留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年积石山MS 6.2地震的地震裂缝及其成因机制

张波 王爱国 姚赟胜 何小龙 姚赛赛 朱俊文 蔡艺萌

张波,王爱国,姚赟胜,等,2025. 2023年积石山MS 6.2地震的地震裂缝及其成因机制[J]. 地质力学学报,31(2):211−222 doi: 10.12090/j.issn.1006-6616.2024114
引用本文: 张波,王爱国,姚赟胜,等,2025. 2023年积石山MS 6.2地震的地震裂缝及其成因机制[J]. 地质力学学报,31(2):211−222 doi: 10.12090/j.issn.1006-6616.2024114
ZHANG B,WANG A G,YAO Y S,et al.,2025. Earthquake-induced fissures and their formation mechanisms in the 2023 MS 6.2 Jishishan Earthquake[J]. Journal of Geomechanics,31(2):211−222 doi: 10.12090/j.issn.1006-6616.2024114
Citation: ZHANG B,WANG A G,YAO Y S,et al.,2025. Earthquake-induced fissures and their formation mechanisms in the 2023 MS 6.2 Jishishan Earthquake[J]. Journal of Geomechanics,31(2):211−222 doi: 10.12090/j.issn.1006-6616.2024114

2023年积石山MS 6.2地震的地震裂缝及其成因机制

doi: 10.12090/j.issn.1006-6616.2024114
基金项目: 中国地震局地震科技星火计划(XH23040A,XH19045Y);科技部第二次青藏高原综合科学考察研究专题(2019QZKK0901);国家自然科学基金项目(42372267,42072246,41602225);中国地震局地震预测研究所基本科研业务费专项(2021IESLZ06)
详细信息
    作者简介:

    张波(1986—),男,博士,副研究员,从事地震构造研究。Email:bzhang86@163.com

  • 中图分类号: P694

Earthquake-induced fissures and their formation mechanisms in the 2023 MS 6.2 Jishishan Earthquake

Funds: This research is finacially supported by the Spark Program of Earthquake Technology of China Earthquake Administration (Grant Nos. XH23040A and XH19045Y), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP), Ministry of Science and Technology ( Grant No. 2019QZKK0901), the National Natural Science Foundation of China (NSFC) Projects (Grant Nos. 42372267, 42072246, and 41602225), and the Basic Scientific Research Special Project of the Institute of Earthquake Forecasting, China Earthquake Administration (Grant No. 2021IESLZ06).
  • 摘要: 2023年积石山MS 6.2地震在地表形成了大量的地震裂缝,但对地震裂缝的成因认识存在较多分歧。为了更好地认识中强地震中地震裂缝的发育特征及其成因机理,采用野外观测、统计分析、无人机摄影测量等方法,系统调查积石山地震形成的246条地震裂缝,总结其发育特征和成因机理。研究显示: 2023年积石山MS 6.2地震在Ⅶ—Ⅷ度区内形成了大量的地震裂缝,总体可分为构造微裂缝和非构造裂缝两类,非构造裂缝又包括山脊重力裂缝、滑坡边缘裂缝和沟谷裂缝−沙土液化组合。构造微裂缝沿积石山东缘断裂发育,宽度为厘米~毫米(cm~mm)级,通过断层面、节理面等介质软弱部位,表现为构造对裂缝的控制作用,裂缝同时具有“趋弱”的特点,说明此类裂缝不是断层直接错动地表而形成。非构造裂缝主要发育在震中北侧的黄土丘陵和台塬−沟谷区,山脊(台塬)部位的裂缝规模大、延伸远,从山脊(台塬)向下经山坡至沟谷,裂缝宽度从分米(dm)级降低为毫米(mm)级。构造微裂缝经过约半年时间已基本自然愈合,非构造裂缝的愈合时间远长于构造微裂缝的愈合时间;一些滑坡边缘裂缝可能难以自然愈合而形成永久位移,而对人类造成严重威胁的裂缝,需要人为修复。对2023年积石山MS 6.2地震裂缝的分布、类型和成因机制的分析表明,2023年积石山MS 6.2地震没有形成地表破裂带。对积石山地震的地震裂缝的综合研究对于地震次生灾害的研究、灾害损失减轻和地震构造分析具有重要意义。

     

  • 图  1  积石山地震裂缝分布图

    F1—循化南山断裂;F2—积石山西缘断裂;F3—积石山东缘断裂;F4—拉脊山南缘断裂;F5—拉脊山北缘断裂PGA(Peak Ground Acceleration)数据来自于张卫东等(2024);烈度圈来自应急管理部:https://www.mem.gov.cn/xw/yjglbgzdt/202312/t20231222_472849.shtml

    Figure  1.  Map with the distribution of fissures induced by the 2023 MS6.2 Jishishan Earthquake

    F1—Xunhua Nanshan Fault; F2—West margin fault of Jishishan Mountain; F3—East margin fault of Jishishan Mountain; F4—South margin fault of Lajishan; F5—North margin fault of LajishanPGA data are from Zhang et al. (https://www.mem.gov.cn/xw/yjglbgzdt/202312/t20231222_472849.shtml

    图  2  克新民村南沿山脊的张裂缝

    a—克新民村南山脊上的张裂缝带,红色实线代表张裂缝带,红色虚线代表积石山地震的同震滑坡,绿色虚线代表先存的大型滑坡边界;b—宽0~70 cm的张裂缝;c—网状排列的张裂缝;d—平行排列的张裂缝

    Figure  2.  Fissures developed along the ridge south of the Kexinmin Village

    (a) Ridge fissure zone south of the Kexinmin village, red solid lines are tensional fissures, red dashed lines indicate coseismic landslides, and green dashed lines mark the boundaries of pre-existing large landslides; (b) 0~70 cm wide fissure; (c) Gridded fissures; (d) Parallel fissures

    图  3  尹家山以东的滑坡边缘裂缝

    a—尹家山以东的裂缝;b—张裂缝贯穿景观大道;c—局部“西高东低”的张裂缝

    Figure  3.  Landslide edge-related fissures east of the Yinjiashan Village

    (a) Fissures east of the Yinjiashan Village; (b) Extensional fissures cutting a road; (c) Locally developed uphill-facing fissure scarp

    图  4  沿积石山东缘断裂的构造微裂缝

    a—尕护林以西的地震裂缝;b—尕护林西北的构造裂缝贯穿冰雪路面;c—黄草坪以北地震裂缝贯穿冰面;d—达帮沟以北黄土中的地震裂缝

    Figure  4.  Tectonic-related micro-fissures observed along the eastern margin fault of Jishishan Mountain

    (a) Tectonic fissures west of the Gahulin Village; (b) Tectonic fissures cutting a road northwest of the Gahulin Village; (c) Tectonic fissures cutting ice and snow; (d) Tectonic fissures developed in loess north of the Dabanggou Village

    图  5  沿先存断裂和节理发育的裂缝

    红色实线代表先存断层;箭头代表裂缝;黄色虚线代表地层界线a—裂缝沿节理发育;b—关门村一带裂缝沿先存断层面发育;c—黄草坪一带裂缝沿先存断层面发育;d—沿断层面的裂缝和断层上盘的“X”形裂缝

    Figure  5.  Fissures developed along pre-existing fault planes and joints

    (a) Fissure developed along rock joints; (b) Fissure developed along an old fault plane near the Guanmen Village; (c) Fissure developed along an old fault plane near Huangcaoping; (d) Fissure developed along an old fault plane and X-fissure formed on the hanging-wall of the fault plane. Red solid lines represent pre-existing faults; arrows indicate fissures; yellow dashed lines show strata boundaries.

    图  6  构造微裂缝的快速愈合

    a—震后第3天拍摄的宽5 cm的地震裂缝;b—自然愈合后的地震裂缝

    Figure  6.  Rapid natural coalescence of tectonic micro-fissures

    (a) Photo showing 5 cm wide tectonic fissures taken 3 days after the Jishishan Earthquake; (b) Natural coalescence of tectonic fissures

    图  7  积石山地震的裂缝分布及成因机制

    Figure  7.  Distribution and formation mechanism of fissures induced by Jishishan Earthquake

    图  8  积石山东缘断裂宽逾百米的断层破碎带

    a—桦林谷出露宽>100 m的断层破碎带;b—断层破碎带中的西倾断层面;c—断层破碎带中的东倾断层面

    Figure  8.  Over 100 m wide fracture zone of the eastern margin fault of the Jishishan Mountains

    (a) Outcrop of an over 100 m wide fracture zone in the Hualingu valley; (b) West-dipping fault plane exposed in the fracture zone; (c) East-dipping fault plane exposed in the fracture zone

    表  1  积石山地震的地表裂缝分类及其特征

    Table  1.   Classification and characteristics of fissures induced by the Jishishan Earthquake

    裂缝类型 宽度 组合 发育部位 方向性 恢复速度
    非构造裂缝 山脊重力裂缝 dm~cm 带状、网状、雁列 山脊、台地 沿山梁
    滑坡边缘裂缝 dm~mm 围椅状、雁列 边坡 滑坡边缘
    沟谷裂缝−沙土液化 cm~mm 带状、雁列 沟谷 较快
    构造微裂缝 cm~mm 单条 沿断层、节理等构造软弱带 沿断层 1年内
    下载: 导出CSV
  • [1] CHEN P, SHU S Q, WU Z H, et al., 2024. Coseismic surface deformation and source mechanism of the 2023 Ms 6.2 Jishishan earthquake, northeastern Tibetan Plateau[J]. Journal of Structural Geology, 189: 105290. doi: 10.1016/j.jsg.2024.105290
    [2] CHEN P, QIU L C, YAO Y B, et al., 2025. Surface deformation and hazard analysis after the 2023 Ms 6.2 earthquake in Jishishan, Gansu Province based on InSAR and optical imagery interpretation[J]. Geomatics and Information Science of Wuhan University, 50(2): 257-270. (in Chinese with English abstract
    [3] CHEN X R, LIU H Q, YANG J H et al., 2023. An alys is on the m otion characteristics of seismic crack sliding collapse: Taking Zhangjiagou 2# collapse as an example[J]. Water Resources and Hydropower Engineering, 2023, 54(4): 140-150.
    [4] Department of Seismic Disaster Prevention, State Seismological Bureau, 1995. Catalogue of Chinese Historical Strong Earthquakes (23rd century BC to 1911 AD) [M]. Seismological Press, Beijing. (in Chinese)
    [5] GUO F Y, ZHANG Y J, DOU X D, et al., 2024. Distribution patterns and development characteristics of secondary geological hazards caused by the Ms 6.2 earthquake in Jishishan, Gansu[J]. Journal of Lanzhou University (Natural Sciences), 60(1): 6-12. (in Chinese with English abstract
    [6] JU H C, ZHANG Y S, QIN M Z, et al., 2024. Relocation and analysis of the Jishishan Ms6.2 earthquake sequence in Gansu Province[J]. China Earthquake Engineering Journal, 46(4): 918-923. (in Chinese with English abstract
    [7] LEASE R O, BURBANK D W, HOUGH B, et al., 2012. Pulsed Miocene range growth in northeastern Tibet: insights from Xunhua Basin magnetostratigraphy and provenance[J]. GSA Bulletin, 124(5-6): 657-677. doi: 10.1130/B30524.1
    [8] LI K, TAPPONNIER P, XU X W, et al., 2023. The 2022, Ms 6.9 Menyuan earthquake: surface rupture, Paleozoic suture re-activation, slip-rate and seismic gap along the Haiyuan fault system, NE Tibet[J]. Earth and Planetary Science Letters, 622: 118412. doi: 10.1016/j.jpgl.2023.118412
    [9] LI Z M, LI Y J, TIAN Q J, et al., 2014. Study on the relationship between paleoseismic on Laji Mountain Fault and catastrophic event on Lajiashan Site[J]. Journal of Seismological Research, 37(S): 109-115. (in Chinese with English abstract
    [10] LIU C Z, LIANG K, WANG X Y, 2024. Cause analysis of disaster chain of soil flow in Dashagou Basin in Jishishan Ms6.2 magnitude earthquake area[J]. Geological Review, 70(3): 960-974. (in Chinese with English abstract
    [11] LIU L, LIU X W, ZHANG B, et al., 2022. Recognition of surface ruptures of Menyuan Ms6.9 earthquake using GF images[J]. China Earthquake Engineering Journal, 44(2): 440-449. (in Chinese with English abstract
    [12] LIU S, HE B, WANG T, et al., 2024. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS6.2 earthquake, Gansu Province, China[J]. Journal of Geomechanics, 30(2): 314-331. (in Chinese with English abstract
    [13] LIU X L, XIA T, LIU J, et al., 2022. Distributed characteristics of the surface deformations associated with the 2021 Mw7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 461-483. (in Chinese with English abstract
    [14] PING Z F, GE W P, ZHANG B, et al., 2025. Discussion on the controversies of seismogenic fault dipping direction for 2023 Jishishan Ms6.2 earthquake and seismic hazard assessment of its adjacent faults[J]. China Earthquake Engineering Journal, 47(2): 480-491. (in Chinese with English abstract
    [15] PONTI D J, WELLS R E, 1991. Off-fault ground ruptures in the Santa Cruz Mountains, California: ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake[J]. Bulletin of the Seismological Society of America, 81(5): 1480-1510.
    [16] SEGALL P, POLLARD D D, 1980. Mechanics of discontinuous faults[J]. Journal of Geophysical Research: Solid Earth, 85(B8): 4337-4350. doi: 10.1029/JB085iB08p04337
    [17] SU R H, YUAN D Y, ZHENG W J, et al., 2024. Surface rupture and damage characteristics of the 2023 MS6.2 Jishishan earthquake, Gansu[J]. Chinese Journal of Geophysics, 67(9): 3454-3471. (in Chinese with English abstract
    [18] WANG L X, ZHANG H, XU R, et al., 2024. Focal mechanism solutions and seismogenic structure of the Ms6.2 earthquake sequence in Jishishan, Gansu, on December 18, 2023[J]. China Earthquake Engineering Journal, 46(4): 908-917. (in Chinese with English abstract
    [19] WANG S G, XU G Y, LI S, et al., 2024. Analysis of earthquake sequence and seismogenic structure of the 2023 Ms6.2 Jishishan earthquake, Gansu Province, China[J]. Acta Seismologica Sinica, 46(6): 953-968. (in Chinese with English abstract
    [20] XU Q, PENG D L, FAN X M, et al., 2025. Preliminary study on the characteristics and initiation mechanism of Zhongchuan flowslide due to liquefaction triggered by the Ms 6.2 Jishishan earthquake in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 50(2): 207-222. (in Chinese with English abstract
    [21] XU Y R, DOU A X, LI Z M, et al., 2024. Rapid assessment of coseismic hazards induced by Jishishan Ms6.2 Earthquake on December 18, 2023 in Gansu Province, Northwest China[J]. Earthquake, 44(1): 209-215. (in Chinese with English abstract
    [22] YANG C C, LI Z M, XIONG R W, et al., 2024. Preliminary investigation and analysis of seismic geological hazards in Qinghai disaster area induced by the 2023 Ms6.2 Jishishan earthquake[J]. Earthquake, 44(1): 216-225. (in Chinese with English abstract
    [23] YUAN D Y, ZHANG P Z, FANG X M, et al., 2007. Late Cenozoic tectonic deformation of the Linxia Basin, northeastern margin of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 14(1): 243-250. (in Chinese with English abstract
    [24] YUAN D Y, XIE H, SU R H, et al., 2023. Characteristics of co-seismic surface rupture zone of Menyuan Ms6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics, 66(1): 229-244. (in Chinese with English abstract
    [25] ZHANG B, 2012. The study of new activities on western segment of northern margin of western Qinling fault and Laji Shan fault[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract
    [26] ZHANG J L, XU Y R, LI W Q, et al., 2024. Analysis of the markers of seismic structures for moderate earthquakes: a case study of the 2023 Jishishan Ms6.2 earthquake[J]. Earthquake, 44(1): 226-234. (in Chinese with English abstract
    [27] ZHANG P Z, ZHENG D W, YIN G M, et al., 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese with English abstract
    [28] ZHANG W D, JIA L, KANG B L, et al., 2024. Characteristics of strong motion records of the Jishishan, Gansu, MS6.2 earthquake on December 18, 2023[J]. China Earthquake Engineering Journal, 46(4): 888-898. (in Chinese with English abstract
    [29] ZHANG W T, JI L Y, CHEN Y X, et al., 2025. Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China[J]. Geomatics and Information Science of Wuhan University, 50(2): 391-403. (in Chinese with English abstract
    [30] ZHANG Y C, ZHANG L H, ZHAO X Q, 2012. Distribution and formation of earthquake-induced secondary geological disasters in China[J]. Seismology and Geology, 34(4): 805-809. (in Chinese with English abstract
    [31] ZHENG D W, ZHANG P Z, WAN J L, et al., 2006. Tectonic events, climate and conglomerate: Example from Jishishan Mountain and Linxia Basin[J]. Quaternary Sciences, 26(1): 63-69. (in Chinese with English abstract
    [32] 陈鹏,邱梁才,姚宜斌,等,2025. 基于InSAR和光学影像解译的2023年甘肃积石山Ms6.2震后地表形变和灾害分析[J]. 武汉大学学报(信息科学版),50(2):257-270.
    [33] 陈锡锐,刘虹强,杨剑红,等,2023. 震裂滑移式崩塌运动特征分析:以张家沟 2#崩塌为例[J]. 水利水电技术(中英文),54(4):140-150.
    [34] 郭富赟,张永军,窦晓东,等,2024. 甘肃积石山Ms 6.2地震次生地质灾害分布规律与发育特征[J]. 兰州大学学报(自然科学版),60(1):6-12.
    [35] 国家地震局震害防御司, 1995. 中国历史强震目录(公元前23世纪—公元1911年)[M]. 北京: 地震出版社.
    [36] 鞠慧超,张元生,秦满忠,等,2024. 甘肃积石山6.2级地震序列重定位及分析[J]. 地震工程学报,46(4):918-923.
    [37] 刘传正,梁宽,王秀英,2024. 积石山Ms6.2级地震区大沙沟泥土流灾害链成因分析[J]. 地质论评,70(3):960-974.
    [38] 刘璐,刘兴旺,张波,等,2022. 利用高分影像识别门源Ms6.9地震地表破裂带[J]. 地震工程学报,44(2):440-449.
    [39] 刘帅,何斌,王涛,等,2024. 甘肃积石山县Ms6.2地震同震地质灾害发育特征与易发性评价[J]. 地质力学学报,30(2):314-331. doi: 10.12090/j.issn.1006-6616.2024009
    [40] 刘小利,夏涛,刘静,等,2022. 2021年青海玛多Mw7.4地震分布式同震地表裂缝特征[J]. 地震地质,44(2):461-483. doi: 10.3969/j.issn.0253-4967.2022.02.012
    [41] 平孜菲,葛伟鹏,张波,等,2025. 2023年积石山Ms6.2地震发震断层倾向争议讨论与相邻断裂地震危险性评估[J]. 地震工程学报,47(2):480-491.
    [42] 苏瑞欢,袁道阳,郑文俊,等,2024. 2023年甘肃积石山MS6.2地震地表破裂及震害特征分析[J]. 地球物理学报,67(9):3454-3471. doi: 10.6038/cjg2024S0090
    [43] 王丽霞,张辉,徐溶,等,2024. 2023年12月18日甘肃积石山6.2级地震序列震源机制解与发震构造分析[J]. 地震工程学报,46(4):908-917.
    [44] 王世广,胥广银,李帅,等,2024. 2023年甘肃积石山MS6.2地震序列及发震构造分析[J]. 地震学报,46(6):953-968. doi: 10.11939/jass.20240007
    [45] 许强,彭大雷,范宣梅,等,2025. 甘肃积石山Ms6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J]. 武汉大学学报(信息科学版),50(2):207-222.
    [46] 徐岳仁,窦爱霞,李智敏,等,2024. 2023年12月18日甘肃积石山Ms6.2地震触发次生灾害快速评估[J]. 地震,44(1):209-215. doi: 10.12196/j.issn.1000-3274.2024.01.019
    [47] 杨传成,李智敏,熊仁伟,等,2024. 2023年甘肃积石山6.2级地震青海灾区地震地质灾害初步调查分析[J]. 地震,44(1):216-225. doi: 10.12196/j.issn.1000-3274.2024.01.020
    [48] 袁道阳,张培震,方小敏,等,2007. 青藏高原东北缘临夏盆地晚新生代构造变形及过程[J]. 地学前缘,14(1):243-250. doi: 10.3321/j.issn:1005-2321.2007.01.023
    [49] 袁道阳,谢虹,苏瑞欢,等,2023. 2022年1月8日青海门源Ms6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229-244. doi: 10.6038/cjg2022Q0093
    [50] 张波,2012. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州:中国地震局兰州地震研究所.
    [51] 张军龙,徐岳仁,李文巧,等,2024. 中强地震发震构造标志浅析:以2023年积石山Ms6.2地震为例[J]. 地震,44(1):226-234. doi: 10.12196/j.issn.1000-3274.2024.01.021
    [52] 张卫东,贾璐,康斌龙,等,2024. 2023年12月18日甘肃积石山6.2级地震强震动记录特征分析[J]. 地震工程学报,46(4):888-898.
    [53] 张文婷,季灵运,陈玉鑫,等,2025. 2023年甘肃积石山Ms 6.2地震区域地壳形变特征分析[J]. 武汉大学学报(信息科学版),50(2):391-403.
    [54] 张业成,张立海,赵晓青,2012. 中国地震次生地质灾害分布特征与形成条件[J]. 地震地质,34(4):805-809. doi: 10.3969/j.issn.0253-4967.2012.04.022
    [55] 郑德文,张培震,万景林,等,2006. 构造、气候与砾岩:以积石山和临夏盆地为例[J]. 第四纪研究,26(1):63-69. doi: 10.3321/j.issn:1001-7410.2006.01.008
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  23
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 修回日期:  2025-02-17
  • 录用日期:  2025-02-19
  • 预出版日期:  2025-02-24
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回