性断裂带控制的矿体(群)侧伏规律性较强结合局部成矿构造与主次断裂力学、
    运动学分析
    剪切带与扭性为主断裂拉伸线理方向、剪切带伸长方向/扭性为主断裂运动方向侧伏方向与线理方向一致;侧伏角=线理倾伏角;主断裂及其派生的次级断裂的力学性质、运动学控制矿体(群)侧伏线理测量、构造力学性质、运动学判断是关键
    复合
    构造
    成矿期主导构造需精细解析继承性、叠加性或转换构造,确定其侧伏方式划分构造活动和成矿期次,确定成矿期
    主控构造是关键
    下载: 导出CSV

    表  2  矿体群侧伏的力学机制小结

    Table  2.   Summary of mechanical mechanisms for ore (body) cluster plunge

    成矿构造主导应力扩容空间形成机制侧伏向决定因素参考文献
    压扭性断裂带压扭应力断裂扭动在舒缓波状面产生张性阶步、
    断裂在剖面变缓扩容区
    断裂扭动方向
    (右行→右侧伏)
    Sibson,1987;
    韩润生等,2001
    张扭性或扭张性断裂带张扭应力或扭张应力高角度连通裂隙形成流体优势通道优势通道倾斜方向Curewitz and Karson,1997
    韧性剪切带简单剪切X轴方向强应变区渗透性增强拉伸线理方向 (X轴投影)Groves et al.,1998
    下载: 导出CSV

    表  3  矿体侧伏确定方法适用性及其精度对比

    Table  3.   Comparison of applicability and accuracy for ore body (cluster) Plunge determination methods

    确定方法 适用阶段 数据需求 精度 主要局限
    成矿构造解析法 预查—普查、
    深部勘查
    地质填图 深部控矿构造可能变化
    矿体中心点投影法 详查—勘探 ≥3个中段工程数据 部分揭露矿体
    等值线趋势法 勘探—开发 密集网格工程 中—高 受矿体形态复杂性影响
    构造地球化学异常法 普查—勘查、
    勘探
    ≥3个中段工程数据 中—高 受矿体分布和工程布局影响
    物探异常确定方法 勘查—勘探 剖面数据 受地形、构造和矿体分布影响
    下载: 导出CSV
  • [1] CHEN G D, 1978. Research method of ore-forming structures[M]. Beijing: Geological Publishing House. (in Chinese)
    [2] CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. , 2005. Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton, CO: Society of Economic Geologists: 451-484.
    [3] COX S F, KNACKSTEDT M A, BRAUN J, 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems[M]//RICHARDS J P, TOSDAL R M. Structural controls on ore genesis. Society of Economic Geologists: 1-10.
    [4] COX S F, RUMING K, 2004. The St Ives mesothermal gold system, Western Australia—a case of golden aftershocks?[J]. Journal of Structural Geology, 26(6-7): 1109-1125. doi: 10.1016/j.jsg.2003.11.025
    [5] CUREWITZ D, KARSON J A, 1997. Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction[J]. Journal of Volcanology and Geothermal Research, 79(3-4): 149-168. doi: 10.1016/S0377-0273(97)00027-9
    [6] DAVIES A J, HAGEMANN S G, WITT W K, et al., 2025. Structural controls on Au–Co mineralisation at the Juomasuo deposit, an example of Paleoproterozoic Au–Co–Cu–REE systems in the Karelian belts of Scandinavia[J]. Australian Journal of Earth Sciences, 72(5-6): 732-762. doi: 10.1080/08120099.2025.2522879
    [7] DENG J, YANG L Q, GE L S, et al., 2006. Research advances on the tectonic regime of the Jiaodong mineral concentration area formation[J]. Progress in Natural Science, 16(5): 513-518. (in Chinese with English abstract)
    [8] GAO Q B, FAN Y X, WANG K Y, et al., 1998. The main geological means of deep metallogenetic prognosis of gold deposits[J]. Gold Geology, 4(2): 22-26. (in Chinese with English abstract)
    [9] GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5): 7-27. doi: 10.1016/S0169-1368(97)00012-7
    [10] GROVES D, VEARNCOMBE J, 2020. Introduction: thematic issue of Mineralium deposita on orogenic gold deposits[J]. Mineralium Deposita, 55(2): 187-188. doi: 10.1007/s00126-019-00951-y
    [11] HAN R S, CHEN J, LI Y, et al., 2001. Ore-controlling tectonics and prognosis of concealed ores in Huize Pb-Zn deposit, Yunnan[J]. Acta Mineralogica Sinica, 21(2): 265-269. (in Chinese with English abstract)
    [12] HAN R S, CHEN J, WANG F, et al., 2015. Analysis of metal-element association halos within fault zones for the exploration of concealed ore-bodies: a case study of the Qilinchang Zn-Pb-(Ag-Ge) deposit in the Huize mine district, northeastern Yunnan, China[J]. Journal of Geochemical Exploration, 159: 62-78. doi: 10.1016/j.gexplo.2015.08.006
    [13] HAN R S, 2017-01-04. Large-scale alteration lithofacies positioning and predicating method for hydrothermal deposit: CN, 104156601B[P]. (in Chinese)
    [14] HAN R S, ZHANG Y, WANG F, et al. , 2019. Metallogenic mechanism and concealed ore location prediction of germanium-rich lead-zinc deposits in northeastern Yunnan ore concentration area[M]. Beijing: Science Press. (in Chinese)
    [15] HAN R S, WANG M Z, JIN Z G, et al., 2020. Ore-controlling mechanism of NE-trending ore-forming structural system at Zn-Pb polymetallic ore concentration area in northwestern Guizhou[J]. Acta Geologica Sinica, 94(3): 850-868. (in Chinese with English abstract)
    [16] HAN R S, ZHAO D, 2022. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits: a preliminary study[J]. Earth Science Frontiers, 29(5): 420-437. (in Chinese with English abstract)
    [17] HAN R S, WU P, ZHANG Y, et al., 2022. New research progress in metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan-Yunnan-Guizhou Triangle (SYGT) area, southwestern Tethys[J]. Acta Geologica Sinica, 96(2): 554-573. (in Chinese with English abstract)
    [18] HAN R S, ZHAO D, LIU F, et al. , 2023a-10-27. Method for determining deep extension pattern of rock and ore control structure of magma hydrothermal polymetallic ore field or ore deposit: CN, 115128698B[P]. (in Chinese)
    [19] HAN R S, ZHANG Y, ZHOU G M, et al. , 2023b-08-18. Determination method for ore control structure depth extension pattern of structure-controlled metatherm ore deposit: CN, 115016015B[P]. (in Chinese)
    [20] HAN R S, ZHAO D, WANG M Z, 2023c-07-28. Method for determining lateral volt orientation and spatial positioning of deep ore body of hydrothermal polymetallic deposit: CN, 115113297B[P]. (in Chinese)
    [21] HAN R S, WU J B, ZHANG Y, et al., 2024. Oblique distribution patterns and the underlying mechanical model of orebody groups controlled by structures at different scales[J]. Scientific Reports, 14(1): 4591. doi: 10.1038/s41598-024-55473-z
    [22] HAN R S, ZHANG Y, 2025. A preliminary discussion on the mineral exploration system theory: control-mapping exploration system architecture for hydrothermal deposits[J]. Earth Science Frontiers, 32(5): 1-27. (in Chinese with English abstract)
    [23] HAN R S, LIU F, ZHANG Y, 2025a. Discussion on ore-controlling roles of structural system in hydrothermal metallogenic system[J]. Earth Science Frontiers, 32(2): 371-389. (in Chinese with English abstract)
    [24] HAN R S, WU J B, CHEN Q, et al. , 2025b-03-18. Structure-controlled hydrothermal deposit hidden ore body space skew determination and deep prospecting target determination method: CN, 117784281B[P]. (in Chinese)
    [25] HAN R S, ZHANG Y, CHEN Q, et al. , 2025c-03-18. Method for rapidly determining the existence of deep concealed ore bodies in hydrothermal deposits and delineating their occurrence location: CN, 2024 1 0551556.3[P]. (in Chinese)
    [26] HAN R S, ZHANG Y, LI W Y, et al. , 2025d-01-21. A characteristic element combination anomaly derivative method for determining the occurrence of deep tabular blind ore bodies in hydrothermal deposits: CN, 2024 1 0551629.9[P]. (in Chinese)
    [27] HODGSON C J, 1989. The structure of shear-related, vein-type gold deposits: a review[J]. Ore Geology Reviews, 4(3): 231-273. doi: 10.1016/0169-1368(89)90019-X
    [28] HUA R M, CHEN P R, ZHANG W L, et al., 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2): 99-107. (in Chinese with English abstract)
    [29] KNOX-ROBINSON C M, 2000. Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia[J]. Australian Journal of Earth Sciences, 47(5): 929-941. doi: 10.1046/j.1440-0952.2000.00816.x
    [30] LUTZ B M, 2023. Orogenic gold in the Blue Mountains, eastern Oregon, USA[J]. Ore Geology Reviews, 154: 105310. doi: 10.1016/j.oregeorev.2023.105310
    [31] MAUGHAN D T, KEITH J D, CHRISTIANSEN E H, et al., 2002. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA[J]. Mineralium Deposita, 37(1): 14-37. doi: 10.1007/s00126-001-0228-5
    [32] PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin, Heidelberg: Springer.
    [33] SIBSON R H, 1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems[J]. Geology, 15(8): 701-704. doi: 10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2
    [34] SIBSON R H, 1996. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural Geology, 18(8): 1031-1042. doi: 10.1016/0191-8141(96)00032-6
    [35] SUN J C, HAN R S, 2016. Theory and method of Orefield geomechanics[M]. Beijing: Science Press. (in Chinese)
    [36] VEARNCOMBE J R, 2023. Function and status of structural geology in the Resource industry[J]. Australian Journal of Earth Sciences, 70(7): 908-931. doi: 10.1080/08120099.2023.2214928
    [37] WANG J C, WANG R R, ZHOU Y, et al., 2006. Regularity and geological significance for lateral trending of orebodies[J]. Journal of Guilin University of Technology, 26(3): 305-309. (in Chinese with English abstract)
    [38] WOODALL R, 1994. Empiricism and concept in successful mineral exploration[J]. Australian Journal of Earth Sciences, 41(1): 1-10. doi: 10.1080/08120099408728107
    [39] WU J B, HAN R S, ZHANG Y, et al., 2024. Porosity-permeability characteristics and mineralization-alteration zones of the Maoping germanium-rich lead-zinc deposit in SW China[J]. Frontiers in Earth Science, 12: 1347243. doi: 10.3389/feart.2024.1347243
    [40] XUAN D N, TRONG T P, HAI S T, et al., 2024. 3D models for hydrothermal copper ore bodies at Sin Quyen deposit, North Vietnam: a case report for ore reserves and prediction of hidden mineral resource potential[J]. Heliyon, 10(12): e33017. doi: 10.1016/j.heliyon.2024.e33017
    [41] ZHANG L, YE Z W, HUANG M Q, et al., 2019. Characteristics of bituminous coal permeability response to the pore pressure and effective shear stress in the Huaibei coalfield in China[J]. Geofluids, 2019: 5489051.
    [42] 陈国达, 1978. 成矿构造研究法[M]. 北京: 地质出版社.
    [43] 邓军, 杨立强, 葛良胜, 等, 2006. 胶东矿集区形成的构造体制研究进展[J]. 自然科学进展, 16(5): 513-518.
    [44] 高秋斌, 范永香, 王可勇, 等, 1998. 金矿床深部成矿预测的主要途径[J]. 黄金地质, 4(2): 22-26.
    [45] 韩润生, 陈进, 李元, 等, 2001. 云南会泽铅锌矿床构造控矿规律及其隐伏矿预测[J]. 矿物学报, 21(2): 265-269.
    [46] 韩润生, 2017-01-04. 一种热液矿床的大比例尺蚀变岩相定位预测方法: 中国, 104156601B[P].
    [47] 韩润生, 张艳, 王峰, 等, 2019. 滇东北矿集区富锗铅锌矿床成矿机制与隐伏矿定位预测[M]. 北京: 科学出版社.
    [48] 韩润生, 王明志, 金中国, 等, 2020. 黔西北铅锌多金属矿集区成矿构造体系及其控矿机制[J]. 地质学报, 94(3): 850-868.
    [49] 韩润生, 赵冻, 2022. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘, 29(5): 420-437.
    [50] 韩润生, 吴鹏, 张艳, 等, 2022. 西南特提斯川滇黔成矿区富锗铅锌矿床成矿理论研究新进展[J]. 地质学报, 96(2): 554-573.
    [51] 韩润生, 赵冻, 刘飞, 等, 2023a-10-27. 确定岩浆热液型多金属矿田或矿床控岩控矿构造深延格局的方法: 中国, 115128698B[P].
    [52] 韩润生, 张艳, 周高明, 等, 2023b-08-18. 受构造控制的后生热液矿床控矿构造深延格局的确定方法: 中国, 115016015B[P].
    [53] 韩润生, 赵冻, 王明志, 2023c-07-28. 确定热液型多金属矿床深部矿体侧伏向和空间定位的方法: 中国, 115113297B[P].
    [54] 韩润生, 张艳, 2025. 初论矿产勘查系统理论: 热液矿床控制: 映射勘查系统架构[J]. 地学前缘, 32(5): 1-27.
    [55] 韩润生, 刘飞, 张艳, 2025a. 论热液成矿系统中构造体系控矿作用[J]. 地学前缘, 32(2): 371-389.
    [56] 韩润生, 吴建标, 陈青, 等, 2025b-03-18. 受构造控制的热液矿床隐伏矿体空间斜列判定和深部找矿定靶的方法: 中国, 117784281B[P].
    [57] 韩润生, 张艳, 陈青, 等, 2025c-03-18. 快速判定热液矿床深部隐伏矿体存在性和圈定其赋存部位的方法: 中国, 202410551556.3[P].
    [58] 韩润生, 张艳, 李文尧, 等, 2025d-01-21. 一种确定热液矿床深部板状盲矿体产状的特征元素组合异常导数法: 中国, 202410551629.9[P].
    [59] 华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107.
    [60] 孙家骢, 韩润生, 2016. 矿田地质力学理论与方法[M]. 北京: 科学出版社.
    [61] 汪劲草, 王蓉嵘, 周瑶, 等, 2006. 矿体的侧伏规律及其地质意义[J]. 桂林工学院学报, 26(3): 305-309.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  6
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-02
  • 修回日期:  2025-10-22
  • 录用日期:  2025-10-22
  • 预出版日期:  2025-10-22
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回