留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂影响带及其无人机识别技术

陈泽邦 云龙 王驹 田霄

陈泽邦,云龙,王驹,等,2025. 断裂影响带及其无人机识别技术[J]. 地质力学学报,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089
引用本文: 陈泽邦,云龙,王驹,等,2025. 断裂影响带及其无人机识别技术[J]. 地质力学学报,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089
CHEN Z B,YUN L,WANG J,et al.,2025. Fault damage zone and its unmanned aerial vehicle identification technology[J]. Journal of Geomechanics,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089
Citation: CHEN Z B,YUN L,WANG J,et al.,2025. Fault damage zone and its unmanned aerial vehicle identification technology[J]. Journal of Geomechanics,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089

断裂影响带及其无人机识别技术

doi: 10.12090/j.issn.1006-6616.2024089
基金项目: 国防科工局放废处置项目(FZ2101-6);国家自然科学基金项目(U2344215,4171101029,41761144071)
详细信息
    作者简介:

    陈泽邦(2000—),男,在读硕士,主要从事无人机航测及在构造单元特征识别方面的研究。Email:chen_zebang@163.com

    通讯作者:

    云龙(1985—),男,博士,正高级工程师,主要从事活动构造、高放废物地质处置库选址。Email:yunlneotectonic@126.com

  • 中图分类号: P542;P231

Fault damage zone and its unmanned aerial vehicle identification technology

Funds: This research is financially supported by the Radioactive Waste Disposal Project of the State Administration of Science, Technology and Industry for National Defense (Grant No. FZ2101-6) and the National Natural Science Foundation of China (Grant Nos. U2344215, 4171101029, and 41761144071)
  • 摘要: 断裂及其影响带作为构造地质学中基本的构造单元之一,在揭示区域构造演化规律、探究断裂构造演化特征、指示地下流体运移路径、评价重大工程岩体稳定性等方面具有重要的研究和工程意义。然而,传统研究方法多依赖人工编录获取断裂及周边的节理构造信息,存在着效率低下、易受复杂地形限制等问题。近年新兴起的无人机航测技术很好地弥补了传统方法中的不足,该方法集数据采集、地形测绘和动态监测为一体,其生成的高分辨率数字模型和影像能更有效地减少野外工作量、更直观地展现地貌特征、更方便地提取构造信息。为了更好地将该方法推广至构造地质和地质工程等领域,尤其是断裂及影响带这一研究方向,在大量文献调研的基础上,针对不同的应用场景对现有研究进行了分类和比较。详细论述了无人机航测技术的基本原理、断裂影响带的定义及伴生构造,列举了目前应用较多的关于断裂影响带范围、构造特征的识别方法,归纳整理了部分无人机航测技术在断裂影响带研究中的应用场景。总的来说,目前无人机航测技术在断裂及其影响带的研究中已经有了广泛的应用,且能够满足不同的研究需求,但其在前端(构造信息拾取)和后端(构造信息解译)中还存在尚未解决的问题,在未来仍然拥有广阔的应用和发展空间。

     

  • 图  1  断裂影响带位置示意图(据Choi et al.,2016修改)

    Figure  1.  The spacial relation between fault damage zones and the fault core (mofified after Choi et al., 2016)

    图  2  断裂影响带分类示意图(据Kim et al.,2004修改)

    Figure  2.  Schematic diagram of the fault damage zone classification (modified after Kim et al., 2004)

    图  3  端部影响带伴生构造(据Kim et al.,2004修改)

    a—翼型断裂;b—马尾状断裂;c—同向分支断裂;d—反向断裂

    Figure  3.  Structures associated with tip damage zones (modified after Kim et al., 2004)

    (a) wing cracks; (b) horsetail fractures; (c) synthetic branch faults; (d) antithetic faults

    图  4  断裂阶区伴生构造的示意图(据Kim et al.,2003修改)

    a—张性阶区中的透镜体;b—压性阶区中的透镜体;c—张性阶区中的拉分构造;d—压性阶区中的挤压断裂构造

    Figure  4.  Structures associated with linking damage zones (modified after Kim et al., 2003)

    (a) Lenticular body in a releasing stepover; (b) Lenticular body in a restraining stepover; (c) Pull-apart structure in a releasing stepover;(d) Compressional fault in a restraining stepover

    图  5  主断裂影响带伴生构造(据许顺山等,2017修改)

    a—反向共轭断裂;b—同向共轭断裂;c—里德尔剪切

    Figure  5.  Structures associated with wall damage zones (modified after Xu et al., 2017)

    (a) Antithetic faults; (b) Synthetic faults; (c) Riedel Shear

    图  6  圆形测窗示意图(况杰等,2018

    Figure  6.  Schematic diagram of the circular measuring window (Kuang et al., 2018)

    图  7  节理不同交切模式与断裂位置关系

    Figure  7.  The relationship between intersection modes of joints and fracture areas

    图  8  根据节理线密度累计频率计算影响带范围(据Choi et al.,2016修改)

    a—莫阿布断裂带北端地质背景;b—根据线密度累计频率确定影响带范围示意图;c—巴特利特沃什北部研究区域实景

    Figure  8.  Calculation of cumulative frequency of linear density and influence band range (modified after Choi et al., 2016)

    (a) Geological background of the study area; (b) Schematic diagram of determining the range of damage zone based on the cumulative frequency of line density; (c) Actual view of the research area

    图  9  2种无人机航测原理示意图

    a—遥感解译原理;b—航空摄影原理

    Figure  9.  Schematic diagrams of two UAV aerial survey principles

    (a) Schematic diagram of LiDAR; (b) Schematic diagram of SfM

    图  10  根据节理线密度分析断裂影响带宽度(据雷光伟等,2016;张培兴等,2021修改)

    Figure  10.  Judging the width of the fracture zone based on the linear joint density (modified after Lei et al., 2016; Zhang et al., 2021)

    图  11  识别冲沟水平位错(据熊保颂和李雪,2020修改)

    a—阿尔金断裂中段影像图; b—戈壁岭研究区域部分冲沟模型; c—冲沟位错解译

    Figure  11.  Identifying horizontal dislocations in hydrographic nets (modified after Xiong and Li, 2020)

    (a) Imagery of the central segment of the Altyn Tagh Fault; (b) Regional gully model in the Gebiling area; (c) Gully dislocation interpretation

    图  12  地表破裂及冲沟水平位错识别(据张志文等,2021;李东臣等,2022修改)

    a—2021年玛多MS7.4地震区域地震构造图;b—地表破裂实景; c—无人机影像识别冲沟位错和地表破裂

    Figure  12.  Identifying surface fractures and horizontal dislocations in gullies (modified after Zhang et al., 2021; Li et al., 2022)

    (a) Seismotectonic map of the 2021 MS 7.4 Madoi earthquake region; (b) Field photograph of a surface rupture; (c) UAV image recognition of gully dislocations and surface fractures

  • [1] AI M, BI H Y, ZHENG W J, et al., 2018. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics[J]. Seismology and Geology, 40(6): 1276-1293. (in Chinese with English abstract
    [2] AYDIN A, 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 17(7): 797-814. doi: 10.1016/S0264-8172(00)00020-9
    [3] BERG S S, SKAR T, 2005. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah[J]. Journal of Structural Geology, 27(10): 1803-1822. doi: 10.1016/j.jsg.2005.04.012
    [4] BI H Y, SHI L, ZHANG D L, et al., 2022. Constraining paleoseismicity of the Wulashan piedmont fault on the northern margin of the ordos block from fault scarp morphology[J]. Frontiers in Earth Science, 10: 911173. doi: 10.3389/feart.2022.911173
    [5] BROGI A, 2011. Bowl-shaped basin related to low-angle detachment during continental extension: the case of the controversial Neogene Siena Basin (central Italy, northern Apennines)[J]. Tectonophysics, 499(1-4): 54-76. doi: 10.1016/j.tecto.2010.12.005
    [6] CHEN G H, XU X W, WEN X Z, et al., 2006. Application of digital aerophotogrammetry in active tectonics[J]. Earth Science: Journal of China University of Geosciences, 31(3): 405-410. (in Chinese with English abstract
    [7] CHEN S P, TIAN Z J, XU S D, et al., 2024. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 43(1): 13-19. (in Chinese with English abstract
    [8] CHINNERY M A, 1966. Secondary faulting: I. Theoretical aspects[J]. Canadian Journal of Earth Sciences, 3(2): 163-174. doi: 10.1139/e66-013
    [9] CHOI J H, JIN K, ENKHBAYAR D, et al., 2012. Rupture propagation inferred from damage patterns, slip distribution, and segmentation of the 1957 MW8.1 Gobi‐Altay earthquake rupture along the Bogd fault, Mongolia[J]. Journal of Geophysical Research: Solid Earth, 117(B12): B12401.
    [10] CHOI J H, EDWARDS P, KO K, et al., 2016. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006
    [11] CUNNINGHAM D, GREBBY S, TANSEY K, et al., 2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20): L20308.
    [12] DARYONO M R, NATAWIDJAJA D H, PUJI A R, et al. , 2021. Fault rupture in Baribis Fault possibly related to the 1847 major earthquake event in the Cirebon area[C]//Proceedings of the 3rd Southeast Asian conference on geophysics. Bandung, Indonesia: IOP Publishing: 012052.
    [13] DELL’ACQUA F, GAMBA P, 2012. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives[J]. Proceedings of the IEEE, 100(10): 2876-2890. doi: 10.1109/JPROC.2012.2196404
    [14] ENGELDER T, 1989. Analysis of pinnate joints in the Mount Desert Island granite: Implications for postintrusion kinematics in the coastal volcanic belt, Maine[J]. Geology, 17(6): 564-567. doi: 10.1130/0091-7613(1989)017<0564:AOPJIT>2.3.CO;2
    [15] FERNÁNDEZ-LOZANO J, GONZÁLEZ-DÍEZ A, GUTIÉRREZ-ALONSO G, et al., 2018. New perspectives for UAV-based modelling the Roman gold mining infrastructure in NW Spain[J]. Minerals, 8(11): 518. doi: 10.3390/min8110518
    [16] FRANKEL K L, DOLAN J F, 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02025.
    [17] FU B, LI Z Q, CHEN J, et al., 2018. The application of miniature unmanned aerial vehicle in 25 November 2016 Arketao MW6.6 earthquake[J]. Seismology and Geology, 40(3): 672-684. (in Chinese with English abstract
    [18] GAO S P, 2017. A quantitative parameters extraction study of active tectonics based on UAV photogrammetry technology[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract
    [19] GAO S P, RAN Y K, WU F Y, et al., 2017. Using UAV photogrammetry technology to extract information of tectonic activity of complex alluvial fan: a case study of an alluvial fan in the southern margin of Barkol basin[J]. Seismology and Geology, 39(4): 793-804. (in Chinese with English abstract
    [20] HAN L F, LIU J, YAO W Q, et al., 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 Madoi MW7.4 earthquake and discussion on distributed rupture in the step-over[J]. Seismology and Geology, 44(2): 484-505. (in Chinese with English abstract
    [21] HAO R, WANG J P, CHEN D Y, et al., 2024. Routing optimization of ultra violet light communication unmanned aerial vehicle formation based on JAYA algorithm[J]. Journal of Electronics & Information Technology, 46(3): 848-857. (in Chinese with English abstract
    [22] HOU E K, SHOU Z G, XU Y N, et al., 2017. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence[J]. Coal Geology & Exploration, 45(6): 102-110. (in Chinese with English abstract
    [23] HU C Y, ZHANG G C, LI X L, 2019. Application of UAV remote sensing in high altitude collapsed geological hazards investigation[J]. Yangtze River, 50(1): 136-140. (in Chinese with English abstract
    [24] HUANG H Z, CHEN J P, ZHENG Y W, 2017. Interpretation of mine geological hazards based on UAV remote sensing technology[J]. Journal of Geology, 41(3): 499-503. (in Chinese with English abstract
    [25] JAMES M R, ROBSON S, 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks[J]. Earth Surface Processes and Landforms, 39(10): 1413-1420. doi: 10.1002/esp.3609
    [26] JIANG C Y, PAN J W, ZHANG L J, et al., 2024. Application of UAV SfM technology in active tectonic research: a case study of the Longmu Co Fault, Northwestern Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 30(2): 332-347. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2023192
    [27] JIN B H, LIAO Z Q, LIU A X, 2024. Research overview of unmanned aerial vehicle logistics and its visual analysis based on CiteSpace[J]. Journal of Chengdu Technological University, 27(1): 69-74, 81. (in Chinese with English abstract
    [28] JING H D, LI Y H, ZHANG Z H, et al., 2015. Extraction of joint information of rock masses based on 3D laser scanning technology[J]. Journal of Northeastern University (Natural Science), 36(2): 280-283. (in Chinese with English abstract
    [29] JOHNSON K, NISSEN E, SARIPALLI S, et al., 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986. doi: 10.1130/GES01017.1
    [30] KATZ Y, WEINBERGER R, AYDIN A, 2004. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah[J]. Journal of Structural Geology, 26(3): 491-501. doi: 10.1016/j.jsg.2003.08.003
    [31] KIM Y S, ANDREWS J R, SANDERSON D J, 2000. Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England[J]. Geosciences Journal, 4(2): 53-72. doi: 10.1007/BF02910127
    [32] KIM Y S, ANDREWS J R, SANDERSON D J, 2001. Reactivated strike–slip faults: examples from north Cornwall, UK[J]. Tectonophysics, 340(3-4): 173-194. doi: 10.1016/S0040-1951(01)00146-9
    [33] KIM Y S, PEACOCK D C P, SANDERSON D J, 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta[J]. Journal of Structural Geology, 25(5): 793-812 doi: 10.1016/S0191-8141(02)00200-6
    [34] KIM Y S, PEACOCK D C P, SANDERSON D J, 2004. Fault damage zones[J]. Journal of structural geology, 26(3): 503-517. doi: 10.1016/j.jsg.2003.08.002
    [35] KOVANIČ Ľ, TOPITZER B, PEŤOVSKÝ P, et al., 2023. Review of photogrammetric and lidar applications of UAV[J]. Applied Sciences, 13(11): 6732. doi: 10.3390/app13116732
    [36] KUANG J, ZHANG Y S, 2017. Automatic detection of rock mass discontinuity trace based on digital image processing[J]. Geotechnical Engineering Technique, 31(1): 5-8, 13. (in Chinese with English abstract
    [37] KUANG J, 2018. Research on automatic detection of structural surface traces and rock mass quality evaluation method based on image processing[D]. Nanjing: Nanjing University of Science & Technology. (in Chinese with English abstract
    [38] KUANG J, ZHANG Y S, ZHAO J B, 2018. Automatic detection of rock mass fissure based on image processing of phase congruency[J]. Computer Engineering and Applications, 54(24): 193-197. (in Chinese with English abstract
    [39] LEI G W, YANG C H, WANG G B, et al., 2016. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241. (in Chinese with English abstract
    [40] LI D C, REN J J, ZHANG Z W, et al., 2022. Research on semi-automatic extraction method of seismic surface ruptures based on high-resolution UAV image: taking the 2021 MS7.4 Maduo earthquake in Qinghai Province as an example[J]. Seismology and Geology, 44(6): 1484-1502. (in Chinese with English abstract
    [41] LI G, 2021. Status and trend of UAV development[J]. Modern Industrial Economy and Informationization, 11(3): 12-13, 16. (in Chinese with English abstract
    [42] LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English abstract
    [43] LI J X, LI Y F, LI S, et al., 2017. Application of remote sensing technology of UAV in the acquisition of earthquake disaster in Pishan, Xinjiang[J]. Technology for Earthquake Disaster Prevention, 12(3): 690-699. (in Chinese with English abstract
    [44] LI K, TAPPONNIER P, XU X W, et al., 2023. The 2022, MS6.9 Menyuan earthquake: surface rupture, Paleozoic suture re-activation, slip-rate and seismic gap along the Haiyuan fault system, NE Tibet[J]. Earth and Planetary Science Letters, 622: 118412. doi: 10.1016/j.jpgl.2023.118412
    [45] LI L W, YU Z Y, CHEN B X, et al., 2022. Co-seismic surface deformation characteristics and seismic geological enlightenment of the Luding, Sichuan MS6.8 earthquake in 2022[J]. Journal of Institute of Disaster Prevention, 24(4): 75-87. (in Chinese with English abstract
    [46] LI S J, XIE Y L, ZHU X M, 2013. Research on countermeasure of water gushing with collapse in process of Wushaoling highway tunnel crossing F4 fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3602-3609. (in Chinese with English abstract
    [47] LI X Z, ZHANG G Y, LUO G Y, 2003. Barrier effects caused by fault on excavating-induced stress & edformation and mechanism of resulting groundwater inrush[J]. Rock and Soil Mechanics, 24(2): 220-224. (in Chinese with English abstract
    [48] LI Y G, ELLSWORTH W L, THURBER C H, et al., 1997. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California[J]. Bulletin of the Seismological Society of America, 87(1): 210-221. doi: 10.1785/BSSA0870010210
    [49] LI Y P, XU J D, YU H M, 2006. Geometrical characteristics of fractures and rock quality assessment in granite in the Beishan area, Gansu province[J]. Seismology and Geology, 28(1): 129-138. (in Chinese with English abstract
    [50] LI Z, FU B H, 2022. Quantitative analyses of geomorphologic features in response to Late Quaternary tectonic activities along the Maqin-Maqu segment, East Kunlun fault zone[J]. Seismology and Geology, 44(6): 1421-1447. (in Chinese with English abstract
    [51] LIU D M, LI D W, YANG W R, et al., 2005. Evidence from fission track ages for the tectonic uplift of the Himalayan Orogen during Late Cenozoic[J]. Earth Science: Journal of China University of Geosciences, 30(2): 147-152. (in Chinese with English abstract
    [52] LIU F C, 2021. The characteristics of quaternary activities of SN normal fault and strike sip fault, central Tibet: taking Riganpei Co fault and norma co graben as examples[D]. Beijing: China University of Geosciences (Beijing). doi: 10.27493/d.cnki.gzdzy.2021.001592. (in Chinese with English abstract
    [53] LIU J, CHEN T, ZHANG Z P, et al., 2013. Illuminating the active Haiyuan fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45. (in Chinese with English abstract doi: 10.1360/972012-1526
    [54] LIU J, 2018. Application of remote sensing surveying and mapping technology of UAV in engineering surveying and mapping[J]. World Nonferrous Metals(24): 156-157. (in Chinese with English abstract
    [55] LIU S, HE B, WANG T, et al., 2024. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China[J]. Journal of Geomechanics, 30(2): 314-331. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2024009
    [56] LIU S H, WANG Y S, 2023. Application of drone technology in agricultural machinery automation[J]. South Agricultural Machinery, 54(11): 167-169. (in Chinese)
    [57] LIU X L, XIA T, LIU J, et al., 2022. Distributed characteristics of the surface deformations associated with the 2021 MW7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 461-483. (in Chinese with English abstract
    [58] LIU Y M, WU Z P, YAN S Y, et al. , 2021. New insight into the origin of horsetail-like structure in Beibu depression, Beibu Gulf Basin[J]. Journal of China University of Mining & Technology, 2021, 50(1): 163-175, doi: 10.13247/j.cnki.jcumt.001247. (in Chinese with English abstract
    [59] MA J B, ZHANG B, WANG Y, et al., 2019. A study on the scarp of reverse fault based on geomorphological observation by low-altitude remote sensing: taking the fault scarp of Zhangliugou Beach as an example[J]. Earth Science Frontiers, 26(2): 92-103. doi: 10.13745/j.esf.sf.2019.2.6
    [60] MA J F, LI X Q, ZHANG C C, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone[J]. Journal of Geomechanics, 28(6): 956-968. (in Chinese with English abstract
    [61] MAKHUBELA T V, KRAMERS J D, 2022. Testing a new combined (U, Th)–He and U/Th dating approach on Plio-Pleistocene calcite speleothems[J]. Quaternary Geochronology, 67: 101234. doi: 10.1016/j.quageo.2021.101234
    [62] MAO Y Z, ZHANG X D, LV G J, et al., 2023. Identification of faults in the southern margin of Xuanhua Basin by low altitude aerial survey[J]. Plateau Earthquake Research, 35(2): 56-62. (in Chinese with English abstract
    [63] MARQUES A, RACOLTE G, DE SOUZA E M, et al. , 2021. Deep learning application for fracture segmentation over outcrop images from UAV-based digital photogrammetry[C]//Proceedings of 2021 IEEE international geoscience and remote sensing symposium IGARSS. Brussels, Belgium: IEEE: 4692-4695.
    [64] MARTEL S J, BOGER W A, 1998. Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock[J]. Journal of Geophysical Research: Solid Earth, 103(B9): 21299-21314. doi: 10.1029/98JB01393
    [65] MCGRATH A G, DAVISON I, 1995. Damage zone geometry around fault tips[J]. Journal of Structural Geology, 17(7): 1011-1024. doi: 10.1016/0191-8141(94)00116-H
    [66] NAYLOR M A, MANDL G, SUPESTEIJN C H K, 1986. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 8(7): 737-752. doi: 10.1016/0191-8141(86)90022-2
    [67] OUÉDRAOGO M M, DEGRÉ A, DEBOUCHE C, et al., 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds[J]. Geomorphology, 214: 339-355. doi: 10.1016/j.geomorph.2014.02.016
    [68] PAJARES G, 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)[J]. Photogrammetric Engineering & Remote Sensing, 81(4): 281-330.
    [69] PETIT J P, BARQUINS M, 1988. Can natural faults propagate under mode II conditions?[J]. Tectonics, 7(6): 1243-1256. doi: 10.1029/TC007i006p01243
    [70] RAJLICH P, 1993. Riedel shear: a mechanism for crenulation cleavage[J]. Earth-Science Reviews, 34(3): 167-195. doi: 10.1016/0012-8252(93)90033-4
    [71] RIEDEL W, 1929. Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie[J]. Geologie und Palä ontologie, 8: 354-368.
    [72] SHAO Y X, ZHANG B, ZOU X B, et al., 2017. Application of Uavls to Rapid Geological Surveys[J]. Seismology and Geology, 39(6): 1185-1197. (in Chinese with English abstract
    [73] SHAO Y X, LIU J, GAO Y P, et al., 2022. Coseismic displacement measurement and distributed deformation characterization: a case of 2021 Mw7.4 Madoi earthquake[J]. Seismology and Geology, 44(2): 506-523. (in Chinese with English abstract
    [74] SKEMPTON A W, 1966. Some observations on tectonic shear zones[C]//Paper presented at the 1st ISRM congress. Lisbon, Portugal: ISRM.
    [75] TAMAS A, HOLDSWORTH R E, TAMAS D M, et al., 2023. Using UAV-based photogrammetry coupled with in situ fieldwork and U-Pb geochronology to decipher multi-phase deformation processes: A case study from sarclet, inner moray firth Basin, UK[J]. Remote Sensing, 15(3): 695. doi: 10.3390/rs15030695
    [76] THACKRAY G D, RODGERS D W, STREUTKER D, 2013. Holocene scarp on the Sawtooth fault, central Idaho, USA, documented through Lidar topographic analysis[J]. Geology, 41(6): 639-642. doi: 10.1130/G34095.1
    [77] TOMAŠTÍK J, MOKROŠ M, SUROVÝ P, et al., 2019. UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas?[J]. Remote Sensing, 11(6): 721. doi: 10.3390/rs11060721
    [78] VERMILYE J M, SCHOLZ C H, 1999. Fault propagation and segmentation: insight from the microstructural examination of a small fault[J]. Journal of Structural Geology, 21(11): 1623-1636. doi: 10.1016/S0191-8141(99)00093-0
    [79] WAGNER G A, VAN DEN HAUTE, 1992. Fission-track dating method[M]//WAGNER G A, VAN DEN HAUTE. Fission-track dating. Dordrecht: Springer: 59-94.
    [80] WALSH J, WATTERSON J, YIELDING G, 1991. The importance of small-scale faulting in regional extension[J]. Nature, 351(6325): 391-393. doi: 10.1038/351391a0
    [81] WANG D Q, 2013. A study on faults detection using electrical resistivity tomography method[D]. Nanjing: Nanjing University. (in Chinese with English abstract
    [82] WANG F Y, CHEN J P, FU X H, et al., 2008. Study on geometrical information of obtaining rock mass discontinuities based on VirtuoZo[J]. Chinese Journal of Rock Mechanics and Engineering, 27(1): 169-175. (in Chinese with English abstract
    [83] WANG W X, SHAO Y X, YAO W Q, et al., 2022. Rapid extraction of features and indoor reconstruction of 3D structures of Madoi MW7.4 earthquake surface ruptures based on photogrammetry method[J]. Seismology and Geology, 44(2): 524-540. (in Chinese with English abstract
    [84] WANG X L, CROSTA G B, CLAGUE J J, et al., 2021. Fault controls on spatial variation of fracture density and rock mass strength within the Yarlung Tsangpo Fault damage zone (southeastern Tibet)[J]. Engineering Geology, 291: 106238. doi: 10.1016/j.enggeo.2021.106238
    [85] WEI Z Y, RAMON A, HE H L, et al., 2015. Accuracy analysis of terrain point cloud acquired by “structure from motion" using aerial photos[J]. Seismology and Geology, 37(2): 636-648. (in Chinese with English abstract
    [86] WEISMÜLLER C, URAI J L, KETTERMANN M, et al., 2019. Structure of massively dilatant faults in Iceland: lessons learned from high-resolution unmanned aerial vehicle data[J]. Solid Earth, 10(5): 1757-1784. doi: 10.5194/se-10-1757-2019
    [87] WESTOBY M J, BRASINGTON J, GLASSER N F, et al., 2012. ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 179: 300-314. doi: 10.1016/j.geomorph.2012.08.021
    [88] WU X J, 2023. Research on the application of small UAV aerial survey in farmland information monitoring[J]. Automation Application, 64(3): 1-3. (in Chinese with English abstract
    [89] XIONG B S, LI X, 2020. Offset measurement along active fault based on portable unmanned aerial vehicle and structure from motion: a case study of the middle section in Altyn-Tagh fault[J]. Science Technology and Engineering, 20(26): 10848-10855. (in Chinese with English abstract
    [90] XU S S, PENG H, NIETO-SAMANIEGO A F, et al., 2017. The similarity between Riedel shear patterns and strike-slip basin patterns[J]. Geological Review, 63(2): 287-301. (in Chinese with English abstract
    [91] XU W T, LI X Z, ZHANG Y S, et al., 2022. Fine identification and characterization of rock mass discontinuities and its application using a digital photogrammetry system[J]. Acta Geodaetica et Cartographica Sinica, 51(10): 2093-2106. (in Chinese with English abstract
    [92] YAMAZAKI F, KUBO K, TANABE R, et al. , 2017. Damage assessment and 3d modeling by UAV flights after the 2016 Kumamoto, Japan earthquake[C]//Proceedings of 2017 IEEE international geoscience and remote sensing symposium (IGARSS). Fort Worth, TX, USA: IEEE: 3182-3185.
    [93] YANG C H, BAO H T, WANG G B, et al., 2006. Estimation of mean trace length and trace midpoint density of rock mass joints[J]. Chinese Journal of Rock Mechanics and Engineering, 25(12): 2475-2480. (in Chinese with English abstract
    [94] YANG C H, MEI T, WANG G B, et al. , 2007. Study on Rockmass joint characteristics of Jiji quarry in Beishan, Gansu province[J]. Chinese Journal of Rock Mechanics and Engineering(S2): 3849-3854. (in Chinese with English abstract
    [95] YANG H J, HU C L, CHEN W W, et al., 2004. Information construction of the tunnel in a fault and crush zone[J]. Chinese Journal of Rock Mechanics and Engineering, 23(22): 3917-3922. (in Chinese with English abstract
    [96] YANG Y Z, REN J J, LI D C, 2023. Quantitative staging of alluvial fan geomorp hic surfaces in arid areas based on SAR imagery: A case study of the Shule River alluvial fan in the western desert region of the Hexi Corridor[J]. Journal of Geomechanics, 29(6): 842-855. (in Chinese with English abstract
    [97] YOUNGS R R, ARABASZ W J, ANDERSON R E, et al., 2003. A Methodology for Probabilistic Fault Displacement Hazard Analysis (PFDHA)[J]. Earthquake Spectra, Vol, 19(1): 191-219 doi: 10.1193/1.1542891
    [98] YUAN D Y, CHAMPAGNAC J D, GE W P, et al., 2011. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau[J]. GSA Bulletin, 123(9-10): 2016-2030. doi: 10.1130/B30315.1
    [99] YUAN D Y, XIE H, SU R H, et al., 2023. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics, 66(1): 229-244. (in Chinese with English abstract doi: 10.6038/cjg2022Q0093
    [100] YUAN M F, XIE Z L, 2018. A research on application of UAV remote sensing mapping technology in mine survey[J]. China’s Manganese Industry, 36(5): 11-13, 20. (in Chinese with English abstract
    [101] ZANUTTA A, LAMBERTINI A, VITTUARI L, 2020. UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes[J]. Journal of Marine Science and Engineering, 8(1): 52. doi: 10.3390/jmse8010052
    [102] ZENG Y, ZHOU R, TANG J, et al., 2024. Design of an emergency communications UAV system compatible for all Chinese telecom operators and its ground coverage strategy[J]. Telecommunication Engineering, 64(7): 995-1004. (in Chinese with English abstract doi: 10.20079/j.issn.1001-893x.230912003
    [103] ZEYBEK M, 2021. Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods[J]. Measurement Science and Technology, 32(6): 065402. doi: 10.1088/1361-6501/abf25d
    [104] ZHANG K Q, WU Z H, LÜT Y, et al., 2015. Review and progress of OSL dating[J]. Geological Bulletin of China, 34(1): 183-203. (in Chinese with English abstract
    [105] ZHANG L, EINSTEIN H H, 1998. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics and Rock Engineering, 31(4): 217-235. doi: 10.1007/s006030050022
    [106] ZHANG P X, LI X Z, ZHANG Y S, et al. , 2017. Study on influence range of pre-selected site fault based on geophysical and photogrammetry[J]. Journal of Disaster Prevention and Mitigation Engineer, 37(6): 987-993, 1000. (in Chinese with English abstract
    [107] ZHANG P X, LI X Z, ZHANG Y S, et al., 2021. Study on the evolution law and test method of the permeability characteristics of a fault-influenced zone[J]. Water Resources and Hydropower Engineering, 52(9): 135-142. (in Chinese with English abstract
    [108] ZHANG Z P, WANG Q C, 2004. The summary and comment on fault-slip analysis and palaeostress reconstruction[J]. Advances in Earth Science, 19(4): 605-613. (in Chinese with English abstract
    [109] ZHANG Z W, REN J J, ZHANG X L, 2021. Application of high-precision UAV aerial survey in the detailed study of surface rupture of Maduo MW7.4 Earthquake in 2021[J]. Technology for Earthquake Disaster Prevention, 16(3): 437-447. (in Chinese with English abstract
    [110] ZHENG J, ZHANG Y S, LI X Z, et al., 2015. Digital method for acquiring 2D density of discontinuity and its application[J]. Hydrogeology & Engineering Geology, 42(6): 80-85. (in Chinese with English abstract
    [111] ZHOU J, 2023. Application of UAV mapping technology in geological and mineral exploration [J]. China High and New Technology(10): 150-152. (in Chinese with English abstract
    [112] ZHU H H, PAN B Y, WU W, et al., 2023. Review on collection and extraction methods of rock mass discontinuity information[J]. Journal of Basic Science and Engineering, 31(6): 1339-1360. (in Chinese with English abstract
    [113] ZOU J J, HE H L, YOKOYAMA Y, et al., 2019. Paleo-earthquake study methods on bedrock fault surface: history, current situation, suggestions and prospects[J]. Seismology and Geology, 41(6): 1539-1562. (in Chinese with English abstract
    [114] ZOU J J, HE H L, ZHOU Y S, et al., 2023. Application of small unmanned aerial vehicle (SUAV) in the selection of suitable sites in paleo-seismic stury of bedrock fault surfaces[J]. Seismology and Geology, 45(4): 833-846. (in Chinese with English abstract
    [115] 艾明,毕海芸,郑文俊,等,2018. 利用无人机摄影测量技术提取活动构造定量参数[J]. 地震地质,40(6):1276-1293.
    [116] 陈桂华,徐锡伟,闻学泽,等,2006. 数字航空摄影测量学方法在活动构造中的应用[J]. 地球科学:中国地质大学学报,31(3):405-410.
    [117] 陈书平,田作基,徐世东,等,2024. 两种结构类型的走滑相关剪断裂带[J]. 地质通报,43(1):13-19. doi: 10.12097/gbc.2023.04.005
    [118] 付博,李志强,陈杰,等,2018. 微型无人机在2016年11月25日阿克陶MW6.6地震中的应用探索[J]. 地震地质,40(3):672-684. doi: 10.3969/j.issn.0253-4967.2018.03.012
    [119] 高帅坡,2017. 基于无人机摄影测量技术的活动构造定量参数提取研究[D]. 北京:中国地震局地质研究所.
    [120] 韩龙飞,刘静,姚文倩,等,2022. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质,44(2):484-505. doi: 10.3969/j.issn.0253-4967.2022.02.013
    [121] 郝锐,王建萍,陈丹阳,等,2024. 基于JAYA算法的紫外光通信无人机编队路由优化[J]. 电子与信息学报,46(3):848-857. doi: 10.11999/JEIT230206
    [122] 侯恩科,首召贵,徐友宁,等,2017. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探,45(6):102-110. doi: 10.3969/j.issn.1001-1986.2017.06.017
    [123] 胡才源,章广成,李小玲,2019. 无人机遥感在高位崩塌地质灾害调查中的应用[J]. 人民长江,50(1):136-140
    [124] 黄皓中,陈建平,郑彦威,2017. 基于无人机遥感的矿山地质灾害解译[J]. 地质学刊,41(3):499-503. doi: 10.3969/issn.1674-3636.2017.03.019
    [125] 江晨轶,潘家伟,张丽军,等,2024. UAV SfM技术在活动构造研究中的应用:以青藏高原西北部龙木错断裂为例[J]. 地质力学学报,30(2):332-347, doi: 10.12090/j.issn.1006-6616.2023192.
    [126] 金宝辉,廖梓淇,刘傲雪,2024. 无人机物流研究综述及CiteSpace可视化分析[J]. 成都工业学院学报,27(1):69-74,81.
    [127] 荆洪迪,李元辉,张忠辉,等,2015. 基于三维激光扫描的岩体结构面信息提取[J]. 东北大学学报(自然科学版),36(2):280-283.
    [128] 况杰,章杨松,赵佳斌,2018. 基于相位一致性图像处理的岩体裂隙自动检测[J]. 计算机工程与应用,54(24):193-197. doi: 10.3778/j.issn.1002-8331.1709-0019
    [129] 雷光伟,杨春和,王贵宾,等,2016. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报,35(2):231-241.
    [130] 李东臣,任俊杰,张志文,等,2022. 基于高分辨率无人机影像的地震地表破裂半自动提取方法:以2021年MS7.4青海玛多地震为例[J]. 地震地质,44(6):1484-1502. doi: 10.3969/j.issn.0253-4967.2022.06.008
    [131] 李光,2021. 无人机的发展现状与趋势[J]. 现代工业经济和信息化,11(3):12-13,16.
    [132] 李红强,袁道阳,苏琦,等,2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报,29(6):824-841. doi: 10.12090/j.issn.1006-6616.2023123
    [133] 李金香,李亚芳,李帅,等,2017. 无人机遥感技术在新疆皮山地震灾情获取中的应用[J]. 震灾防御技术,12(3):690-699. doi: 10.11899/zzfy20170324
    [134] 李路伟,余中元,陈柏旭,等,2022. 2022年泸定MS6.8地震的同震地表变形特征及地震地质启示[J]. 防灾科技学院学报,24(4):75-87. doi: 10.3969/j.issn.1673-8047.2022.04.008
    [135] 李生杰,谢永利,朱小明,2013. 高速公路乌鞘岭隧道穿越F4断层破碎带涌水塌方工程对策研究[J]. 岩石力学与工程学报,32(S2):3602-3609.
    [136] 李晓昭,张国永,罗国煜,2003. 地下工程中由控稳到控水的断裂屏障机制[J]. 岩土力学,24(2):220-224. doi: 10.3969/j.issn.1000-7598.2003.02.014
    [137] 李昭,付碧宏,2022. 东昆仑断裂带玛沁—玛曲段晚第四纪构造活动特征的地貌响应定量研究[J]. 地震地质,44(6):1421-1447. doi: 10.3969/j.issn.0253-4967.2022.06.005
    [138] 刘德民,李德威,杨巍然,等,2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据[J]. 地球科学:中国地质大学学报,30(2):147-152.
    [139] 刘富财,2021. 青藏高原中部走滑断层与SN向正断层第四纪活动特征:以日干配错断裂和诺尔玛错地堑为例[D]. 北京:中国地质大学(北京),doi: 10.27493/d.cnki.gzdzy.2021.001592.
    [140] 刘静,陈涛,张培震,等,2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报,58(1):41-45.
    [141] 刘静,2018. 工程测绘中无人机遥感测绘技术的应用研究[J]. 世界有色金属(24):156-157.
    [142] 刘帅,何斌,王涛,等,2024. 甘肃积石山县MS6.2地震同震地质灾害发育特征与易发性评价[J]. 地质力学学报,30(2):314-331, doi: 10.12090/j.issn.1006-6616.2024009.
    [143] 刘顺华,王延申,2023. 无人机技术在农业机械自动化中的应用[J]. 南方农机,54(11):167-169. doi: 10.3969/j.issn.1672-3872.2023.11.045
    [144] 刘小利,夏涛,刘静,等,2022. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征[J]. 地震地质,44(2):461-483. doi: 10.3969/j.issn.0253-4967.2022.02.012
    [145] 刘一鸣,吴智平,颜世永,等,2021. 北部湾盆地北部坳陷马尾状构造成因新认识[J]. 中国矿业大学学报,50(1):163-175, doi: 10.13247/j.cnki.jcumt.001247.
    [146] 马剑飞,李向全,张春潮,等,2022. 金沙江断裂带中段岩溶发育和地下水循环特征[J]. 地质力学学报,28(6):956-968. doi: 10.12090/j.issn.1006-6616.20222823
    [147] 马金保,张波,王洋,等,2019. 基于低空遥感地貌观测的逆断层陡坎研究:以张流沟滩断层陡坎为例[J]. 地学前缘,26(2):92-103, doi: 10.13745/j.esf.sf.2019.2.6.
    [148] 茅远哲,张新东,吕国军,等,2023. 应用低空航测技术识别宣化盆地南缘断裂带[J]. 高原地震,35(2):56-62. doi: 10.3969/j.issn.1005-586X.2023.02.008
    [149] 邵延秀,张波,邹小波,等,2017. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质,39(6):1185-1197. doi: 10.3969/j.issn.0253-4967.2017.06.007
    [150] 邵延秀,刘静,高云鹏,等,2022. 同震地表破裂的位移测量与弥散变形分析:以2021年青海玛多MW7.4地震为例[J]. 地震地质,44(2):506-523. doi: 10.3969/j.issn.0253-4967.2022.02.014
    [151] 王凤艳,陈剑平,付学慧,等,2008. 基于VirtuoZo的岩体结构面几何信息获取研究[J]. 岩石力学与工程学报,27(1):169-175. doi: 10.3321/j.issn:1000-6915.2008.01.024
    [152] 王文鑫,邵延秀,姚文倩,等,2022. 基于摄影测量技术对玛多MW7.4地震地表破裂特征的快速提取及三维结构的室内重建[J]. 地震地质,44(2):524-540. doi: 10.3969/j.issn.0253-4967.2022.02.015
    [153] 魏占玉,RAMON A,何宏林,等,2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质,37(2):636-648. doi: 10.3969/j.issn.0253-4967.2015.02.024
    [154] 邬雪江,2023. 小型无人机航测在农田信息监测中的应用研究[J]. 自动化应用,64(3):1-3. doi: 10.3969/j.issn.1674-778X.2023.3.zdhyy202303001
    [155] 熊保颂,李雪,2020. 基于便携式无人机SfM方法的活动构造地貌位错测量:以阿尔金断裂中段为例[J]. 科学技术与工程,20(26):10848-10855. doi: 10.3969/j.issn.1671-1815.2020.26.044
    [156] 许顺山,彭华,NIETO-SAMANIEGO A F,等,2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性[J]. 地质论评,63(2):287-301.
    [157] 许文涛,李晓昭,章杨松,等,2022. 基于摄影测量系统的岩体结构面精细识别表征及应用[J]. 测绘学报,51(10):2093-2106. doi: 10.11947/j.AGCS.2022.20220359
    [158] 杨春和,包宏涛,王贵宾,等,2006. 岩体节理平均迹长和迹线中点面密度估计[J]. 岩石力学与工程学报,25(12):2475-2480. doi: 10.3321/j.issn:1000-6915.2006.12.013
    [159] 杨春和,梅涛,王贵宾,等,2007. 甘肃北山芨芨采石场岩体节理特征研究[J]. 岩石力学与工程学报(S2):3849-3854.
    [160] 杨会军,胡春林,谌文武,等,2004. 断层及其破碎带隧道信息化施工[J]. 岩石力学与工程学报,23(22):3917-3922. doi: 10.3321/j.issn:1000-6915.2004.22.033
    [161] 杨勇忠,任俊杰,李东臣,2023. 基于SAR影像的干旱区冲/洪积扇地貌面定量分期研究:以河西走廊西部沙漠区的疏勒河洪积扇为例[J]. 地质力学学报,29(6):842-855. doi: 10.12090/j.issn.1006-6616.2023080
    [162] 袁道阳,谢虹,苏瑞欢,等,2023. 2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229-244, doi: 10.6038/cjg2022Q0093.
    [163] 袁曼飞,谢忠俍,2018. 基于无人机遥感测绘技术在矿山测量中的应用研究[J]. 中国锰业,36(5):11-13,20
    [164] 曾勇,周睿,唐军,等,2024. 全网应急通信无人机系统设计及对地覆盖策略[J]. 电讯技术,64(7):995-1004, doi: 10.20079/j.issn.1001-893x.230912003.
    [165] 张克旗,吴中海,吕同艳,等,2015. 光释光测年法:综述及进展[J]. 地质通报,34(1):183-203. doi: 10.3969/j.issn.1671-2552.2015.01.015
    [166] 张培兴,李晓昭,章杨松,等,2017. 综合物探与摄影测量的预选场址断裂影响范围研究[J]. 防灾减灾工程学报,37(6):987-993,1000.
    [167] 张培兴,李晓昭,章杨松,等,2021. 断层影响带渗透特性演化规律与实测方法研究[J]. 水利水电技术(中英文),52(9):135-142.
    [168] 张志文,任俊杰,章小龙,2021. 高精度无人机航测在2021年玛多7. 4级地震地表破裂精细研究中的应用[J]. 震灾防御技术,16(3):437-447.
    [169] 张仲培,王清晨,2004. 断层滑动分析与古应力恢复研究综述[J]. 地球科学进展,19(4):605-613. doi: 10.3321/j.issn:1001-8166.2004.04.018
    [170] 周坚,2023. 无人机测绘技术在地质矿产勘查中的应用[J]. 中国高新科技(10):150-152.
    [171] 朱合华,潘柄屹,武威,等,2023. 岩体结构面信息采集及识别方法研究进展[J]. 应用基础与工程科学学报,31(6):1339-1360
    [172] 邹俊杰,何宏林,周永胜,等,2023. 小型无人机(SUAV)在基岩区古地震研究选点中的应用[J]. 地震地质,45(4):833-846. doi: 10.3969/j.issn.0253-4967.2023.04.002
  • 加载中
图(12)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  32
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-18
  • 修回日期:  2025-04-10
  • 录用日期:  2025-04-11
  • 预出版日期:  2025-05-16
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回