留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南秦岭佛坪穹隆南缘韧性剪切带构造变形及其年代学研究

余坷成 孙圣思 董云鹏 惠博 程超 张彬 张一宁 李欣雨

余坷成,孙圣思,董云鹏,等,2025. 南秦岭佛坪穹隆南缘韧性剪切带构造变形及其年代学研究[J]. 地质力学学报,31(3):386−410 doi: 10.12090/j.issn.1006-6616.2025008
引用本文: 余坷成,孙圣思,董云鹏,等,2025. 南秦岭佛坪穹隆南缘韧性剪切带构造变形及其年代学研究[J]. 地质力学学报,31(3):386−410 doi: 10.12090/j.issn.1006-6616.2025008
YU K C,SUN S S,DONG Y P,et al.,2025. Structural deformation and geochronology of the ductile shear zone along the southern margin of the Foping dome, South Qinling[J]. Journal of Geomechanics,31(3):386−410 doi: 10.12090/j.issn.1006-6616.2025008
Citation: YU K C,SUN S S,DONG Y P,et al.,2025. Structural deformation and geochronology of the ductile shear zone along the southern margin of the Foping dome, South Qinling[J]. Journal of Geomechanics,31(3):386−410 doi: 10.12090/j.issn.1006-6616.2025008

南秦岭佛坪穹隆南缘韧性剪切带构造变形及其年代学研究

doi: 10.12090/j.issn.1006-6616.2025008
基金项目: 国家自然科学基金项目(42330310,42372257)
详细信息
    作者简介:

    余坷成(1999—),男,在读硕士,从事构造地质学方向研究。Email:15695431357@163.com

    通讯作者:

    孙圣思(1985—),女,博士,教授,从事构造地质学、岩石流变学方向研究。Email:shsun@nwu.edu.cn

  • 中图分类号: P548;P597+.3

Structural deformation and geochronology of the ductile shear zone along the southern margin of the Foping dome, South Qinling

Funds: This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42330310 and 42372257)
  • 摘要: 秦岭造山带中段佛坪地区集中发育麻粒岩−混合岩−片麻岩穹隆,是研究大陆地壳变质变形和秦岭中生代构造演化的关键地区。秧田坝−十亩地韧性剪切带位于佛坪穹隆南部,记录了晚三叠世末挤压伸展转换阶段中的中—深构造层次变质变形的信息,能够为探讨佛坪穹隆隆升机制提供依据。文章通过构造解析、矿物地球化学、矿物晶格优选方位以及年代学等手段对剪切带典型变质变形岩石样品展开研究。野外观测以及运动学涡度分析指示剪切带发育受控于纯剪切作用的右行韧性剪切变形。长英质糜棱岩中石英主要发育柱面<a>滑移系与柱面<c>滑移系,表明变形发生在约550~650 ℃的角闪岩相条件下。变质矿物组合特征以及石榴子石−黑云母−斜长石温压计的计算结果指示顺时针的PT路径,峰期变质条件为568~611 ℃/5.2~5.3 kbar,630~654 ℃/7.1~7.9 kbar,等温降压阶段M2的温压条件为590~616 ℃/3.5~4.5 kbar。剪切带中混合岩化浅色体锆石U-Pb测年结果为 180.8 ± 3.8 Ma,代表韧性剪切变形的下限。结合区域地质资料,研究认为南秦岭佛坪地区经历的变质变形作用如下:~210 Ma以前该区处于碰撞造山阶段,强烈地壳增厚形成递进变质事件(M1);210~200 Ma期间佛坪地区进入由碰撞造山向碰撞后伸展的构造体制转换阶段,水平缩短与垂向垮塌的双向应力导致佛坪南缘秧田坝−十亩地地区发育韧性剪切变形(D1),并开始发生等温降压变质事件M2;到~180 Ma,该区进入碰撞后伸展阶段,在区域北段发生减压部分熔融;随后在韧性剪切带折返过程中,糜棱面理进一步受到晚期褶皱变形(D2)的改造。研究成果可为探讨佛坪穹隆南部在晚三叠世—早侏罗世构造转换过程中变质变形响应细节过程提供参考。

     

  • 图  1  秦岭造山带与佛坪区域地质图

    a—秦岭造山带区域构造位置;b—秦岭造山带大地构造格架(据Dong and Santosh,2016修改);c—佛坪地区地质简图,黑色虚线上数字代表糜棱面理的倾角,三角形代表倾向(据自陕西省地质矿产局,1989修改);d—龙草坪到十亩地村构造剖面图(A−A’,图内地层产状用折线与数字表达,横线上方数字表示倾向,横线下方数字表示倾角)

    Figure  1.  Regional geological map of the Qinling orogenic belt and the Foping area

    (a) Regional tectonic setting of the Qinling orogenic belt; (b) Simplified regional tectonic framework of the Qinling orogenic belt,the numbers on the black dashed line represent the dip angles of the mylonitic foliation, while the triangles indicate the dip directions (modified after Dong and Santosh, 2016); (c) Simplified geological map of the Foping area (modified after Shaanxi Provincial Bureau of Geology and Mineral Resources, 1989); (d) Structural cross-section from Longcaoping to Shimudi Village (A–A’; in Fig.4d, stratum attitudes are shown as "dip direction/dip angle")

    图  2  秧田坝−十亩地韧性剪切带地质图

    a—秧田坝−十亩地剪切带地质简图以及锆石年代学数据(剪切带迹线以及黑色虚线上数字代表糜棱面理的倾角,三角形代表倾向);b—剪切带十亩地段构造剖面图、产状下半球投影以及样品在构造剖面中的位置;c—剪切带秧田坝段构造剖面图、产状下半球投影以及样品在构造剖面中的位置

    Figure  2.  Geological map of the Yangtianba–Shimudi ductile shear zone

    (a) Simplified geological map of the Yangtianba–Shimudi shear zone and geochronological data of zircon,the numbers along the shear zone and black dashed line indicate the dip angles of the mylonitic foliation and the triangles represent the dip directions; (b) Structural profile of the Shimudi segment in the shear zone, lower hemisphere projection of attitudes, and sample locations within the structural profile; (c) Structural profile of the Yangtianba segment in the shear zone, lower hemisphere projection of attitudes, and sample locations within the structural profile

    图  3  秧田坝–十亩地剪切带内剪切变形与褶皱变形

    Grt—石榴子石;Bt—黑云母;PI—斜长石;Q—石英黄色虚线箭头代表矿物拉伸线理;黄色虚线表示大理岩或石英片岩单元中变质面理或残留体轮廓;橙色虚线代表透入性糜棱面理;“S2”代表糜棱面理;“S3”代表由晚期褶皱轴面或褶劈理a—长英质糜棱岩矿物拉伸线理; b—钙质糜棱岩形成右行不对称褶皱与S-C组构,照片拍摄镜头向南; c—长英质糜棱岩D2期褶皱变形(图e展示糜棱面理发生褶皱变形,糜棱面理S2产状在等面积下半球赤平投影图中用大弧表示); d—长英质糜棱岩D2期褶皱变形; e—钙质糜棱岩右行不对称褶皱,照片拍摄镜头向北; f—混合岩化浅色体形成石香肠线理; g—钙质糜棱岩D2期褶皱变形与面理置换; h—长英质糜棱岩D2期褶皱变形与面理置换。

    Figure  3.  Shear deformation and fold deformation within the Yangtianba–Shimudi shear zone

    (a) Mineral stretching lineation in felsic mylonite; (b) Calcareous mylonite showing dextral asymmetric folds and S-C fabrics (photo view to south); (c) D₂-phase fold deformation in felsic mylonite (Fig. e shows folded mylonitic foliation S₂, represented by great arcs in lower-hemisphere equal-area stereoplot); (d) D₂-phase fold deformation in felsic mylonite; (e) Dextral asymmetric folds in calcareous mylonite (photo view to north); (f) Boudinage lineation formed in migmatized leucosome; (g) D₂-phase fold deformation and foliation transposition in calcareous mylonite; (h) D₂-phase fold deformation and foliation transposition in felsic mylonite. Yellow dashed arrows represent mineral stretching lineation; Yellow dashed lines represent early metamorphic foliation or relict boundaries in marble/quartz schist units; Orange dashed lines represent pervasive mylonitic foliation; "S2" represents mylonitic foliation; "S3" represents late-stage axial planar foliation or crenulation cleavage.Grt: garnet; Bt: biotite; PI: plagioclase; Q: quartz

    图  4  糜棱岩样品显微照片

    Grt—石榴子石; St—十字石; Bt—黑云母; Pl—斜长石; Ms—白云母; Q—石英; Ilm—钛铁矿; Sil—矽线石a—样品23FP-33B的矿物组合特征及其糜棱面理; b—样品24FP-6B中石榴石发育平行面理包迹; c—样品24FP-6B中十字石斑晶与毛发状或针柱状矽线石共生; d—样品24FP-6B中十字石斑晶两翼形成不对称压力影; e—样品23FP-15B中石英发育颗粒边界迁移动态重结晶特征; f—样品23FP-15B中石英、长石以及黑云母定向排列组成糜棱面理; g—样品24FP-8B中石榴子石两侧见不对称压力影; h—样品24FP-8B中石英、长石以及黑云母定向排列组成糜棱面理

    Figure  4.  Photomicrographs of mylonite samples

    (a) Mineral assemblage and mylonitic foliation in sample 23FP-33B; (b) Garnet with S-parallel inclusion trails in sample 24FP-6B; (c) Staurolite porphyroblast coexisting with fibrolitic/needle-like sillimanite in sample 24FP-6B; (d) Asymmetric pressure shadows flanking staurolite porphyroblast in sample 24FP-6B; (e) Grain boundary migration dynamic recrystallization in quartz from sample 23FP-15B; (f) Mylonitic foliation defined by preferred orientation of quartz, feldspar, and biotite in sample 23FP-15B; (g) Asymmetric pressure shadows adjacent to garnet in sample 24FP-8B; (h) Mylonitic foliation defined by aligned quartz, feldspar, and biotite in sample 24FP-8B. (Mineral abbreviations: Grt–garnet; St–staurolite; Bt–biotite; Pl–plagioclase; Ms–muscovite; Q–quartz; Ilm–ilmenite; Sil– sillimanite)

    图  5  糜棱岩样品矿物电子探针矿物化学分析结果

    Grt—石榴子石;Bt—黑云母;Pl—斜长石;Q—石英;Ilm—钛铁矿a—样品24FP-6B的变质矿物组合;b—样品24FP-6B中石榴子石成分剖面(图中Alm、Sps、Py、Grs分别代表铁铝榴石、锰铝榴石、镁铝榴石、钙铝榴石,该图纵坐标代表上述石榴子石端元的占比);c—样品23FP-33B的变质矿物组合;d—样品23FP-33B中石榴子石成分剖面;e—长石An-Ab-Or分类图解;f—黑云母Mg-(AlVI + Fe3+ + Ti)-(Fe2+ + Mn)分类图解(Foster,1960);g—黑云母10TiO-FeO*-MgO(FeO* = FeO + MnO)成因分类图解(Nachit et al.,2005

    Figure  5.  Electron probe microanalysis (EPMA) results of mineral chemistry in mylonite samples

    (a) Metamorphic mineral assemblage of sample 24FP-6B; (b) Compositional profile of garnet in sample 24FP-6B,Alm、Sps、Py、 and Grs represent the garnet endmembers almandine, spessartine, pyrope, and grossular, the vertical axis of the plot indicates the proportion (%) of these garnet endmembers; (c) Metamorphic mineral assemblage of sample 23FP-33B; (d) Compositional profile of garnet in sample 23FP-33B; (e) An–Ab–Or classification diagram for feldspar; (f) Mg–(AlVI + Fe³⁺ + Ti)–(Fe²⁺ + Mn) classification diagram for biotite (Foster, 1960) ; (g) 10TiO₂–FeO–MgO (FeO = FeO + MnO) genetic discrimination diagram for biotite (Nachit et al., 2005). Grt–garnet; Bt–biotite; Pl–plagioclase; Q–quartz; Ilm–ilmenite

    图  6  十亩地秧田坝剪切带糜棱岩样品中石英和黑云母EBSD组构的等面积下半球极射赤平投影图

    X轴代表面理方向;β角为面理与c-轴极大值的法线的连线(白色虚线)之间的夹角;N为测试点数;Max D为最大密度;色标代表密度变化

    Figure  6.  Fabric diagrams of quartz and biotite in mylonite samples from the Shimudi–Yangtianba shear zone and the lower hemisphere equal-area stereographic projections The X-axis represents the foliation direction, β is the angle between the foliation and the normal to the c-axis maximum (white dashed line), N denotes the number of measurement points, Max D indicates the maximum density, color scale represents variations in density

    图  7  运动学涡度与有限应变分析结果

    a—Flinn有限应变判别图解; b—非共轴右行剪切带瞬时流动单元方位(Cheng et al.,2022),其中α为2组流面的夹角,η为最大瞬时伸长轴(ISAmax)和剪切边界(A1、A2)之间的夹角,橙色箭头代表物质运动轨迹,红色箭头代表剪切方向,黑色箭头代表区域挤压应力方向;c—涡度值与剪切分量占比关系图解(Law et al.,2004);d—运动学涡度值与角η(或α)之间的关系图解(转换挤压以及转换伸展分别翻译自“transpression”与“transtension”)

    Figure  7.  Results of kinematic vorticity and finite strain analysis

    (a) Flinn diagram for finite strain analysis; (b) Orientation of instantaneous flow units in a non-coaxial dextral shear zone (Cheng et al., 2022), where α represents the angle between two flow planes, and η denotes the angle between the maximum instantaneous stretching axis (ISAmax) and the shear zone boundary, the orange arrows represent the material movement trajectoriesthe, the red arrows indicate the shear direction, the black arrow represents the direction of regional extrusion stress; (c) Diagram illustrating the relationship between vorticity values and the proportion of shear components (Law et al., 2004); (d) Diagram showing the relationship between kinematic vorticity number (Wk) and angle η (or α).

    图  8  浅色体野外露头特征与锆石U-Pb年代学结果

    a—样品23FP-17采样点宏观野外露头特征; b—混合岩化浅色体样品(23FP-17)与糜棱岩带接触关系图;c—测试样品锆石U-Pb年龄谐和图、加权平均年龄图、样品锆石典型锆石阴极发光图像;d—样品23FP-17的变质锆石U-Pb年龄谐和图

    Figure  8.  Characteristics of leucosomes in outcrops and results of zircon U-Pb geochronology

    (a) Macroscopic outcrop characteristics at the sampling site 23FP-17; (b) Contact relationship between the migmatitic leucosome sample (23FP-17) and the mylonite zone; (c) Concordia diagram, weighted average age plot, and representative cathodoluminescence (CL) images of zircon grains from the analyzed samples; (d) U–Pb concordia diagram of metamorphic zircon from sample 23FP-17

    图  9  秧田坝−十亩地韧性剪切带及临区变质岩样品PTt轨迹与变质变形示意图

    Grt—石榴子石;St—十字石;Bt—黑云母;Pl—斜长石;Ms—白云母;Q—石英;Ilm—钛铁矿;Sil—矽线石灰色PT轨迹:1—蓝晶石片岩,佛坪穹隆(魏春景等,1998);2—麻粒岩,佛坪穹隆核部(You et al.,2024);3—泥质片岩,佛坪穹隆外围盖层(You et al.,2024);(4)佛坪穹隆变质沉积盖层(翟刚毅,2000);a—此次研究样品24FP-6B以及佛坪穹隆核部与盖层的PT轨迹成果汇总(Ky代表蓝晶石域;And代表红柱石域;Sil代表矽线石域;图中各色虚线箭头代表PT轨迹);b—糜棱岩样品24FP-8B与23FP-33B的PT轨迹;c—样品进变质过程M1中的主要矿物组合;d—样品等温降压过程M2中的主要矿物组合;e—糜棱面理S2被晚期面理S3置换

    Figure  9.  P–T–t paths of metamorphic rocks from the Yangtianba–Shimudi ductile shear zone and adjacent areas and sketches of the metamorphism–deformation relationships

    (a) Compiled P–T trajectories for sample 24FP-6B and the core-cover sequence of the Foping dome (Ky represents the kyanite stability field; And represents the andalusite stability field; Sil represents the sillimanite stability field;The orange, magenta, and green dashed arrows in the diagram represent P–T paths.); (b) P–T paths of mylonite samples 24FP-8B and 23FP-33B; (c) Representative mineral assemblages during the prograde metamorphic stage (M1) of the samples; (d) Characteristic mineral assemblages during the isothermal decompression stage (M2) of the samples; (e) Structural relationship showing the overprint of the mylonitic foliation S2 by the later foliation S3 Gray P–T trajectories 1: Kyanite schist, Foping dome (Wei et al.,1998); 2: Granulite, core of the Foping dome (You et al.,2024); 3: Pelitic schist, peripheral cover of the Foping dome (You et al.,2024); 4: Metasedimentary cover of the Foping dome (Zhai,2000); Mineral abbreviations: Grt–garnet; St–staurolite; Bt–biotite; Pl–plagioclase; Ms– muscovite; Q–quartz; Ilm–ilmenite; Sil–sillimanite

    图  10  秧田坝−十亩地韧性剪切带变质变形演化

    灰色箭头代表不同构造演化阶段挤压或伸展的应力背景a—碰撞造山阶段,佛坪地区发育递进变质作用(M1); b—构造体制转换阶段,等温降压变质事件M2与韧性剪切带的形成;c—区域完全进入碰撞后伸展阶段,发育减压部分熔融,随后在晚期中高级变质岩折返过程叠加面理置换

    Figure  10.  Metamorphic and deformational evolution of the Yangtianba–Shimudi ductile shear zone

    (a) The collisional orogenic stage during which the Foping area underwent progressive metamorphism (M1); (b) The tectonic regime transitional stage marked by the isothermal decompression metamorphic event (M2) and the development of ductile shear zones; (c) The regional transition into a post-collisional extensional regime, characterized by decompression-induced partial melting, followed by foliation transposition during the exhumation of late-stage mid- to high-grade metamorphic rocks; The gray arrows represent the stress regimes (compression or extension) during different stages of tectonic evolution.

    表  1  糜棱岩样品矿物温压计峰期与退变质阶段温压条件计算结果

    Table  1.   Peak and retrograde metamorphic conditions of mylonite samples calculated using mineral thermobarometers

    样品号 温度/℃ 压力/kbar
    峰期 退变质 峰期 退变质
    23FP-33B 568~582 590~592 4.8~5.2 3.5~4.5
    24FP-6B 604~611 593~616 5.2~5.3 3.8~4.4
    24FP-8B 630~654 7.1~7.8
    下载: 导出CSV

    表  2  糜棱岩样品有限应变计算结果

    Table  2.   Calculation of finite strain in mylonite samples

    剖面样品号岩性Y/ZX/YK(Fillin参数)
    十亩地23FP-33B长英质糜棱岩1.071.391.95
    24FP-6B长英质糜棱岩1.261.574.87
    秧田坝24FP-8B长英质糜棱岩1.131.302.11
    下载: 导出CSV

    表  3  十亩地-秧田坝韧性剪切带样品运动学涡度

    Table  3.   Kinematic vorticity of mylonite samples in the Shimudi–Yangtianba ductile shear zone

    剖面 样品号 石英活动滑移系 运动学涡度
    RXZ β/(°) Wk η/(°)
    十亩地 23FP-33B 柱面<a>滑移 1.48 11.80 0.49 14.51
    24FP-6B 柱面<a>滑移 1.98 6.67 0.34 9.84
    秧田坝 24FP-8B 柱面<c>和柱面<a>滑移 1.47 9.85 0.41 12.06
    23FP-15B 柱面<c>和柱面<a>滑移 1.41 6.76 0.28 8.14
    下载: 导出CSV
  • [1] BROWNLEE S J, HACKER B R, SALISBURY M, et al., 2011. Predicted velocity and density structure of the exhuming Papua New Guinea ultrahigh‐pressure terrane[J]. Journal of Geophysical Research: Solid Earth, 116(B8): B08206.
    [2] CHENG C, SUN S S, DONG Y P, et al., 2022. Exhumation of plutons controlled by boundary faults: insights from the kinematics, microfabric, and geochronology of the Taibai shear zone, Qinling Orogen, China[J]. Geological Society of America Bulletin, 134(11-12): 2723-2744. doi: 10.1130/B36073.1
    [3] CHEN H, HU J M, WU G L, et al., 2010. Study on the intracontinental deformation of the Mian–Lue suture belt, western Qiling[J]. Acta Petrologica Sinica, 26(4): 1277-1288. (in Chinese with English abstract
    [4] CHEN L Y, LIU Z H, LIU X C, et al., 2019. Metamorphism and its relation of Magmatism of the Foping gneiss dome in the South Qinling tectonic belt[J]. Earth Science, 44(12): 4178-4185. (in Chinese with English abstract
    [5] CHEN S Y, ZHANG B, ZHANG J J, et al., 2022. Tectonic transformation from orogen-perpendicular to orogen-parallel extension in the North Himalayan Gneiss Domes: evidence from a structural, kinematic, and geochronological investigation of the Ramba gneiss dome[J]. Journal of Structural Geology, 155: 104527. doi: 10.1016/j.jsg.2022.104527
    [6] DAS J P, BHATTACHARYYA K, MOOKERJEE M, et al., 2016. Kinematic analyses of orogen–parallel L–tectonites from Pelling–Munsiari thrust of Sikkim Himalayan fold thrust belt: insights from multiple, incremental strain markers[J]. Journal of Structural Geology, 90: 61-75. doi: 10.1016/j.jsg.2016.07.005
    [7] DAS J P, BHATTACHARYYA K, MAMTANI M A, 2021. A kinematic approach for investigating magnetic and strain fabrics from constrictional and flattening domains of shear zones in Sikkim Himalayan fold thrust belt[J]. Journal of Structural Geology, 149: 104388. doi: 10.1016/j.jsg.2021.104388
    [8] DEWEY J F, HOLDSWORTH R E, STRACHAN R A, 1998. Transpression and transtension zones[M]//HOLDSWORTH R E, STRACHAN R A, DEWEY J F. Continental transpressional and transtensional tectonics. London: Geological Society, London, Special Publications, 135(1): 1-14.
    [9] DONG Y P, ZHANG G W, NEUBAUER F, et al., 2011. Tectonic evolution of the Qinling Orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002
    [10] DONG Y P, LIU X M, ZHANG G W, et al., 2012. Triassic diorites and granitoids in the Foping area: constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 47: 123-142. doi: 10.1016/j.jseaes.2011.06.005
    [11] DONG Y P, SANTOSH M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009
    [12] DONG Y P, ZHANG G W, SUN S S, et al., 2019. The “cross–tectonics” in China continent: formation, evolution, and its significance for continental dynamics[J]. Journal of Geomechanics, 25(5): 769-797. (in Chinese with English abstract
    [13] DONG Y P, SUN S S, SANTOSH M, et al., 2021. Central China Orogenic Belt and amalgamation of East Asian continents[J]. Gondwana Research, 100: 131-194. doi: 10.1016/j.gr.2021.03.006
    [14] FLINN D, 1962. On folding during three–dimensional progressive deformation[J]. Quarterly Journal of the Geological Society, 188(1-4): 385-428.
    [15] FOSSEN H, TIKOFF B, 1993. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression–transtension tectonics[J]. Journal of Structural Geology, 15(3-5): 413-422. doi: 10.1016/0191-8141(93)90137-Y
    [16] FOSSEN H, 2016. Structural geology[M]. Cambridge: Cambridge University Press.
    [17] FOSSEN H, CAVALCANTE G C G, 2017. Shear zones–a review[J]. Earth-Science Reviews, 171: 434-455. doi: 10.1016/j.earscirev.2017.05.002
    [18] FOSTER M D, 1960. Interpretation of the composition of trioctahedral micas[R]. Washington: United States Government Printing Office.
    [19] FRY N, 1979. Random point distributions and strain measurement in rocks[J]. Tectonophysics, 60(1-2): 89-105. doi: 10.1016/0040-1951(79)90135-5
    [20] HAN Y G, YAN D P, LI Z L, 2015. A new solution for finite strain measurement by fry method in the CorelDRAW platform[J]. Geoscience, 29(3): 494-500. (in Chinese with English abstract
    [21] HE Z J, NIU B G, REN J S, 2005. Tectonic discriminations of sandstones geochemistry from the middlelate devonian liuling group in Shanyang area, southern Shaanxi[J]. Chinese Journal of Geology, 40(4): 594-607. (in Chinese with English abstract
    [22] HOLDAWAY M J, 2000. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer[J]. American Mineralogist, 85(7-8): 881-892. doi: 10.2138/am-2000-0701
    [23] HU F Y, LIU S W, DUCEA M N, et al., 2020. Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: implications for oblique continental collision[J]. Gondwana Research, 88: 296-332. doi: 10.1016/j.gr.2020.07.006
    [24] HU L, LIU J L, JI M, et al. , 2009. Deformation microstructure identification manual[M]. Beijing: Geology Press. (in Chinese)
    [25] JI S C, SHAO T B, MICHIBAYASHI K, et al., 2015. Magnitude and symmetry of seismic anisotropy in mica– and amphibole–bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 120(9): 6404-6430. doi: 10.1002/2015JB012209
    [26] JIANG Y H, JIN G D, LIAO S Y, et al., 2010. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014
    [27] LAW R D, SEARLE M P, SIMPSON R L, 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet[J]. Journal of the Geological Society, 161(2): 305-320. doi: 10.1144/0016-764903-047
    [28] LAW R D, 2014. Deformation thermometry based on quartz c–axis fabrics and recrystallization microstructures: a review[J]. Journal of structural Geology, 66: 129-161. doi: 10.1016/j.jsg.2014.05.023
    [29] LI J Y, WANG Z Q, ZHAO M, 1999. 40Ar/39Ar thermochronological constraints on the timing of collisional orogeny in the Mian–Lüe collision belt, southern Qinling Mountains[J]. Acta Geologica Sinica (English Edition), 73(2): 208-215. doi: 10.1111/j.1755-6724.1999.tb00828.x
    [30] LI J Y, ZHANG J, LIU J F, et al., 2019. Crustal tectonic framework of China and its formation processes: constraints from stuctural deformation[J]. Journal of Geomechanics, 25(5): 678-698. (in Chinese with English abstract
    [31] LI S K, ZHANG Y Q, JI J Q, et al., 2022. Orogen–parallel mid–lower crustal ductile flow during the late Triassic Qinling orogeny: structural geology and geochronology[J]. International Geology Review, 64(11): 1611-1634. doi: 10.1080/00206814.2021.1949639
    [32] LI Z Q, ZHANG B, GUO L, et al., 2024. Slab tear of subducted Indian lithosphere beneath the eastern Himalayan Syntaxis region[J]. Tectonics, 43(7): e2024TC008248. doi: 10.1029/2024TC008248
    [33] LIU S W, YANG P T, LI Q G, et al., 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling Orogen, China[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1928-1943. (in Chinese with English abstract
    [34] LIU Z H, LUO M, CHEN L Y, et al., 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: constraints from LA–ICP–MS U–Pb dating of detrital zircons from the metasedimentary rocks[J]. Acta Petrologica Sinica, 34(5): 1484-1502. (in Chinese with English abstract
    [35] LIU Z H, CHEN L Y, QU W, et al., 2019. Early Mesozoic metamorphism, Anataxis and deformation of Foping area in South Qinling belt: constrains from U–Pb Zircon dating[J]. Acta Geoscientica Sinica, 40(4): 545-562. (in Chinese with English abstract
    [36] LIU Z H, LIU X C, CHEN L Y, et al., 2024. Zircon U–Pb dating of the Dizhuanggou Formation, Changjiaoba Group in the South Qinling Belt and its tectonic significance[J]. Journal of Geomechanics, 30(6): 1012-1027. (in Chinese with English abstract
    [37] LIU Z H, CHEN L Y, LIU X C, et al., 2025. Petrological and geochronological constraints on the genesis of the Foping gneiss dome, South Qinling Belt, central China[J]. Journal of Asian Earth Sciences, 277: 106406. doi: 10.1016/j.jseaes.2024.106406
    [38] LUDWIG K R, 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center: 1-70.
    [39] NACHIT H, IBHI A, ABIA E H, et al., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 337(16): 1415-1420. doi: 10.1016/j.crte.2005.09.002
    [40] O’BRIEN P J, 1999. Asymmetric zoning profiles in garnet from HP–HT granulite and implications for volume and grain–boundary diffusion[J]. Mineralogical Magazine, 63(2): 227-238. doi: 10.1180/002646199548457
    [41] PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin Heidelberg: Springer.
    [42] QIN J F, LAI S C, LI Y J, 2008a. Slab breakoff model for the Triassic post–collisional adakitic granitoids in the Qinling Orogen, Central China: zircon U–Pb ages, geochemistry, and Sr–Nd–Pb isotopic constraints[J]. International Geology Review, 50(12): 1080-1104. doi: 10.2747/0020-6814.50.12.1080
    [43] QIN J F, LAI S C, WANG J, et al., 2008b. Zircon LA–ICP–MS U–Pb age, Sr–Nd–Pb isotopic compositions and geochemistry of the Triassic post–collisional Wulong adakitic granodiorite in the South Qinling, central China, and its petrogenesis[J]. Acta Geologica Sinica (English Edition), 82(2): 425-437. doi: 10.1111/j.1755-6724.2008.tb00593.x
    [44] QIN J F, LAI S C, LI Y F, 2013. Multi–stage granitic magmatism during exhumation of subducted continental lithosphere: evidence from the Wulong pluton, South Qinling[J]. Gondwana Research, 24(3-4): 1108-1126. doi: 10.1016/j.gr.2013.02.005
    [45] QIU K F, DENG J, HE D Y, et al., 2023. Evidence of vertical slab tearing in the Late Triassic Qinling Orogen (central China) from multiproxy geochemical and isotopic imaging[J]. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB025514. doi: 10.1029/2022JB025514
    [46] REY P, VANDERHAEGHE O, TEYSSIER C, 2001. Gravitational collapse of the continental crust: Definition, regimes and modes[J]. Tectonophysics, 342(3-4): 435-449. doi: 10.1016/S0040-1951(01)00174-3
    [47] RUBATTO D, 2017. Zircon: the metamorphic mineral[J]. Reviews in Mineralogy and Geochemistry, 83(1): 261-295. doi: 10.2138/rmg.2017.83.9
    [48] Shaanxi Provincial Bureau of Geology and Mineral Resources, 1989. Regional geology of Shaanxi province[M]. Beijing: Geology Press. (in Chinese)
    [49] SIMONETTI M, CAROSI R, MONTOMOLI C, et al., 2020a. Transpressive deformation in the southern European variscan belt: new insights from the aiguilles rouges massif (western alps)[J]. Tectonics, 39(6): e2020TC006153. doi: 10.1029/2020TC006153
    [50] SIMONETTI M, CAROSI R, MONTOMOLI C, et al., 2020b. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (southern France)[J]. International Journal of Earth Sciences, 109(7): 2261-2285. doi: 10.1007/s00531-020-01898-6
    [51] STIPP M, STÜNITZ H, HEILBRONNER R, et al., 2002a. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C[J]. Journal of Structural Geology, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
    [52] STIPP M, STÜNITZ H, HEILBRONNER R, et al. , 2002b. Dynamic recrystallization of quartz: correlation between natural and experimental conditions[M]//DE MEER S, DRURY M R, DE BRESSERJ H P, et al. Deformation mechanisms, rheology and tectonics: current status and future perspectives. London: Geological Society, London, Special Publications, 200(1): 171-190.
    [53] SUN S S, DONG Y P, HE D F, et al., 2019a. Thickening and partial melting of the northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites[J]. Journal of the Geological Society, 176: 1218-1231. doi: 10.1144/jgs2019-030
    [54] SUN S S, DONG Y P, SUN Y L, et al., 2019b. Re–Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China[J]. Gondwana Research, 70: 71-87. doi: 10.1016/j.gr.2018.12.016
    [55] SUN S S, DONG Y P, CHENG C, et al., 2022. Mesozoic intracontinental ductile shearing along the Paleozoic Shangdan suture in the Qinling Orogen: Constraints from deformation fabrics and geochronology[J]. Geological Society of America Bulletin, 134(9-10): 2649-2666. doi: 10.1130/B36293.1
    [56] SUN S S, DONG Y P, 2023. High temperature ductile deformation, lithological and geochemical differentiation along the Shagou shear zone, Qinling Orogen, China[J]. Journal of Structural Geology, 167: 104791. doi: 10.1016/j.jsg.2023.104791
    [57] SUN S S, DONG Y P, LI Y X, et al., 2024. Rheology of continental lithosphere and seismic anisotropy[J]. Science China Earth Sciences, 67(1): 31-60. doi: 10.1007/s11430-022-1171-3
    [58] TIWARI S K, BENIEST A, BISWAL T K, 2020. Variation in vorticity of flow during exhumation of lower crustal rocks (Neoproterozoic Ambaji granulite, NW India)[J]. Journal of Structural Geology, 130: 103912. doi: 10.1016/j.jsg.2019.103912
    [59] WANG D S, 2015. Deformation and metamorphism characteristics of rocks in South Qinling Acctionary Complex belt[D]. Beijing: Beijing: China University of Geosciences (Beijing): 1-167. (in Chinese with English abstract
    [60] WANG G B, LI S Z, 1998. Preliminary discussion on uplift bedding-delamination structures in Foping area, Qinling[J]. Journal of Changchun University of Science and Technology, 28(1): 23-29. (in Chinese with English abstract
    [61] WANG X H, GUO T, LI X Z, et al., 2022. A study on the geochemical characteristics and metallogenesis of the Lanmugou gold deposit in the South Qinling Belt, Shaanxi, China[J]. Journal of Geomechanics, 28(3): 464-479. (in Chinese with English abstract
    [62] WEI C J, YANG C H, ZHANG S G, et al., 1998. Discovery of granulite from the Fuping area in southern Qinling Mountains and its geological significance[J]. Chinese Science Bulletin, 43(16): 1358-1362. doi: 10.1007/BF02883682
    [63] WEI C J, ZHANG C G, 2002. pT path of medium–pressure metamorphism of continental collision orogenic belt: exemplified by the southern Qinling orogenic belt[J]. Acta Petorlogica et Mineralogica, 21(4): 356-362. (in Chinese with English abstract
    [64] WEI C J, 2011. Approaches and advancement of the study of metamorphic p-T-t paths[J]. Earth Science Frontiers, 18(2): 1-16. (in Chinese with English abstract
    [65] WU C M, ZHANG J, REN L D, 2004. Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium–to high–grade metapelites[J]. Journal of Petrology, 45(9): 1907-1921. doi: 10.1093/petrology/egh038
    [66] WU Y B, 2021. Metamorphic zircon[M]//ALDERTON D, ELIAS S A. Encyclopedia of geology. 2nd ed. London: Academic Press: 584-596.
    [67] WU Y W, ZHANG J X, ZHANG B, et al., 2024. Early Paleozoic oblique convergence from subduction to collision: Insights from timing and structural style of the transpressional dextral shear zone in the Qilian orogen, northern Tibet of China[J]. Geological Society of America Bulletin, 136(5-6): 1889-1915.
    [68] XIANG B W, ZHANG Z K, XU D R, et al., 2024. The genesis of L–tectonics and its rheological significance[J]. Chinese Journal of Geology, 59(6): 1562-1574. (in Chinese with English abstract
    [69] XYPOLIAS P, 2010. Vorticity analysis in shear zones: A review of methods and applications[J]. Journal of structural Geology, 32(12): 2072-2092. doi: 10.1016/j.jsg.2010.08.009
    [70] YANG C H, WEI C J, ZHANG S G, et al., 1999. U–Pb zircon dating of granulite facies rocks from the Foping area in the southern Qinling Mountains[J]. Geological Review, 45(2): 173-179. (in Chinese with English abstract
    [71] YANG X X, WANG Y J, LI Z H, et al., 2018. Zircon U-Pb dating and Lu-Hf isotopic study of hornblende biotite schist from the Foping area in South Qinling[J]. Chinese Journal of Geology, 53(3): 1100-1118. (in Chinese with English abstract
    [72] YOU J L, YANG Z, GOU L L, et al., 2024. Metamorphism and geochronology of the Foping gneiss dome: insights into Early Triassic collision of the Qinling Orogen, Central China[J]. Lithos, 488-489: 107827. doi: 10.1016/j.lithos.2024.107827
    [73] ZHA X F, 2010. Discussion on the genesis of Foping dome in southern Qinling: evidence form structural analysis[D]. Xi’an: Northwest University. (in Chinese with English abstract
    [74] ZHA X F, DONG Y P, LI W, et al., 2010. Uplifting process of foping dome in southern Qinling: constrained by structural analysis[J]. Geotectonica et Metallogeni, 34(3): 331-339. (in Chinese with English Abstract
    [75] ZHAI G Y, 2000. Analysis of metamorphism and tectonic dynamics of domes in Foping county of East Qinling[J]. Journal of Mineralogy and Petrology, 20(2): 86-90. (in Chinese with English abstract
    [76] ZHANG B, ZHANG J, ZHONG D L, et al., 2012. Polystage deformation of the Gaoligong metamorphic zone: structures, 40Ar/39Ar mica ages, and tectonic implications[J]. Journal of Structural Geology, 37: 1-18. doi: 10.1016/j.jsg.2012.02.007
    [77] ZHANG B, YIN C Y, ZHANG J J, et al., 2017a. Midcrustal shearing and doming in a Cenozoic compressive setting along the Ailao Shan-Red River shear zone[J]. Geochemistry Geophysics Geosystems, 18(1): 400-433. doi: 10.1002/2016GC006520
    [78] ZHANG B, CHAI Z, YIN C Y, et al., 2017b. Intra-continental transpression and gneiss doming in an obliquely convergent regime in SE Asia[J]. Journal of Structural Geology, 97: 48-70. doi: 10.1016/j.jsg.2017.02.010
    [79] ZHANG B, CHEN S Y, WANG Y, et al., 2022b. Crustal deformation and exhumation within the India-Eurasia oblique convergence zone: New insights from the Ailao Shan-Red River shear zone[J]. Geological Scoiety of America Bulletin, 134(5-6): 1443-1467. doi: 10.1130/B35975.1
    [80] ZHANG C L, WANG T, WANG X X, 2008. Origin and tectonic setting of the early Mesozoic granitoids in qinling orogenic belt[J]. Geological Journal of China Universities, 14(3): 304-316. (in Chinese with English abstract
    [81] ZHANG G W, ZHANG Z Q, DONG Y P, 1995. Nature of main tectono–lithostratigraphic units of the Qinling Orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 11(2): 101-114. (in Chinese with English abstract
    [82] ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract
    [83] ZHANG H, YE R S, LIU B X, et al., 2016. Partial melting of the South Qinling orogenic crust, China: Evidence from Triassic migmatites and diorites of the Foping dome[J]. Lithos, 260: 44-57. doi: 10.1016/j.lithos.2016.05.007
    [84] ZHANG H, LI S Q, FANG B W, et al., 2018. Zircon U–Pb ages and geochemistry of migmatites and granites in the Foping dome: evidence for Late Triassic crustal evolution in South Qinling, China[J]. Lithos, 296-299: 129-141. doi: 10.1016/j.lithos.2017.10.024
    [85] ZHANG H, WU G H, CHENG H, et al., 2019. Late Triassic high Mg diorites of the Wulong pluton in the South Qinling Belt, China: petrogenesis and implications for crust–mantle interaction[J]. Lithos, 332-333: 135-146. doi: 10.1016/j.lithos.2019.01.038
    [86] ZHANG H, CHENG H, WU G H, et al., 2021. Fluid–fluxed melting of orogenic crust in the south qinling belt, central China: implications from migmatites of the foping dome[J]. Journal of Asian Earth Sciences, 206(5): 104606.
    [87] ZHANG K, YANG X K, YU H B, et al., 2020. Analysis of ore-controlling structure in the Changgou gold deposit of the northern Hanyin gold orefield, southern Qinling Mountains[J]. Journal of Geomechanics, 26(3): 363-375. (in Chinese with English Abstract
    [88] ZHANG L, ZHANG B, ZHANG J J, et al., 2022a. The rheology and deformation of the South Tibetan detachment system as exposed at Zherger La, east-central Himalaya: implications for exhumation of the Himalayan metamorphic core[J]. Journal of Structural Geology, 157: 104559. doi: 10.1016/j.jsg.2022.104559
    [89] ZHANG Y P, ZHENG W J, YUAN D Y, et al., 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: implications for the growth of the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 159-177. (in Chinese with English Abstract
    [90] ZHANG Z Q, SONG B, TANG S H, et al., 2004. Age and material composition of the Foping metamorphic crystalline complex in the Qinling Mountains: SHRIMP zircon U–Pb and whole–rock Sm–Nd geochronology[J]. Geology in China, 31(2): 161-168. (in Chinese with English Abstract
    [91] 陈虹,胡健民,武国利,等,2010. 西秦岭勉略带陆内构造变形研究[J]. 岩石学报,26(04):1277-1288.
    [92] 陈龙耀,刘志慧,刘晓春,等,2019. 南秦岭佛坪片麻岩穹隆变质作用及与岩浆作用的关系[J]. 地球科学,44(12):4178-4185.
    [93] 董云鹏,张国伟,孙圣思,等,2019. 中国大陆“十字构造”形成演化及其大陆动力学意义[J]. 地质力学学报,25(5):769-797. doi: 10.12090/j.issn.1006-6616.2019.25.05.065
    [94] 韩阳光,颜丹平,李政林,2015. 在CorelDRAW平台上进行Fry法有限应变测量的新技术[J]. 现代地质,29(3):494-500. doi: 10.3969/j.issn.1000-8527.2015.03.002
    [95] 和政军,牛宝贵,任纪舜,2005. 陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析[J]. 地质科学,40(4):594-607. doi: 10.3321/j.issn:0563-5020.2005.04.015
    [96] 胡玲,刘俊来,纪沫,等,2009. 变形显微构造识别手册[M]. 北京:地质出版社.
    [97] 李锦轶,张进,刘建峰,等,2019. 中国地壳结构构造与形成过程:来自构造变形的约束[J]. 地质力学学报,25(5):678-698. doi: 10.12090/j.issn.1006-6616.2019.25.05.061
    [98] 刘守偈,李江海,SANTOSH M,2008. 内蒙古土贵乌拉孔兹岩带超高温变质作用:变质反应结构及P-T指示[J]. 岩石学报,24(6):1185-1192.
    [99] 刘树文,杨朋涛,李秋根,等,2011. 秦岭中段印支期花岗质岩浆作用与造山过程[J]. 吉林大学学报(地球科学版),41(6):1928-1943.
    [100] 刘志慧,罗敏,陈龙耀,等,2018. 南秦岭佛坪地区地层格架与物源分析:变质沉积岩中碎屑锆石LA–ICP–MS U–Pb定年提供的制约[J]. 岩石学报,34(5):1484-1502.
    [101] 刘志慧,陈龙耀,曲玮,等,2019. 南秦岭佛坪地区早中生代变质–深熔–变形作用的锆石U–Pb年代学制约[J]. 地球学报,40(4):545-562. doi: 10.3975/cagsb.2019.011102
    [102] 刘志慧,刘晓春,陈龙耀,等,2024. 南秦岭长角坝群低庄沟组的锆石U–Pb年龄及其构造意义[J]. 地质力学学报,30(6):1012-1027.
    [103] 陕西省地质矿产局,1989. 陕西省区域地质志[M]. 北京:地质出版社.
    [104] 孙圣思,董云鹏,黎乙希,等,2024. 大陆岩石圈流变与地震波速各向异性[J]. 中国科学:地球科学,54(1):31-63.
    [105] 王东升,2015. 南秦岭增生杂岩带内岩石变质变形作用研究[D]. 北京:中国地质大学(北京):1-167.
    [106] 王根宝,李三忠,1998. 论秦岭佛坪地区隆–滑构造[J]. 长春科技大学学报,28(1):23-39.
    [107] 王晓虎,郭涛,李效壮,等,2022. 南秦岭烂木沟金矿床地球化学特征与矿床成因研究[J]. 地质力学学报,28(3):464-479. doi: 10.12090/j.issn.1006-6616.2021002
    [108] 魏春景,杨崇辉,张寿广,等,1998. 南秦岭佛坪地区麻粒岩的发现及其地质意义[J]. 科学通报,43(9):982-985. doi: 10.3321/j.issn:0023-074X.1998.09.020
    [109] 魏春景,2011. 变质作用p-T-t轨迹的研究方法与进展[J]. 地学前缘,18(2):1-16.
    [110] 向必伟,张子康,许德如,等,2024. L构造岩成因及其岩石流变学意义[J]. 地质科学,59(6):1562-1574. doi: 10.12017/dzkx.2024.108
    [111] 杨崇辉,魏春景,张寿广,等,1999. 南秦岭佛坪地区麻粒岩相岩石锆石U–Pb年龄[J]. 地质论评,45(2):173-179. doi: 10.3321/j.issn:0371-5736.1999.02.010
    [112] 查显锋,2010. 南秦岭佛坪隆起的构造过程及成因机制[D]. 西安:西北大学.
    [113] 查显锋,董云鹏,李玮,等,2010. 南秦岭佛坪隆起的成因探讨–构造解析的证据[J]. 大地构造与成矿学,34(3):331-339. doi: 10.3969/j.issn.1001-1552.2010.03.004
    [114] 翟刚毅,2000. 东秦岭佛坪穹隆变质作用与构造动力学分析[J]. 矿物岩石,20(2):86-90. doi: 10.3969/j.issn.1001-6872.2000.02.018
    [115] 张成立,王涛,王晓霞,2008. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报,14(3):304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003
    [116] 张国伟,郭安林,董云鹏,等,2019. 关于秦岭造山带[J]. 地质力学学报,25(5):746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
    [117] 张康,杨兴科,于恒彬,等,2020. 南秦岭汉阴北部金矿田长沟金矿区控矿构造解析[J]. 地质力学学报,26(3):363-375. doi: 10.12090/j.issn.1006-6616.2020.26.03.032
    [118] 张逸鹏,郑文俊,袁道阳,等,2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制[J]. 地质力学学报,27(2):159-177. doi: 10.12090/j.issn.1006-6616.2021.27.02.017
    [119] 张宗清,宋彪,唐索寒,等,2004. 秦岭佛坪变质结晶岩系年龄和物质组成特征:SHRIMP锆英石U–Pb年代学和全岩Sm–Nd年代学数据[J]. 中国地质,31(2):161-168. doi: 10.3969/j.issn.1000-3657.2004.02.007
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  38
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-03
  • 修回日期:  2025-03-23
  • 录用日期:  2025-03-24
  • 预出版日期:  2025-03-27
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回