留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原东北缘弧形构造生长:来自三维有限元数值模拟的启示

赵一霖 孙玉军 侯贵廷 施炜

赵一霖,孙玉军,侯贵廷,等,2025. 青藏高原东北缘弧形构造生长:来自三维有限元数值模拟的启示[J]. 地质力学学报,31(3):361−385 doi: 10.12090/j.issn.1006-6616.2025037
引用本文: 赵一霖,孙玉军,侯贵廷,等,2025. 青藏高原东北缘弧形构造生长:来自三维有限元数值模拟的启示[J]. 地质力学学报,31(3):361−385 doi: 10.12090/j.issn.1006-6616.2025037
ZHAO Y L,SUN Y J,HOU G T,et al.,2025. The outward growth of the arcuate tectonic belt in the northeastern Tibetan Plateau: Insights from three-dimensional finite element numerical simulations[J]. Journal of Geomechanics,31(3):361−385 doi: 10.12090/j.issn.1006-6616.2025037
Citation: ZHAO Y L,SUN Y J,HOU G T,et al.,2025. The outward growth of the arcuate tectonic belt in the northeastern Tibetan Plateau: Insights from three-dimensional finite element numerical simulations[J]. Journal of Geomechanics,31(3):361−385 doi: 10.12090/j.issn.1006-6616.2025037

青藏高原东北缘弧形构造生长:来自三维有限元数值模拟的启示

doi: 10.12090/j.issn.1006-6616.2025037
基金项目: 深地国家科技重大专项(2024ZD1001102);国家自然科学基金项目(42472278)
详细信息
    作者简介:

    赵一霖(1994—),男,在读博士,构造地质学专业,主要从事构造地貌和数值模拟方向的研究。Email:18811680869@163.com

    通讯作者:

    侯贵廷(1964—),男,教授,主要从事构造数值模拟、裂缝油气田模拟、地震深部动力学研究。Email:gthou@pku.edu.cn

  • 中图分类号: P542;P311.2

The outward growth of the arcuate tectonic belt in the northeastern Tibetan Plateau: Insights from three-dimensional finite element numerical simulations

Funds: This research is financially supported by the National Science and Technology Major Project of China on Deep Earth Exploration (Grant No.2024ZD1001102) and the National Natural Science Foundation of China (Grant No.42472278).
  • 摘要: 青藏高原东北缘弧形构造带是青藏高原侧向生长的独特边界,以垂直于高原扩展方向的盆−山相间的弧形地貌为特征,代表了青藏高原扩展的独特生长方式。此次研究旨在运用三维有限元黏−塑性大变形数值模拟方法再现青藏高原东北缘弧形构造带的形成和演化过程,提出弧形构造生长的新构造样式和变形机制。此次模拟基于大量地质与地球物理资料,测试了银川盆地阻挡和弱的下地壳对弧形构造带内断裂发育的控制作用。结果表明,在青藏高原向东北扩展的过程中,地壳缩短增厚变形由高原向东北传播,受北东—南西向挤压作用,地块围限的中—新生代盆地区(弧形构造带)的深部物质向东北迁移,在受到刚性的鄂尔多斯地块和阿拉善地块阻挡后,向强度相对较弱的银川盆地有限挤入。银川盆地的阻挡是弧形构造带断裂在浅部地壳形成和发育的重要条件。黏度为2.5×1022 Pa·s 、黏聚力为2 MPa的弱下地壳对弧形构造带内断裂发育有促进作用,但不是断裂形成的必要条件。进一步分析青藏高原东北缘弧形构造带地表和3条剖面最大剪应变率分布特征及其随时间演化的规律发现,弧形构造带在深部总体上表现为“对冲”构造样式,指示深−浅变形机制存在解耦现象。弧形构造带的变形解耦深度在20 km和40 km发生,形成了3个构造层。其中的中—上地壳构造层以逆冲−褶皱构造变形方式调节地壳水平缩短和垂向增厚;而弱的下地壳作为弧形构造发育的滑脱层,以韧−塑性变形方式调节地壳水平缩短和垂向增厚;岩石圈地幔由于莫霍面的调节作用,也存在一定程度的缩短增厚。综合分析认为,青藏高原东北缘弧形构造带是在先存断裂和拆离带的控制下,主控断裂在9.5~2.5 Ma同步发育,并向深部扩展,最终切入中—下地壳。新的模拟研究结果为深化对青藏高原东北缘隆升和横向生长过程的认识提供了参考。

     

  • 图  1  青藏高原及其邻区构造地貌图

    断层数据来自地震活动断层调查数据中心,https://www.activefault-datacenter.cn;DEM数据来自地理空间数据云,http://www.gscloud.cn

    Figure  1.  Tectonic geomorphological map of the Tibetan Plateau and adjacent regions

    The fault data source was from the Data Sharing Infrastructure of the Seismic Active Fault Survey Data Center, https://www.activefault-datacenter.cn. The DEM data with a resolution of 90 m was acquired from the Geospatial Data Cloud, http://www.gscloud.cn.

    图  2  青藏高原东北缘弧形构造地质简图(据Shi et al.,2020b修改)

    F1—海原断裂带;F2—香山−天景山断裂带;F3—烟筒山断裂带;F4—牛首山−罗山断裂带;F5—西秦岭北缘断裂;F6—马衔山断裂带;F7—黄河断裂带;F8—贺兰山东麓断裂带;F9—小关山断裂带部分;取自OSGeo中国中心提供的中国各省在线地质图(https://www.osgeo.cn/),涵盖甘肃、青海、陕西、宁夏回族自治区和内蒙古自治区

    Figure  2.  Schematic geological map of the study area (modified after Shi et al., 2020b

    F1–Haiyuan Fault Zone; F2– Xiangshan–Tianjingshan Fault Zone; F3–Yantongshan Fault Zone; F4–Niushoushan–Luoshan Fault Zone; F5–Northern margin fault of the West Qinling Mountains; F6– Maxianshan Fault Zone; F7–Yellow River Fault Zone; F8–East piedmont fault of Helan Shan; F9– Xiaoguanshan Fault Zone; The expanded portion is from the online geological maps of Chinese provinces offered by the OSGeo China Center, https://www.osgeo.cn/, which cover Gansu, Qinghai, Shaanxi, the Ningxia Hui Autonomous Region, and the Inner Mongolia Autonomous Region)

    图  3  青藏高原东北部及邻区构造地貌特征及地壳厚度分布

    剖面Ⅰ参考王帅军等,2017;剖面Ⅱ参考王帅军等,2019;剖面Ⅲ参考Song et al.,2024;剖面Ⅳ参考Tian et al.,2021;剖面Ⅴ和剖面Ⅵ参考Shen et al.,2022;剖面Ⅶ参考Li et al.,2022和Zhang et al.,2013;剖面Ⅷ参考Jia et al.,2010相关地壳厚度数据来自地壳1.0模型(https://igppweb.ucsd.edu/~gabi/crust1.html);断裂带注释如同图2

    Figure  3.  Tectonic geomorphological features and crustal thickness distribution in the northeastern Tibetan Plateau and adjacent areas

    Profile Ⅰ refers to Wang et al. (2017);Profile Ⅱ refers to Wang et al. (2019);Profile Ⅲ refers to Song et al. (2024);Profile Ⅳ refers to Tian et al. (2021);Profile Ⅴ and Profile Ⅵ refer to Shen et al. (2022);Profile Ⅶ refers to Li et al. (2022) and Zhang et al. (2013);Profile Ⅷ refers to Jia et al. (2010). The data pertaining to the crustal thickness is from the publicly accessible CRUST 1.0 model, available at the website: https://igppweb.ucsd.edu/~gabi/crust1.html; Refer to Fig. 2 for the annotations of the fault zones.

    图  4  青藏高原东北部及邻区有效黏度等值线图以及主要断裂带(据Sun et al.,2025修改;其中岩石圈结构的有效黏度根据CRUST1.0模型,http://igppweb.ucsd.edu/~gabi/rem.html;断裂带图例及编号参考图2)

    a—20 km深度有效黏度等值线图及主要断裂带;b—60 km深度有效黏度等值线图及主要断裂带

    Figure  4.  Contour maps of effective viscosity and the major faults in the northeastern Tibetan Plateau and adjacent areas (modified according to Sun et al., 2025; The effective viscosity of the lithosphere structure is based on the CRUST1.0 model, http://igppweb.ucsd.edu/~gabi/rem.html; The legend and numbers of the fault zones are referenced from Fig. 2 )

    (a) Contour map of effective viscosity at depth of 20 km and main fault zones; (b) Contour map of effective viscosity at depth of 60 km and main fault zones

    图  5  初始模型和边界条件以及网格划分和垂向分层方案

    OB—鄂尔多斯地块;AB—阿拉善地块;YCB—银川盆地;LZB—陇中地块;ATB—弧形构造;F1—海原断裂带;F4—牛首山−罗山断裂带

    Figure  5.  Initial model and boundary conditions, scheme of mesh discretization and vertical stratification

    (a) Initial model and boundary conditions; (b) Scheme of mesh discretization; (c) Scheme of vertical stratification OB–Ordos Block; AB–Alxa Block; YCB–Yinchuan Basin; LZB–Longzhong Block; ATB–Arcuate Tectonic Belt; F1–Haiyuan Fault Zone; F4–Niushoushan–Luoshan Fault Zone

    图  6  Case-1和Case-2模型最大剪应变率分布特征

    断裂带图例和编号请参考图2;图中数值用科学计数法表示,E代表以10为底的指数,如1.5E-015为1.5×10−15a—Case-1模型最大剪应变率分布特征(在~2.5 Ma时的结果);b—Case-2模型最大剪应变率分布特征(在~2.5 Ma时的结果)

    Figure  6.  The distribution of the maximum shear strain rate for the Case-1 and Case-2 models

    (a) The distribution of the maximum shear strain rate for the Case-1 model (the result at ~2.5 Ma); (b) The distribution of the maximum shear strain rate for the Case-2 model (the result at ~2.5 Ma)The values in the figure are expressed in scientific notation, where E represents the exponent with base 10The legend and numbers of the fault zones are referenced from Fig. 2

    图  7  Case-3模型地表最大剪应变率分布特征及其随时间演化规律

    3条剖面A–A’、B–B’和C–C’在(a)中用黑线表示;断裂带图例和编号请参考图2;图中数值用科学计数法表示,E代表以10为底的指数,如1.25E-015为1.25×10−15a—地表最大剪应变率在~9 Ma的分布特征;b—地表最大剪应变率在~7 Ma的分布特征;c—地表最大剪应变率在~5 Ma的分布特征;d—地表最大剪应变率在~2.5 Ma的分布特征

    Figure  7.  The distribution of the maximum shear strain rates on the surface and the characteristics of their evolution over time

    (a) Distribution of the maximum shear strain rate on the surface at ~9 Ma; (b) Distribution of the maximum shear strain rate on the surface at ~7 Ma; (c) Distribution of the maximum shear strain rate on the surface at ~5 Ma; (d) Distribution of the maximum shear strain rate on the surface at ~2.5 MaThe three cross-sections A–A', B–B', and C–C' are indicated by black lines in (a). The legend and numbers of the fault zones are referenced from Fig. 2. The values in the figure are expressed in scientific notation, where E represents the exponent with base 10.

    图  8  Case-3模型A–A′剖面最大剪应变率分布特征及其随时间演化规律

    图中数值用科学计数法表示,E代表以10为底的指数,如4.8E-016为4.8×10−16a—最大剪应变率沿A-A′剖面在~9 Ma的分布特征;b—最大剪应变率沿A-A′剖面在~7 Ma的分布特征;c—最大剪应变率沿A-A′剖面在~5 Ma的分布特征;d—最大剪应变率沿A-A′剖面在~2.5 Ma的分布特征

    Figure  8.  The distribution of the maximum shear strain rate along the A–A′ section in the Case-3 model and the characteristics of their evolution over time

    (a) The distribution of the maximum shear strain rate along the A–A' section at ~9 Ma; (b) The distribution of the maximum shear strain rate along the A–A' section at ~7 Ma; (c) The distribution of the maximum shear strain rate along the A–A' section at ~5 Ma; (d) The distribution of the maximum shear strain rate along the A–A' section at ~2.5 MaThe values in the figure are expressed in scientific notation, where E represents the exponent with base 10

    图  9  Case-3模型B–B′剖面最大剪应变率分布特征及其随时间演化规律

    图中数值用科学计数法表示,E代表以10为底的指数,如6.2E-016为2.6×10−16a—最大剪应变率沿B-B′剖面在~9 Ma的分布特征;b—最大剪应变率沿B-B′剖面在~7 Ma的分布特征;c—最大剪应变率沿B-B′剖面在~5 Ma的分布特征;d—最大剪应变率沿B-B′剖面在~2.5 Ma的分布特征

    Figure  9.  The distribution of the maximum shear strain rate along the B–B′ section in the Case-3 model and the laws of their evolution over time

    (a) The distribution of the maximum shear strain rate along the B–B' section at ~9 Ma; (b) The distribution of the maximum shear strain rate along the B–B' section at ~7 Ma; (c) The distribution of the maximum shear strain rate along the B–B' section at ~5 Ma; (d) The distribution of the maximum shear strain rate along the B–B' section at ~2.5 MaThe values in the figure are expressed in scientific notation, where E represents the exponent with base 10

    图  10  Case-3模型C–C′剖面最大剪应变率分布特征及其随时间演化规律

    图中数值用科学计数法表示,E代表以10为底的指数,如6.6E-016为6.6×10−16a—最大剪应变率沿C-C′剖面在~9 Ma的分布特征;b—最大剪应变率沿C-C′剖面在~7 Ma的分布特征;c—最大剪应变率沿C-C′剖面在~5 Ma的分布特征;d—最大剪应变率沿C-C′剖面在~2.5 Ma的分布特征

    Figure  10.  The distribution of the maximum shear strain rate along the C–C′ section in the Case-3 model and the laws of their evolution over time

    (a) The distribution of the maximum shear strain rate along the C–C' section at ~9 Ma; (b) The distribution of the maximum shear strain rate along the C–C' section at ~7 Ma; (c) The distribution of the maximum shear strain rate along the C–C' section at ~5 Ma; (d) The distribution of the maximum shear strain rate along the C–C' section at ~2.5 MaThe values in the figure are expressed in scientific notation, where E represents the exponent with base 10

    图  11  青藏高原东北缘弧形构造生长模型

    Figure  11.  The models for the growth of the arcuate structure in the northeastern Tibetan Plateau

    (a) Forward expansion mode; (b) Backward expansion mode; (c) Disordered expansion mode; (d) Thrust–slip transformation mode

    图  12  青藏高原东北缘弧形构造同步生长模式图

    断裂图例参考图11(a)青藏高原东北缘弧形构造在~9 Ma的深部变形特征;(b)青藏高原东北缘弧形构造在~7 Ma的深部变形特征;(c)青藏高原东北缘弧形构造在~5 Ma的深部变形特征;(d)青藏高原东北缘弧形构造在~2.5 Ma的深部变形特征

    Figure  12.  The synchronous growth model for the arcuate structure in the Northeastern Tibetan Plateau

    (a) The deep deformation of the arcuate structure in the northeastern Tibetan Plateau at 9 Ma; (b) The deep deformation of the arcuate structure in the northeastern Tibetan Plateau at 7 Ma; (c) The deep deformation of the arcuate structure in the northeastern Tibetan Plateau at 5 Ma; (d) The deep deformation of the arcuate structure in the northeastern Tibetan Plateau at 2.5 MaSee Fig. 11 for the fault legend

    图  13  Case-3中最大剪应变率沿3条剖面的分布特征及构造解译

    断裂图例参考图11;图中数值用科学计数法表示,E代表以10为底的指数,如4.8E-016为4.8×10−16a—最大剪应变率在~2.5 Ma沿A-A,剖面的分布特征;b—最大剪应变率在~2.5 Ma沿B-B,剖面的分布特征;c—最大剪应变率在~2.5 Ma沿C-C,剖面的分布特征

    Figure  13.  Distribution of the maximum shear strain rate along three profiles in Case-3 (based on the results at ~2.5 Ma) and structural interpretation

    (a) Distribution of the maximum shear strain rate along the A–A' section at ~2.5 Ma; (b) Distribution of the maximum shear strain rate along the B–B' section at ~2.5 Ma; (c) Distribution of the maximum shear strain rate along the C–C' section at ~2.5 MaThe values in the figure are expressed in scientific notation, where E represents the exponent with base 10.See Fig. 11 for the fault legend.

    表  1  青藏高原东北缘弧形断裂带构造演化

    Table  1.   Tectonic evolution of the arcuate fault zones in the northeastern Tibetan Plateau

    断裂带及其名称启动年龄/Ma最大水平挤压应力方向断层机制现今走滑速率/(mm/a)
    海原断裂带(F1~9.5(Shi et al.,2015NE—SW
    Shi et al.,2015
    逆冲 (Shi et al.,20151~6
    Chen et al.,2023
    5.4(王伟涛等,2013雷启云等,2016
    Chen et al.,2023
    ENE—WSW
    Shi et al.,2015
    逆冲兼左旋走滑(Shi et al.,2015
    雷启云等,2016
    2.7(王伟涛等,2013雷启云等,2016
    Chen et al.,2023
    左旋走滑(西段); 逆冲兼左旋走滑
    (东段)(Shi et al.,2015雷启云等,2016
    香山−天景山
    断裂带(F2
    5.4(王伟涛等,2013雷启云等,2016
    Chen et al.,2023
    NE—SW
    Shi et al.,2015
    逆冲兼左旋走滑(Shi et al.,2015
    雷启云等,2016
    2.3~2.9
    Chen et al.,2023
    ~2.7(王伟涛等,2013雷启云等,2016
    Chen et al.,2023
    ENE—WSW
    Shi et al.,2015
    正-左旋走滑(西段) ;逆冲兼左旋走滑
    (东段)(Shi et al.,2015雷启云等,2016
    烟筒山断裂带(F35.4 (董晓朋等,2020)或 ~2.7(王伟涛等,2013
    雷启云等,2016Chen et al.,2023
    NE—SW 或
    ENE—WSW
    Shi et al.,2015
    逆冲兼左旋走滑(雷启云等,2016尚未测定
    牛首山−罗山
    断裂带(F4
    ~2.5(Chen et al.,2015NW—SE
    Chen et al.,2015
    逆冲兼左旋走滑(陈虹等,20130.35(Chen et al.,2023
    0.15(Chen et al.,2015NNE—SSW
    Chen et al.,2015
    右旋走滑(陈虹等,2013
    注:烟筒山断裂带(F3)的启动年龄尚未被精准测定,估算得出。
    下载: 导出CSV

    表  2  模型参数

    Table  2.   Model Parameters

    地块 分层 Case-1 Case-2 Case-3
    $ {\eta }_{{\mathrm{eff}}} $ / Pa·s C/MPa $ {\eta }_{{\mathrm{eff}}} $ /(Pa·s) C/MPa $ {\eta }_{{\mathrm{eff}}} $ /(Pa·s) C/MPa
    鄂尔多斯地块和阿拉善地块 上地壳 1 × 1023 3× 105 1 × 1023 3× 105 1 × 1023 3× 105
    中地壳
    下地壳
    岩石圈地幔
    银川盆地 上地壳 2.5 × 1022 5 2.5 × 1022 3 × 103 2.5 × 1022 3 × 103
    中地壳
    下地壳
    岩石圈地幔 50
    弧形构造带 上地壳 2.5 × 1022 5 2.5 × 1022 5 2.5 × 1022 5
    中地壳
    下地壳 2
    岩石圈地幔 50 50 50
    陇中地块 上地壳 2.5 × 1022 20 2.5 × 1022 20 2.5 × 1022 20
    中地壳
    下地壳 2
    岩石圈地幔 50 50 50
    注:上地壳密度为2700 kg/m3,中地壳密度为2800 kg/m3,下地壳密度为3000 kg/m3,岩石圈地幔密度为3300 kg/m3
    下载: 导出CSV
  • [1] CHEN H, HU J M, GONG W B, et al., 2015. Characteristics and transition mechanism of late Cenozoic structural deformation within the Niushoushan-Luoshan fault zone at the northeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 114: 73-88. doi: 10.1016/j.jseaes.2015.06.034
    [2] CHEN H, HU J M, GONG W B, et al., 2013. Cenozoic deformation and evolution of the Niushoushan-Luoshan fault zone in the northeast margin of the Tibet Plateau[J]. Earth Science Frontiers, 20(4): 18-35. (in Chinese with an English abstract).
    [3] CHEN J, CHEN Y S, GUO Z, et al., 2020. Crustal structure of the Ordos block and adjacent regions along an N-S profile of 107.6°E[J]. Chinese Journal of Geophysics, 63(7): 2592-2604. (in Chinese with an English abstract).
    [4] CHEN Q Z, HU C B, FELIPE O R, et al., 2023. Geodynamics of progressive growth of arcuate fold-and-thrust belts: Insights from numerical modeling of the NE margin of the Qinghai-Tibetan plateau[J]. Journal of Structural Geology, 175: 1-12.
    [5] CHEN Y F, CHEN J H, GUO B, et al., 2022. Seismic structure and deformation features beneath the Yinchuan-Hetao graben, NW China[J]. Physics of the Earth and Planetary Interiors, 329-330: 106911. doi: 10.1016/j.pepi.2022.106911
    [6] CHENG F, GARZIONE C N, JOLIVET M, et al., 2019. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam Basin[J]. Tectonics, 38(2): 741-766. doi: 10.1029/2018TC005214
    [7] CHENG Y Z, GAO R, LU Z W, et al., 2023. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 30(5): 314-333. (in Chinese with English abstract
    [8] DI Q Y, ZHANG K, XUE G Q, et al., 2023. A top-down control on upper crustal inheritance on the south-eastern Tibetan Plateau[J]. Tectonophysics, 863: 229992. doi: 10.1016/j.tecto.2023.229992
    [9] DONG X P, LI Z H, HUANG T, et al., 2020. Origin of the latent palaeohigh in Hongsibu basin of Ningxia, China and its effect on the regional desertification[J]. Journal of Earth Sciences and Environment, 42(5): 688-700. (in Chinese with an English abstract).
    [10] FU Y V, JIA R Z, HAN F Q, et al., 2018. SH wave structure of the crust and upper mantle in southeastern margin of the Tibetan Plateau from teleseismic Love wave tomography[J]. Physics of the Earth and Planetary Interiors, 279: 15-20. doi: 10.1016/j.pepi.2018.04.002
    [11] GUO X Y, GAO R, WANG H Y, et al., 2015. Crustal architecture beneath the Tibet‐Ordos transition zone, NE Tibet, and the implications for plateau expansion[J]. Geophysical Research Letters, 42(24): 10631-10639.
    [12] GUO X Y, GAO R, KELLER G R, et al., 2013. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J]. Earth and Planetary Science Letters, 379: 72-80. doi: 10.1016/j.jpgl.2013.08.005
    [13] HAN F Q, JIA R Z, FU Y V, 2017. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array[J]. Tectonophysics, 712-713: 125-131. doi: 10.1016/j.tecto.2017.05.013
    [14] HU J F, YANG H Y, XU X Q, et al., 2012. Lithospheric structure and crust-mantle decoupling in the southeast edge of the Tibetan Plateau[J]. Gondwana Research, 22: 1060-1067. doi: 10.1016/j.gr.2012.01.003
    [15] HU X Y, WU L, ZHANG Y S, et al., 2022. Multiscale lithospheric buckling dominates the Cenozoic subsidence and deformation of the Qaidam Basin: A new model for the growth of the northern Tibetan Plateau[J]. Earth-Science Reviews, 234: 104201. doi: 10.1016/j.earscirev.2022.104201
    [16] JIA S X, GUO W B, MOONEY W D, et al., 2019. Crustal structure of the middle segment of the Qilian fold belt and the coupling mechanism of its associated basin and range system[J]. Tectonophysics, 770: 128154. doi: 10.1016/j.tecto.2019.06.024
    [17] JIA S X, LIU B J, XU Z F, et al., 2014. The crustal structures of the central Longmenshan along and its margins as related to the seismotectonics of the 2008 Wenchuan Earthquake[J]. Science China Earth Sciences, 57(4): 777-790. doi: 10.1007/s11430-013-4744-9
    [18] JIA S X, ZHANG X K, ZHAO J R, et al., 2010. Deep seismic sounding data reveal the crustal structures beneath Zoigê basin and its surrounding folded orogenic belts[J]. Science China Earth Sciences, 53(2): 203-212. doi: 10.1007/s11430-009-0166-0
    [19] JIANG L Q, LI W, DONG Y P, et al., 2024. Cenozoic deformation of the Weihe Graben in central China: Insights from Analogue modeling[J]. Journal of Asian Earth Sciences, 271: 106236. doi: 10.1016/j.jseaes.2024.106236
    [20] LEI Q Y, ZHANG P Z, ZHENG W J, et al., 2016. Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau[J]. Science China Earth Sciences, 59(5): 1025-1040. (in Chinese). doi: 10.1007/s11430-016-5272-1
    [21] LI B, ZUZA A V, CHEN X H, et al., 2020. Cenozoic multi-phase deformation in the Qilian Shan and out-of-sequence development of the northern Tibetan Plateau[J]. Tectonophysics, 782-783: 228423. doi: 10.1016/j.tecto.2020.228423
    [22] LI H L, YE Z, GAO R, et al., 2022. A distinct contrast in the lithospheric structure and limited crustal flow across the northeastern Tibetan Plateau: evidence from vs and vp/vs imaging[J]. Tectonophysics, 836: 229413. doi: 10.1016/j.tecto.2022.229413
    [23] LI X F, LI H Y, SHEN Y, et al., 2014. Crustal Velocity Structure of the Northeastern Tibetan Plateau from Ambient Noise Surface-Wave Tomography and Its Tectonic Implications[J]. Bulletin of the Seismological Society of America, 104(3): 1045-1055. doi: 10.1785/0120130019
    [24] LI Y C, SHAN X J, QU C Y, et al., 2017. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 150: 87-97. doi: 10.1016/j.jseaes.2017.10.010
    [25] LI Y C, SHAN X J, QU C Y, et al., 2016. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau[J]. Journal of Geodynamics, 102: 47-57. doi: 10.1016/j.jog.2016.07.005
    [26] LI Z G, ZHENG W J, ZHANG P Z, et al., 2019. Evidence for three Cenozoic phases of upper crustal shortening of the Xiongpo structure in the Longmen Shan fold-and-thrust belt, China: Implications for the eastward growth of the eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 179: 138-148. doi: 10.1016/j.jseaes.2019.04.017
    [27] LIU J, CHEN X Q, CHI Z Q, et al., 2018. Tectonically-controlled Evolution of the Late Cenozoic Nihewan Basin, North China Craton: Constraints from Stratigraphy, Mineralogy, and Geochemistry[J]. Acta Geologica Sinica (English Edition), 92(2): 769-785. doi: 10.1111/1755-6724.13553
    [28] LIU Q Y, VAN DER HILST R D, LI Y, et al., 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 7(5): 361-365. doi: 10.1038/ngeo2130
    [29] LIU X B, HU J M, SHI W, et al., 2020. Palaeogene-Neogene sedimentary and tectonic evolution of the Yinchuan Basin, western North China Craton[J]. International Geology Review, 62(1): 53-71. doi: 10.1080/00206814.2019.1591309
    [30] LUCAZEAU F, 2019. Analysis and maping f an updated terrestrial heat flow data set[J]. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. doi: 10.1029/2019GC008389
    [31] LU H F, CHEN H L, YANG Y, et al., 2022. Activities and geomorphic deformation of the fault belt on the southern margin of Wuwei Basin, Gansu province during the Late Quaternary[J]. Geological Bulletin of China, 41(2/3): 327-346. (in Chinese with an English abstract).
    [32] LU H J, FU B H, SHI P L, et al., 2016. Constraints on the uplift mechanism of northern Tibet[J]. Earth and Planetary Science Letters, 453: 108-118. doi: 10.1016/j.jpgl.2016.08.010
    [33] ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D, 2008. The geological evolution of the Tibetan plateau[J]. Science, 321(5892): 1054-1058. doi: 10.1126/science.1155371
    [34] SHEN X Z, ZHOU Q M, CHENG S Y, et al., 2022. Contrasting crustal structures crossing the boundary region of the southwest Ordos block and its tectonic implications revealed by dense seismic arrays[J]. Tectonophysics, 831: 229342. doi: 10.1016/j.tecto.2022.229342
    [35] SHEN X Z, LI Y K, GAO R, et al., 2020. Lateral growth of NE Tibetan Plateau restricted by the Asian lithosphere: Results from a dense seismic profile[J]. Gondwana Research, 87: 238-247. doi: 10.1016/j.gr.2020.06.018
    [36] SHEN X Z, KIM Y, GAN W J, 2017. Lithospheric velocity structure of the northeast margin of the Tibetan Plateau: Relevance to continental geodynamics and seismicity[J]. Tectonophysics, 712-713: 482-493. doi: 10.1016/j.tecto.2017.06.022
    [37] SHI W, HU J M, CHEN P, et al., 2020a. Yumen conglomerate ages in the South Ningxia Basin, north-eastern Tibetan Plateau, as constrained by cosmogenic dating[J]. Geological Journal, 55(11): 7138-7147. doi: 10.1002/gj.3510
    [38] SHI W, DONG S W, HU J M, 2020b. Neotectonics around the Ordos Block, North China: A review and new insights[J]. Earth-Science Reviews, 200: 102969. doi: 10.1016/j.earscirev.2019.102969
    [39] SHI W, DONG S W, LIU Y, et al., 2015. Cenozoic tectonic evolution of the South Ningxia region, northeastern Tibetan Plateau inferred from new structural investigations and fault kinematic analyses[J]. Tectonophysics, 649: 139-164. doi: 10.1016/j.tecto.2015.02.024
    [40] SHI Y P, DAN W N, YU F S, et al., 2024. Characteristics and Origin of the “Seesaw Type” Negative Inversion Structure in the Yabulai Basin of the Alxa Block[J]. Geoscience, 38(05): 1221-1234.
    [41] SONG X H, PAN S Z, WANG F Y, et al., 2024. Deep crustal structure and deformation features of the northeastern margin of the Tibetan Plateau, as revealed by controlled-source seismic profiling along the Aba-Guyuan-Wuqi transect[J]. Tectonophysics, 885: 230418. doi: 10.1016/j.tecto.2024.230418
    [42] STEPHAN K, 2004. The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling[J]. Lithos, 77(1-4): 639-646. doi: 10.1016/j.lithos.2004.03.017
    [43] SUN Q, PEI S P, CUI Z X, et al., 2021. A new growth model of the northeastern Tibetan Plateau from high-resolution seismic imaging by improved double-difference tomography[J]. Tectonophysics, 798: 228699. doi: 10.1016/j.tecto.2020.228699
    [44] SUN Y J, DONG S W, LIU M, et al., 2025. The rheological structure of East Asian continental lithosphere[J]. Tectonophysics, 895: 230575. doi: 10.1016/j.tecto.2024.230575
    [45] SUN Y J, LIU M, 2018. Rheological control of lateral growth of the Tibetan Plateau: Numerical results[J]. Journal of Geophysical Research: Solid Earth, 123(11): 10124-10141.
    [46] SUN Y J, DONG S W, ZHANG H, et al., 2015. Numerical investigation of the geodynamic mechanism for the late Jurassic deformation of the Ordos block and surrounding orogenic belts[J]. Journal of Asian Earth Sciences, 114: 623-633. doi: 10.1016/j.jseaes.2014.08.033
    [47] TANG M S, ZHENG Y, GE C, et al., 2014. Study on crustal structure in the northeastern Pamir region by preceiver functions[J]. Chinese Journal of Geophysics, 57(10): 3176-3188. (in Chinese with an English abstract).
    [48] TIAN M Y, HUANG Z C, WANG L S, et al., 2020. Tectonic evolution of the eastern margin of the Tibetan plateau: Insight from crustal structures using P wave receiver functions[J]. Journal of Asian Earth Sciences, 191: 104230. doi: 10.1016/j.jseaes.2020.104230
    [49] TIAN Q J, DING G Y, 1998. The tectonic feature of a quasi-trijunction in the northeastern corner of Qinghai-Xizang Plateau[J]. Earthquake Research in China, 14(4): 27-35. (in Chinese with an English abstract).
    [50] TIAN X B, BAI Z M, KLEMPERER S L, et al., 2021. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos block[J]. Earth and Planetary Science Letters, 554: 116700. doi: 10.1016/j.jpgl.2020.116700
    [51] TIAN X B, LIU Z, SI S K, et al., 2014. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics, 634: 198-207. doi: 10.1016/j.tecto.2014.07.001
    [52] TRIYOSO W, KONGKO W, PRASETYA T S, et al., 2023. Spatial correlation of the maximum shear strain loading rate and the correlation dimension along the Sumatra subduction margin for potential earthquake and tsunami hazard study and analysis[J]. All Earth, 35(1): 2249669.
    [53] WANG C X, LI X, 2025. Tectonic characteristics and numerical simulation analysis of an arcuate structural belt: A case study of the middle and southern segments of the Red River fault[J]. Journal of Geomechanics, 31(1): 39-60. (in Chinese with an English abstract).
    [54] WANG S J, LIU B J, TIAN X F, et al., 2018. Crustal P-wave velocity structure in the northeastern margin of the Qinghai-Tibetan Plateau and insights into crustal deformation[J]. Science China Earth Sciences, 61(9): 1221-1237. (in Chinese with an English abstract). doi: 10.1007/s11430-017-9227-7
    [55] WANG S J, LIU B J, JIA S X, et al., 2017. Study on S-wave velocity structure difference of Yinchuan basin and blocks on both sides using artificial seismic sounding profiles[J]. Progress in Geophysics, 32(5): 1936-1943. (in Chinese with an English abstract).
    [56] WANG T Y, SHI W, HOU G T, et al., 2024. Neogene paleomagnetic chronology of the Laolongwan Basin, NW China: New insight for the northeastward expansion of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 265: 106115. doi: 10.1016/j.jseaes.2024.106115
    [57] WANG W T, ZHANG P Z, LEI Q Y, 2013. Deformational characteristics of the Niushoushan-Luoshan fault zone and its tectonic implications[J]. Seismology and Geology, 35(2): 195-207. (in Chinese with an English abstract).
    [58] WEI Y H, TIAN X B, DUAN Y H, et al., 2022. The lithospheric structure beneath the northeastern Tibetan Plateau and western North China Craton from S receiver function imaging and its implications for lateral growth of the plateau[J]. Tectonophysics, 838: 229466. doi: 10.1016/j.tecto.2022.229466
    [59] WU G L, ZHU C Y, WANG G C, et al., 2019. Demarcation of the geomorphological boundaries of southeastern Tibet: implications for expansion mechanisms of the plateau edge[J]. Seismology and Geology, 41(2): 281-299. (in Chinese with an English abstract).
    [60] XIAO X C, LIU X, GAO R, et al., 2002. Lithospheric structure and tectonic evolution of the West Kunlun and its adjacent areas——Brief report on the south Tarim-West Kunlun multidisciplinary geoscience transect[J]. Geological Bulletin of China, 21(2): 63-68. (in Chinese with an English abstract).
    [61] XIN H L, ZENG X W, KANG M, et al., 2020. Crustal fine velocity structureof the Haiyuan arcuate tectonic zone from double-difference tomography[J]. Chinese Journal of Geophysics, 63(3): 897-914. (in Chinese with an English abstract).
    [62] XU X M, NIU F L, DING Z F, et al., 2018. Complicated crustal deformation beneath the NE margin of the Tibetan plateau and its adjacent areas revealed by multi-station receiver-function gathering[J]. Earth and Planetary Science Letters, 497: 204-216. doi: 10.1016/j.jpgl.2018.06.010
    [63] YAO Z X, WANG C Y, ZENG R S, et al., 2014. Crustal structure in western Qinling tectonic belt and its adjacent regions deduced from receiver functions[J]. Acta Seismologica Sinica, 36(1): 1-19. (in Chinese with an English abstract).
    [64] YE Z, GAO R, LU Z W, et al., 2021. A lithospheric-scale thrust-wedge model for the formation of the northern Tibetan plateau margin: Evidence from high-resolution seismic imaging[J]. Earth and Planetary Science Letters, 574: 117170. doi: 10.1016/j.jpgl.2021.117170
    [65] YE Z, LI Q S, GAO R, et al., 2016. Anisotropic regime across northeastern Tibet and its geodynamic implications[J]. Tectonophysics, 671: 1-8. doi: 10.1016/j.tecto.2016.01.011
    [66] YE Z, GAO R, LI Q S, et al., 2015. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 426: 109-117. doi: 10.1016/j.jpgl.2015.06.024
    [67] YUAN Z Z, LIN Y Q, XU X, et al., 2024. Crustal-scale architecture and origin of the Haiyuan Arcuate Tectonic Belt, NE Tibet[J]. Tectonophysics, 890: 230485. doi: 10.1016/j.tecto.2024.230485
    [68] ZHAN Y, ZHAO G Z, YANG J J, et al., 2005. Crustal electric structure of Haiyuan arcuate tectonic region in the northeastern margin of Qinghai-Xizang Plateau, China[J]. Acta Seismologica Sinica, 27(4): 431-440. (in Chinese with an English abstract).
    [69] ZHANG C, GUO Z, YU Y, et al., 2022. Distinct lithospheric structures of the Ordos block and its margins from P and S receiver functions and its implications for the Cenozoic lithospheric reworking[J]. Geophysical Research Letters, 49: e2021GL097680. doi: 10.1029/2021GL097680
    [70] ZHANG J, MA Z J, XIAO W X, et al., 2006. Geological evidences of the deformation in central-southern Ningxia in the Miocene and its significance[J]. Acta Geologica Sinica, 80(11): 1650-1659. (in Chinese with an English abstract).
    [71] ZHANG Y, YAN D P, QIU L, et al., 2023. Stepwise growth of the southeastern Tibetan Plateau: Structural and thermochronological evidence from the Panxi tectonic belt[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 621: 111542. doi: 10.1016/j.palaeo.2023.111542
    [72] ZHANG Y P, ZHENG W J, ZHANG D L, et al., 2019. Late Pleistocene left-lateral slip rates of the Gulang Fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau), China[J]. Tectonophysics, 756: 97-111. doi: 10.1016/j.tecto.2019.02.013
    [73] ZHANG Z J, BAI Z M, KLEMPERER S L, et al., 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation[J]. Tectonophysics, 606: 140-159. doi: 10.1016/j.tecto.2013.02.040
    [74] ZHAO J M, ZHANG P Z, ZHANG X K, et al., 2021. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project[J]. Earth Science Frontiers, 28(5): 230-259. (in Chinese with an English abstract).
    [75] ZHAO J M, NEUPANE B, LIU H B, et al., 2020. Lithospheric structure of western Tibet - A brief review[J]. Journal of Asian Earth Sciences, 198: 104159. doi: 10.1016/j.jseaes.2019.104159
    [76] ZHAO J M, MOONEY W D, ZHANG X K, et al., 2006. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan plateau and tectonic implications[J]. Earth and Planetary Science Letters, 241(3-4): 804-814. doi: 10.1016/j.jpgl.2005.11.003
    [77] ZHAO Y L, SHI W, SUN Y J, et al., 2025. The formation and modifcation of the arcuate tectonic belt in the northeastern Tibetan Plateau: insight from three-dimensional finite element numerical simulation[J]. Journal of Marine Science and Engineering, 13(1): 170. doi: 10.3390/jmse13010170
    [78] ZHENG C P, LI W, XU S Z, et al., 2018. The characteristics and formation mechanism of the curved structural belt[J]. Chinese Journal of Geology, 53(3): 1171-1185. (in Chinese with English abstract
    [79] ZHENG W J, SUN X, LEI Q Y, et al., 2024. Late Quaternary tectonic activity and strong earthquake generation mechanism around the boundary zone of the Ordos active-tectonic block, central China[J]. Journal of Geomechanics, 30(2): 206-224. (in Chinese with an English abstract).
    [80] ZHOU T X, 1994. Ningxia natural division[J]. Journal of Ningxia University (Nature Science Edition), 15(1): 86-91. (in Chinese with an English abstract).
    [81] ZHOU T X, WANG L, CAO MZ, 1985. Morphotectonic patterns of Ningxia Hui Autonomous Region and its formation and evolution[J]. Acta Geographica Sinica, 40(3): 215-224. (in Chinese with an English abstract).
    [82] 陈虹,胡健民,公王斌,等,2013. 青藏高原东北缘牛首山-罗山断裂带新生代构造变形与演化[J]. 地学前缘,20(4):18-35.
    [83] 陈洁,陈永顺,郭震,等,2020. 沿107.6°E南北向剖面鄂尔多斯地块及周缘地区地壳结构[J]. 地球物理学报,63(7):2592-2604.
    [84] 程永志,高锐,卢占武,等,2023. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘,30(5):314-333.
    [85] 董晓朋,李振宏,黄婷,等,2020. 宁夏红寺堡盆地隐伏古隆起成因机制及其对区域沙漠化的影响[J]. 地球科学与环境学报,42(5):688-700.
    [86] 雷启云,张培震,郑文俊,等,2016. 青藏高原东北缘三关口-牛首山断裂的右旋走滑与弧形构造带扩展[J]. 中国科学:地球科学,46:691-705.
    [87] 卢海峰,陈海龙,杨勇,等,2022. 甘肃武威盆地南缘断裂带晚第四纪活动特征及变形分析[J]. 地质通报,41(2-3):327-346. doi: 10.12097/j.issn.1671-2552.2022.2-3.012
    [88] 史原鹏,淡伟宁,于福生,等,2024. 阿拉善地块雅布赖盆地“跷跷板式”负反转构造特征及成因分析[J]. 现代地质,38(05):1221-1234.
    [89] 田勤俭,丁国瑜,1998. 青藏高原东北隅似三联点构造特征[J]. 中国地震,14(4):27-35.
    [90] 唐明帅,郑勇,葛粲,等,2014. 帕米尔东北缘地壳结构的P波接收函数研究[J]. 地球物理学 报,57(10):3176-3188.
    [91] 王晨旭,李西,2025. 弧形构造带构造特征及其数值模拟分析:以红河断裂中南段为例[J]. 地质力学学报,31(1):39-60. doi: 10.12090/j.issn.1006-6616.2024042
    [92] 王帅军,刘保金,田晓峰,等,2019. 青藏高原东北缘地壳P波速度结构及其对地壳变形研究的启示[J]. 中国科学:地球科学,49(2):368-382.
    [93] 王帅军,刘保金,嘉世旭,等,2017. 利用人工地震测深剖面研究银川盆地及两侧区域的S波速度结构[J]. 地球物理学进展,32(5):1936-1943.
    [94] 王伟涛,张培震,雷启云,2013. 牛首山-罗山断裂带的变形特征及其构造意义[J]. 地震地质,35(2):195-207.
    [95] 吴贵灵,祝成宇,王国灿,等,2019. 青藏高原东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示[J]. 地震地质,41(2):281-299. doi: 10.3969/j.issn.0253-4967.2019.02.003
    [96] 肖序常,刘训,高锐,等,2002. 西昆仑及邻区岩石圈结构构造演化:塔里木南—西昆仑多学科地学断面简要报道[J]. 地质通报,21(2):63-68.
    [97] 莘海亮,曾宪伟,康敏,等,2020. 海原弧形构造区地壳三维精细速度结构成像[J]. 地球物理学报,63(3):897-914.
    [98] 姚志祥,王椿镛,曾融生,等,2014. 利用接收函数方法研究西秦岭构造带及其邻区地壳结构[J]. 地震学报,36(1):1-19. doi: 10.3969/j.issn.0253-3782.2014.01.001
    [99] 詹艳,赵国泽,王继军,等,2005. 青藏高原东北缘海原弧形构造区地壳电性结构探测研究[J]. 地震学报,27(4):431-440. doi: 10.3321/j.issn:0253-3782.2005.04.010
    [100] 张进,马宗晋,肖文霞,等,2006. 宁夏中南部中新世构造活动的地质证据及其意义[J]. 地质学报,80(11):1650-1659. doi: 10.3321/j.issn:0001-5717.2006.11.002
    [101] 赵俊猛,张培震,张先康,等,2021. 中国西部壳幔结构与动力学过程及其对资源环境的制约:“羚羊计划”研究进展[J]. 地学前缘,28(5):230-259.
    [102] 郑成鹏,李玮,徐世钊,等,2018. 弧形构造带特征及其形成机制[J]. 地质科学,53(3):1171-1185. doi: 10.12017/dzkx.2018.064
    [103] 郑文俊,孙鑫,雷启云,等,2024. 鄂尔多斯活动地块边界带第四纪晚期构造活动特征及强震孕育机制[J]. 地质力学学报,30(2):206-224. doi: 10.12090/j.issn.1006-6616.2023154
    [104] 周特先,王利,曹明志,1985. 宁夏构造地貌格局及其形成与发展[J]. 地理学报,40(3):215-224. doi: 10.3321/j.issn:0375-5444.1985.03.003
    [105] 周特先,1994. 宁夏自然区划[J]. 宁夏大学学报(自然科学版),15(1):86-91.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  42
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-05
  • 修回日期:  2025-05-09
  • 录用日期:  2025-05-12
  • 预出版日期:  2025-05-22
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回