Study on the pore structure characteristics of interbedded shale oil and formation mechanisms of high-quality shale oil reservoirs in the Chang 7 Member, Yanchang Formation, Ansai Oilfield
-
摘要: 鄂尔多斯盆地安塞油田面临常规油气资源潜力匮乏、储量接替难度大的难题,目前增储的主要目标为页岩油储层。延长组7段(长7段)作为安塞油田的关键开发层系,其孔隙结构直接控制着储层质量,进而对页岩油开发产生显著影响。以安塞油田长7段夹层型页岩油储层为研究对象,通过开展扫描电镜、铸体薄片、低温氮气吸附、高压压汞和核磁共振等实验,明确不同尺寸孔隙对于储层品质的影响,并从沉积环境与成岩作用的角度揭示储层成因。研究结果表明,储层孔隙类型主要有长石溶孔、残余粒间孔、粒间溶孔、黏土晶间孔以及少量的微裂缝;其中长石溶孔主要发育微米级孔隙,而黏土晶间孔以纳米级孔隙为主。储层整体排驱压力较高,进汞饱和度较低,孔喉半径以纳米级为主,孔径在500 μm以下的孔隙多呈开放型的平行板状和狭缝形,同时发育少量的墨水瓶型孔隙。储层孔径主要小于300 μm,且随着物性变好,储层内较大尺寸的孔隙占比也在逐渐增大。优质储层的成因主要划分为2类:东北方向靠近物源,水动力强,岩石颗粒分选性好,储层内容易发育绿泥石膜,而绿泥石膜可以保护颗粒间的原生粒间孔,压实作用后可保留较多的残余粒间孔而形成优质储层;西南方向远离物源方向,水体深度增加,水动力变弱,因靠近烃源岩发育区,储层容易被烃源岩产生的有机酸溶蚀改造,发育较多溶蚀孔隙,从而形成优质储层。研究成果可为安塞油田页岩油藏的高效勘探开发提供支持。Abstract:
Objective As a key producing horizon of the Ansai Oilfield in the Ordos Basin , the pore structure of Chang 7 Member of the Yanchang Formation directly controls reservoir quality, and consequently influences shale oil productivity. The Ansai Oilfield is facing depleted conventional resource and difficult reserve replacement, making shale oil reservoirs the main target for reserve growth. Therefore, characterizing the pore structure and constraining the genesis of different reservoirs is of great significance for oilfield exploration and development. Methods Targeting the interbedded shale oil reservoirs in the Chang 7 Member of the Ansai Oilfield, we carried out experiments including scanning electron microscopy, casting thin sections, low-temperature nitrogen adsorption, high-pressure mercury intrusion, and nuclear magnetic resonance, to identify the influence of pore size on the quality of the reservoirs, and to reveal the genesis of different reservoirs from the perspectives of depositional environment and diagenesis. Results The reservoir pores are predominantly composed of feldspar pores, residual intergranular pores, intergranular pores, clay intergranular pores, and a small number of microcracks. The feldspar pores are mainly micrometer-sized, while clay intergranular pores are dominantly nanometer-sized. The reservoir exhibits relatively high discharge pressures and low mercury injection saturation, with pore-throat radii predominantly at the nanometer scale. Most pores with diameters below 500 μm are open-type parallel plate-shaped and slit-shaped, with a small number of ink-bottle-type pores also developed. The pore sizes in the reservoir are predominantly below 300 μm, and as physical properties improve, the proportion of larger pores gradually increases. Conclusion The genesis of high-quality reservoirs can be categorized into two types. In the northeast, closer to the provenance area, strong hydrodynamic conditions lead to better sorting of rock particles, facilitating the development of chlorite coatings within the reservoir. These chlorite coatings can protect primary intergranular pores between particles, allowing more residual intergranular pores to be preserved after compaction, thus forming high-quality reservoirs. In contrast, the southwest area, being farther from the provenance, exhibits increasing water depth and weaker hydrodynamics. Due to its proximity to the source rock development zone, the reservoir is more susceptible to dissolution of organic acids from hydrocarbon source rocks, leading to the formation of numerous dissolution pores and the development of high-quality reservoirs. [ Significance ] The study can support the efficient exploration and development of shale reservoirs in the region. -
图 3 安塞油田三叠系长7段储层孔隙度和渗透率分布与交会图
a—孔隙度分布直方图;b—渗透率分布直方图;c—孔隙度与渗透率交汇图
Figure 3. Distribution and crossplot of porosity and permeability for the Triassic Chang 7 Member reservoir, Ansai Oilfield
(a) Porosity distribution histogram ; (b) Permeability distribution histogram ; (c) Crossplot of reservoir porosity and permeability
图 4 安塞油田长7段夹层型页岩油储层的主要储集空间类型
a—S12样品,Q129井1667.94 m,铸体薄片;b—S1样品,D199井1324.95 m,铸体薄片;c—S2样品,D199井1339.20 m,铸体薄片;d—S3样品,D199井1357.33 m,铸体薄片;e—S17样品,W538井1626.10 m,扫描电镜;f—S7样品,H15井1654.05 m,铸体薄片
Figure 4. Primary types of reservoir spaces in the interbedded shale oil reservoir of the Chang 7 Member, Ansai Oilfield
(a) S1, D199well, 1324.95m, cast sheet; (b) S2, D199well, 1339.2m, cast sheet; (c) S3, D199well, 1357.33m, cast sheet; (d) S7, H15well, cast sheet; (e) S12, Q129well, 1667.94m, scanning electron microscope; (f) S17, W538well, 1626.1m, cast sheet
图 5 安塞油田长7段页岩油储层6个典型样品的吸附−脱附曲线
a—S1样品,D199井1324.95 m,H3型;b—S4样品,D199井1383.20 m,H3型;c—S6样品,H15井,1644.17 m,H3-H2过渡型;d—S13样品,W538井1620.56 m,H3型;e—S14样品,W538井1623.66 m,H3型;f—S16样品,W538井1625.75 m,H3—H2过渡型
Figure 5. Adsorption–desorption curves of six typical samples from the Chang 7 shale oil reservoir, Ansai Oilfield
(a) S1, Well D199, 1324.95 m, H3type; (b) S4, Well D199, 1383.2 m, H3type; (c) S6, Well H15, 1644.17 m, H3–H2 transitional type; (d) S13, Well W538, 1620.56 m, H3type; (e) S14, Well W538, 1623.66 m, H3type; (f) S16, Well W538, 1625.75 m, H3–H2 transitional type
图 7 安塞油田长7段致密油储层典型样品高压压汞曲线与孔喉分布特征
a—高压压汞曲线;b—孔喉分布特征
Figure 7. Characteristics of high-pressure mercury injection capillary pressure (MICP) curves and pore-throat distribution in tight oil reservoir samples from the Chang 7 Member, Ansai Oilfield
(a) High pressure mercury injection curves; (b) Pore-throat distribution characteristics
图 8 安塞油田长7段页岩油储层典型样品T2谱及典型样品镜下照片
a—Ⅰ类样品T2谱分布;b—S12样品,Q129井1667.94 m,铸体薄片;c—S17样品,W538井1626.10m,铸体薄片;d—Ⅱ类样品T2谱分布;e—S7样品,H15井1654.05 m,铸体薄片;f—S1样品,D199井1324.95 m,扫描电镜;g—Ⅲ类样品T2谱分布;h—S9样品,H15井1685.49 m,铸体薄片;i—S15样品,W538井1625.00 m,扫描电镜
Figure 8. T2 spectra and microscopic images of typical samples from the shale oil reservoir in the Chang 7 Member, Ansai Oilfield
(a) T2 spectrum distribution of I-type samples; (b) S12, Well Q129, 1667.94 m, cast sheet; (c) S17, Well W538, 1626.1 m, cast sheet; (d) T2 spectrum distribution of Ⅱ-type samples; (e) S7, Well H15, 1654.05 m, cast sheet; (f) S1, Well D199, 1324.95 m, scanning electron microscope; (g) T2 spectrum distribution of Ⅲ-type samples; (h) S9, Well H15, 1685.49 m, cast sheet; (i) S15, Well W538, 1625 m, scanning electron microscope
图 9 联合LTNA和NMR表征安塞油田长7段页岩油储层多尺度孔径分布
a—S10样品,Q129井1622.46 m;b—S7样品,H15井1654.05 m;c—S4样品,D199井1383.20 m
Figure 9. Multiscale pore-size distribution of the Chang 7 shale oil reservoir in the Ansai Oilfield characterized by integrated LTNA and NMR methods
a—S10, Well Q129, 1622.46 m; b—S7, Well H15, 1654.05 m; c—S4, Well D199, 1383.2 m
图 12 安塞地区长7段夹层型页岩油储层典型样品铸体薄片及孔径分布
a—S2样品,D199井,1339.2 m,铸体薄片;b—S2样品NMR孔径分布;c—S2样品,D199井,1339.2 m,铸体薄片;d—S12样品,Q129井,1667.94 m,铸体薄片;e—S12样品NMR孔径分布;f—S15样品NMR孔径分布;g—S15样品,W538井,1625 m,铸体薄片;h—S6样品NMR孔径分布;i—S6样品,H15井1644.17 m,铸体薄片
Figure 12. Thin sections and pore size distribution of typical samples from the Chang 7 interlayered shale oil reservoir in the Ansai area
(a) S2, Well D199, 1339.2 m, cast sheet; (b) S2 nuclear magnetic aperture distribution; (c) S2, Well D199, 1339.2 m, cast sheet; (d) S12, Well Q129, 1667.94 m, cast sheet; (e) S12 nuclear magnetic aperture distribution; (f) S15 nuclear magnetic aperture distribution; (g) S15, Well W538, 1625 m, cast sheet; (h) S6 nuclear magnetic aperture distribution; (i) S6, Well H15, 1644.17 m, cast sheet
图 14 压实损失孔隙度、溶蚀增加孔隙度与各种矿物含量、分选系数以及二者的关系图
a—压实损失孔隙度与石英含量关系图;b—压实损失孔隙度与长石含量关系图;c—压实损失孔隙度与云母含量关系图;d—压实损失孔隙度与岩屑含量关系图;e—压实损失孔隙度与杂基含量关系图;f—压实损失孔隙度与分选系数关系图;g—溶蚀增加孔隙度与长石含量关系图;h—溶蚀增加孔隙度与硅质胶结物含量关系图;i—溶蚀增加孔隙度与压实损失孔隙度关系图
Figure 14. Crossplots of compaction-reduces porosity vs. mineral contents and sorting coefficient, dissolution-enhanced porosity vs. mineral contents, and compaction-reduced porosity vs.dissolution-enhanced porosity
(a) Compaction-induced porosity vs. quartz particle content; (b) Compaction-induced porosity vs. eldspar particle content; (c) Compaction-induced porosity vs. mica content; (d) Compaction-induced porosity vs. detritus content; (e) Compaction-induced porosity vs. matrix content; (f) Compaction-induced porosity vs. separation coefficient; (g) dissolution-enhanced porosity vs. feldspar particle content; (h) dissolution-enhanced porosity vs. siliceous cement content; (i) dissolution-enhanced porosity vs. compaction-induced porosity
表 1 安塞油田长7段致密砂岩样品信息
Table 1. Information on tight sandstone samples from the Chang 7 Member in the Ansai Oilfield
序号 样品编号 井号 深度/m 层位 岩性 孔隙度/% 渗透率/mD 1 S1 D199 1324.95 长71 长石细砂岩 10.681 0.0498 2 S2 D199 1339.20 长72 长石中砂岩 10.428 0.0618 3 S3 D199 1357.33 长72 长石细—中砂岩 9.545 0.0653 4 S4 D199 1383.20 长73 长石细砂岩 5.599 0.0265 5 S5 D199 1399.25 长73 长石细砂岩 5.649 0.0284 6 S6 H15 1644.17 长73 长石细砂岩 3.662 0.0377 7 S7 H15 1654.05 长73 长石细—中砂岩 10.947 0.0457 8 S8 H15 1672.50 长73 长石细砂岩 7.629 0.0195 9 S9 H15 1685.49 长73 长石细—中砂岩 / / 10 S10 Q129 1622.46 长72 长石细—中砂岩 5.683 0.0844 11 S11 Q129 1666.88 长73 长石细砂岩 5.971 0.0995 12 S12 Q129 1667.94 长73 长石细砂岩 6.944 0.1015 13 S13 W538 1620.56 长72 长石细—中砂岩 12.165 0.1367 14 S14 W538 1623.66 长72 长石细砂岩 5.556 0.0469 15 S15 W538 1625.00 长72 长石细砂岩 4.804 0.0227 16 S16 W538 1625.75 长72 长石中砂岩 / / 17 S17 W538 1626.10 长72 长石中砂岩 6.760 0.0225 -
[1] BARRETT E P, JOYNER L G, HALENDA P P, 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 73(1): 373-380. doi: 10.1021/ja01145a126 [2] BJØRLYKKE K, 2014. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 301: 1-14. doi: 10.1016/j.sedgeo.2013.12.002 [3] BRUNAUER S, EMMETT P H, TELLER E, 1938. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 60(2): 309-319. doi: 10.1021/ja01269a023 [4] COATES G R, XIAO L Z, PRAMMER M G 1999. NMR logging principles and applications[M]. HOUSTON: Halliburton Energy Services. [5] DAI B, WEN H Y, REN Z Y, et al., 2021. Microscopic pore characteristics and main controlling factors of Chang 7 tight sandstone in Ansai oilfield[J]. Unconventional Oil & Gas, 8(1): 51-59. (in Chinese with English abstract [6] FANG Y, ZHANG W Y, MA F, et al., 2019. Research on the global distribution and development status of shale oil[J]. Conservation and Utilization of Mineral Resources, 39(5): 126-134. (in Chinese with English abstract [7] FU J H, LI S X, NIU X B, et al., 2020. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 47(5): 870-883. (in Chinese with English abstract [8] FU J H, GUO W, LI S X, et al., 2021. Characteristics and exploration potential of muti-type shale oil in the 7th member of Yanchang formation, Ordos Basin[J]. Natural Gas Geoscience, 32(12): 1749-1761. (in Chinese with English abstract [9] FU Q M, 2022. Evaluation and optimization of Chang 7 tight sandstone reservoir in Zhijing-Ansai area, Ordos Basin[D]. Jingzhou: Yangtze University, doi: 10.26981/d.cnki.gjhsc.2022.000177. (in Chinese with English abstract [10] GUO S Q, XIAO D S, LU S F, et al., 2016. Quantificational characterization of tight reservoir pore size distribution of Shahezi Formation in Xujiaweizi Fault Depression[J]. Journal of Central South University (Science and Technology), 47(11): 3742-3751. (in Chinese with English abstract [11] JIANG Z X, ZHANG W Z, LIANG C, et al., 2016. Basic characteristics and evaluation of shale oil reservoirs[J]. Petroleum Research, 1(2): 149-163. doi: 10.1016/S2096-2495(17)30039-X [12] JIAO F Z, ZOU C N, YANG Z, 2020. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 47(6): 1147-1159. doi: 10.1016/S1876-3804(20)60125-8 [13] KLEINBERG R L, HORSFIELD M A, 1990. Transverse relaxation processes in porous sedimentary rock[J]. Journal of Magnetic Resonance, 88(1): 9-19, doi: 10.1016/0022-2364(90)90104-H [14] LAI J, WANG G W, RAN Y, et al., 2016. Impact of diagenesis on the reservoir quality of tight oil sandstones: the case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 145: 54-65. doi: 10.1016/j.petrol.2016.03.009 [15] LI J B, LU S F, JIANG C Q, et al., 2019. Characterization of shale pore size distribution by NMR considering the influence of shale skeleton signals[J]. Energy & Fuels, 33(7): 6361-6372. [16] LIU X Y, LI S X, ZHOU X P, et al., 2023. New fields, new types and resource potentials of petroleum exploration in Ordos Basin[J]. Acta Petrolei Sinica, 44(12): 2070-2090. (in Chinese with English abstract [17] MORRISS C, ROSSINI D, STRALEY C, et al., 1997. Core analysis by low-field NMR[J]. The Log Analyst, 38(2): 84-93. [18] PETTIJOHN F J, 1975. Sedimentary rocks[M]. 2nd ed. New York: Harper and Row: 628. [19] QIAO J C, ZENG J H, JIANG S, et al., 2020. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: implications for macroscopic and microscopic heterogeneities[J]. Marine and Petroleum Geology, 111: 279-300. doi: 10.1016/j.marpetgeo.2019.08.008 [20] SHEN C H, ZHOU X F, GUO W, 2018. Analysis on densification process of Chang 6 Sandstones in western Ordos Basin[J]. Journal of Geomechanics, 24(6): 776-784. (in Chinese with English abstract [21] SING K S W, EVERETT D H, HAUL R A W, et al., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 57(4): 603-619. doi: 10.1351/pac198557040603 [22] TIAN W C, LU S F, HUANG W B, et al., 2020. Quantifying the control of pore types on fluid mobility in low-permeability conglomerates by integrating various experiments[J]. Fuel, 275: 117835. doi: 10.1016/j.fuel.2020.117835 [23] WANG G M, ZHU X Y, LIU H, et al., 2024. The application of sedimentary microfacies on the fracability of tight sandstone reservoir in Chang 7 member of Longdong area in the Ordos Basin[J]. Journal of Geomechanics, 30(6): 893-905. (in Chinese with English abstract [24] WANG Q R, TAO S Z, GUAN P, 2020. Progress in research and exploration & development of shale oil in continental basins in China[J]. Natural Gas Geoscience, 31(3): 417-427. (in Chinese with English abstract [25] WANG X, HE S, JONES S J, et al., 2019. Overpressure and its positive effect in deep sandstone reservoir quality of Bozhong Depression, offshore Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 182: 106362. doi: 10.1016/j.petrol.2019.106362 [26] WANG Z Y, FU J H, LIU X Y, et al., 2023. The influence of hydrothermal activities on shale oil reservoirs during the burial period of the Upper Triassic Chang 7 Member, Ordos Basin[J]. Oil & Gas Geology, 44(4): 899-909. (in Chinese with English abstract [27] WANG Z Y, DONG L, JIN Z J, et al., 2024. Efforts to untie the multicollinearity knot and identify factors controlling macropore structures in shale oil reservoirs[J]. Advances in Geo-Energy Research, 11(3): 194-207. doi: 10.46690/ager.2024.03.04 [28] WANG Z Y, DONG L, JIN Z J, et al., 2025. Shale pore investigation beyond the practical pore resolution limits of scanning electron microscopy[J]. Energy & Fuels, 39(11): 5312-5327. [29] WASHBURN E W, 1921. The dynamics of capillary flow[J]. Physical Review, 17(3): 273-283. doi: 10.1103/PhysRev.17.273 [30] WEN Z G, LUO Y S, LIU J Y, et al., 2022. Pore structure characteristics and genetic mechanism of Triassic Chang 7 shale oil reservoir in Longdong area[J]. Lithologic Reservoirs, 34(6): 47-59. (in Chinese with English abstract [31] YAN Y M, ZHANG L Q, LUO X R, et al., 2023. Influence of the grain shape and packing texture on the primary porosity of sandstone: insights from a numerical simulation[J]. Sedimentology, 70(6): 1856-1885. doi: 10.1111/sed.13098 [32] YANG W L, LI X Y, XU Z, et al., 2019. Shale oil resources assessment for the member Chang 7 in Ansai area of Ordos Basin[J]. Marine Geology Frontiers, 35(4): 48-56. (in Chinese with English abstract [33] YU Y M, WEN Z G, 2017. Characteristics and comprehensive evaluation of chang 31 reservoirs of Yanchang Group in Shishe area, Ordos Basin[J]. Journal of Geomechanics, 23(4): 577-584. (in Chinese with English abstract [34] ZHANG C, SUN W, GAO H, et al., 2014. Quantitative calculation of sandstone porosity evolution based on thin section data: a case study from Chang8 reservoir of Huanjiang area, Ordos Basin[J]. Acta Sedimentologica Sinica, 32(2): 365-375. (in Chinese with English abstract [35] ZHANG D Z, 2017. Characterization of microscopic pore structure of tight sandstone reservoirs through nitrogen adsorption experiment: case study of Shahezi Formation in Xujiaweizi Fault Depression, Songliao Basin, China[J]. Natural Gas Geoscience, 28(6): 898-908. (in Chinese with English abstract [36] ZHANG P F, LU S F, LI J Q, et al., 2017. Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the Dongying Depression, Bohai Bay Basin, China[J]. Energy & Fuels, 31(9): 9232-9239. [37] ZHANG P F, 2019. Research on shale oil reservoir, occurrence and movability using nuclear magnetic resonance (NMR)[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract [38] ZHAO H W, NING Z F, WANG Q, et al., 2015. Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry[J]. Fuel, 154: 233-242. doi: 10.1016/j.fuel.2015.03.085 [39] ZHAO X, LIU B, GUO R T, et al., 2017. Reservoir characterization and its application to development[J]. Petroleum Geology and Experiment, 39(2): 287-294. (in Chinese with English abstract [40] ZHAO Z Y, GUO Y R, WANG Y, et al., 2012. Study progress in tectonic evolution and paleogeography of Ordos Basin[J]. Special Oil and Gas Reservoirs, 19(5): 15-20. (in Chinese) [41] ZOU C N, PAN S Q, JING Z H, et al., 2020. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 41(1): 1-12. (in Chinese with English abstract doi: 10.1038/s41401-019-0299-4 [42] 代波,温怀英,任志远,等,2021. 安塞地区长7致密砂岩孔隙发育特征及其主控因素[J]. 非常规油气,8(1):51-59. [43] 方圆,张万益,马芬,等,2019. 全球页岩油资源分布与开发现状[J]. 矿产保护与利用,39(5):126-134. [44] 付金华,李士祥,牛小兵,等,2020. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发,47(5):870-883. doi: 10.11698/PED.2020.05.03 [45] 付金华,郭雯,李士祥,等,2021. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,32(12):1749-1761. [46] 付清萌,2022. 鄂尔多斯盆地志靖—安塞地区延长组7段致密砂岩储层评价与优选[D]. 荆州:长江大学,doi: 10.26981/d.cnki.gjhsc.2022.000177. [47] 刘显阳,李士祥,周新平,等,2023. 鄂尔多斯盆地石油勘探新领域、新类型及资源潜力[J]. 石油学报,44(12):2070-2090. doi: 10.7623/syxb202312005 [48] 沈崇辉,周晓峰,郭伟,2018. 鄂尔多斯盆地西部长6砂岩致密化过程分析[J]. 地质力学学报,24(6):776-784. doi: 10.12090/j.issn.1006-6616.2018.24.06.080 [49] 王冠民,祝新怡,刘海,等,2024. 沉积微相在致密砂岩可压裂性分析中的应用:以鄂尔多斯盆地陇东地区延长组7段为例[J]. 地质力学学报,30(6):893-905. doi: 10.12090/j.issn.1006-6616.2024004 [50] 王倩茹,陶士振,关平,2020. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学,31(3):417-427. [51] 文志刚,罗雨舒,刘江艳,等,2022. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏,34(6):47-59. doi: 10.12108/yxyqc.20220604 [52] 杨维磊,李新宇,徐 志,等,2019. 鄂尔多斯盆地安塞地区长7段页岩油资源潜力评价[J]. 海洋地质前沿,35(4):48-56. [53] 喻雅敏,文志刚,2017. 鄂尔多斯盆地什社地区延长组长31储层特征及评价[J]. 地质力学学报,23(4):577-584. doi: 10.3969/j.issn.1006-6616.2017.04.009 [54] 张创,孙卫,高辉,等,2014. 基于铸体薄片资料的砂岩储层孔隙度演化定量计算方法:以鄂尔多斯盆地环江地区长8储层为例[J]. 沉积学报,32(2):365-375. [55] 张鹏飞,2019. 基于核磁共振技术的页岩油储集、赋存与可流动性研究[D]. 青岛:中国石油大学(华东). [56] 赵习,刘波,郭荣涛,等,2017. 储层表征技术及应用进展[J]. 石油实验地质,39(2):287-294. doi: 10.11781/sysydz201702287 [57] 赵振宇,郭彦如,王艳,等,2012. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏,19(5):15-20. doi: 10.3969/j.issn.1006-6535.2012.05.004 [58] 邹才能,潘松圻,荆振华,等,2020. 页岩油气革命及影响[J]. 石油学报,41(1):1-12. doi: 10.7623/syxb202001001 -