留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔盆地西北缘哈山地区超浅层油气成藏期次研究

王千军 周健 张发强 于洪洲 吴倩倩 鲁红利 刘庆新 周瑜 程明 闫建钊 吕延防

王千军,周健,张发强,等,2025. 准噶尔盆地西北缘哈山地区超浅层油气成藏期次研究[J]. 地质力学学报,31(3):491−505 doi: 10.12090/j.issn.1006-6616.2024075
引用本文: 王千军,周健,张发强,等,2025. 准噶尔盆地西北缘哈山地区超浅层油气成藏期次研究[J]. 地质力学学报,31(3):491−505 doi: 10.12090/j.issn.1006-6616.2024075
WANG Q J,ZHOU J,ZHANG F Q,et al.,2025. Research on the charging periods of the ultra-shallow play in front of the Hashan area, northwestern margin of the Junggar Basin[J]. Journal of Geomechanics,31(3):491−505 doi: 10.12090/j.issn.1006-6616.2024075
Citation: WANG Q J,ZHOU J,ZHANG F Q,et al.,2025. Research on the charging periods of the ultra-shallow play in front of the Hashan area, northwestern margin of the Junggar Basin[J]. Journal of Geomechanics,31(3):491−505 doi: 10.12090/j.issn.1006-6616.2024075

准噶尔盆地西北缘哈山地区超浅层油气成藏期次研究

doi: 10.12090/j.issn.1006-6616.2024075
基金项目: 中国石油化工股份有限公司科技重大攻关项目(P22078);国家自然科学基金项目(42172155,42272166)
详细信息
    作者简介:

    王千军(1973—),男,博士,研究员,从事油气地质综合研究工作。Email:wangqianjun3650@163.com

    通讯作者:

    张发强(1973—),男,博士,副教授,从事油气成藏研究和教学工作。Email:faqiang.zhang@nepu.edu.cn

  • 中图分类号: TE122.3

Research on the charging periods of the ultra-shallow play in front of the Hashan area, northwestern margin of the Junggar Basin

Funds: This research is financially supported by the Major Scientific Research Project of China Petroleum & Chemical Corporation (Grant No. P22078) and the National Natural Science Foundation of China (Grant Nos 42172155 and 42272166).
  • 摘要: 准噶尔盆地西北缘哈山山前超剥带油气资源丰富,具有多层系含油、源−藏关系复杂的特点。超浅层是目前哈山地区油气勘探的重点层系,明确其油气藏充注时期和调整过程等成藏机理问题,对于研究哈山油藏富集规律具有重要的理论和实际意义。通过对哈山山前地区油气藏样品进行流体包裹体均一温度、盐水包裹体盐度特征以及定量颗粒荧光、方解石U-Pb定年等分析,开展油气包裹体特征、地层古温度和古油藏流体界面的研究,标定热事件时间,探讨该区超浅层油藏成藏机制、特征及成藏期次和聚集规律。研究结果表明,流体包裹体类型多样,其荧光颜色和强度变化表明发育多期不同成熟度的烃类流体,且流体包裹体均一温度主要集中在70~90 ℃和100~130 ℃区间。定量颗粒荧光技术显示,油气运移具有明显的动态过程,主要表现为从南向北的多次调整和聚集,侏罗系和白垩系分别以持续充注型和晚期充注型颗粒荧光特征为主,反映了不同地层的油气充注特征。方解石的U-Pb同位素测年结果表明,在研究区分别于133 Ma和73 Ma发生过至少2次热事件。结合流体包裹体盐水均一温度测量和定量颗粒荧光分析,揭示研究区经历了2期油气充注和调整过程,油气成藏时间为早白垩世和晚白垩世。应用流体包裹体、定量颗粒荧光和方解石U-Pb定年耦合技术为复杂构造带油气成藏提供了重要的方法手段,为厘定成藏期次提供了精确方法。

     

  • 图  1  哈山地区油田分布及底层综合柱状图

    a—准噶尔盆地北缘哈山地区勘探形势图;b—哈山地层综合柱状图;c—哈山地质构造剖面图(剖面位置见图1a

    Figure  1.  Distribution of oil fields and comprehensive stratigraphic chart for the Hashan Area

    (a) Exploration status of the Hasan Area at the northern margin of the Junggar Basin; (b) Comprehensive stratigraphic chart of the Hashan Area; (c) Geological cross-section of the Hashan Area

    图  2  哈山地区中部典型钻井中流体包裹体岩相学特征

    a—透明无色—浅灰色的含烃盐水包裹体,分布于方解石矿物缝洞内,侏罗系,哈浅21-浅8井440.5 m,单偏光;b—透明无色—浅灰色含烃盐水包裹体,沿方解石矿物微裂隙面分布,白垩系,哈浅23-浅8井183.5 m,单偏光;c—无色、淡黄色气液烃包裹体,分布于石英颗粒微裂隙内,侏罗系,哈浅22-浅3井803 m,单偏光;d—透明无色含烃盐水包裹体,分布于石英颗粒的微裂隙内,成带状,白垩系,哈浅23-浅10井224.1 m,单偏光

    Figure  2.  Petrographic characteristics of fluid inclusions in key wells in the central Hashan Area

    (a) HQ21-Q8, 440.5 m, J, transparent colorless to light gray hydrocarbon-bearing saline inclusions in calcite mineral fractures and vugs (PPL); (b) HQ 23-Q8, 183.5 m, K, transparent colorless to light gray hydrocarbon-bearing saline inclusions in micro-fracture surfaces of calcite (PPL); (c) HQ22-Q3, 803 m, J, visible colorless and light yellow gas-liquid hydrocarbon inclusions in micro-fractures of quartz grains (PPL); (d) HQ23-Q10, 224.1 m, K, transparent hydrocarbon-bearing saline inclusions in micro-fractures of quartz grains (PPL)

    图  3  哈山地区侏罗系、白垩系烃类包裹体荧光特征

    a—砂砾岩缝洞中充填的油质沥青,侏罗系,哈浅22-浅1井634.1 m,单偏光;b—砂砾岩缝洞中的蓝色荧光包裹体,侏罗系,哈浅22-浅1井634.1 m,荧光;c—缝洞中充填方解石气液包裹体,侏罗系,哈浅22-浅3井805.1 m,单偏光;d—方解石中蓝色、黄色、黄褐色荧光气液烃包裹体,侏罗系,哈浅22-浅3井805.1 m,荧光;e—石英微裂隙中透明无色的液烃和浅灰色气液烃包裹体,白垩系,哈浅2-浅2井156.7 m,单偏光;f—蓝色、蓝绿色荧光包裹体,白垩系,哈浅2-浅2井156.7 m,荧光

    Figure  3.  Fluorescence characteristics of hydrocarbon inclusions in the Jurassic–Cretaceous strata of the Hashan Area

    (a) Bitumen in conglomerate fractures and vugs (PPL), HQ22-Q1, 634.1 m, J; (b) Blue fluorescence in the conglomerate fractures and vugs (PVL), HQ22-Q1, 634.1 m, K; (c) Gas-liquid inclusions in calcite fractures and vugs (PPL), HQ22-Q3, 805.1 m, J; (d) Blue, yellow, and yellow-brown fluorescent gas-liquid hydrocarbon inclusions in calcite (PVL), HQ22-Q3, 805.1 m, K; (e) Transparent colorless liquid hydrocarbons and light gray gas-liquid hydrocarbon inclusions in quartz fractures (PPL),, HQ2-Q2, 156.7 m, J; (f) Blue and blue-green fluorescent inclusions (PVL), HQ2-Q2, 156.7 m, K.

    图  4  哈浅21-浅8井不同荧光颜色的烃类包裹体

    a—哈浅21-浅8井地层综合柱状图;b—d—清水河组浅灰色、浅褐色盐水包裹体,440.5 m,单偏光;e—g—清水河组淡褐色烃类包裹、蓝色烃类包裹体、褐色含油荧光和深灰色的气烃包裹体,465.5 m,荧光;h—j—西山窑组淡黄色和蓝色包裹体,471.5 m,荧光;k—m—西山窑组二段蓝绿色、淡蓝色烃类包裹体,516.75 m,荧光

    Figure  4.  Fluid inclusions with different fluorescence colors in the Well HQ21-Q8

    (a) The comprehensive column graph of HQ21-Q8;(b–d) Shallow gray and light brown saline inclusions, 440.5 m (PPL); (e–g) Light brown and blue hydrocarbon inclusions, brown oily fluorescence and dark gray gaseous inclusions, 465.5 m(PVL); (h–J) Light yellow and blue inclusions,471.5 m (PVL); (k–m) Blue-green and light blue hydrocarbon inclusions, 516.75 m (PVL)

    图  5  哈山地区侏罗系—白垩系与烃类共生的盐水包裹体均一温度直方图

    Figure  5.  Histogram of homogenization temperatures of brine water and hydrocarbon fluid inclusions in the Hashan Area

    图  6  哈山地区超浅层烃类共生盐水包裹体均一温度与盐度交汇图

    Figure  6.  Cross plot of homogenization temperatures and salinities of hydrocarbon-associated brine inclusions in the Hashan Area

    图  7  颗粒荧光显示组合模式分类图

    X轴为QGF-E强度趋势,从低到高代表晚期未发生充注到晚期发生显著充注;Y轴为QGF-Index强度趋势,从低到高代表早期未发生充注到早期发生显著充注

    Figure  7.  Classification of combined fluorescence display patterns of particles

    X-axis: QGF-E trend (low to high: insufficient to significant charge at the late stage); Y-axis: QGF-Index trend (low to high: insufficient to significant charge at the early stage)

    图  8  哈浅22-浅3井—哈浅23井—哈浅23-浅1井—哈浅23-浅10井定量颗粒荧光连井剖面图

    Figure  8.  Quantitative particle fluorescence profiles of Wells HQ 22-Q3, HQ23, HQ23-Q1, and HQ23-Q10

    图  9  哈浅22井侏罗系—白垩系储层QGF-Index、QGF-E参数及荧光光谱

    a—哈浅22井综合地层及颗粒荧光指数柱状图;b—不同深度段的荧光光谱图

    Figure  9.  QGF Index, QGF E, and fluorescence spectra of Well HQ 22

    (a) Comprehensive column chart with QGF Index and QGF E of Well Haqian 22; (b) Fluorescence spectra chart at different depths

    图  10  哈山地区哈浅20井清水河组方解石U-Pb定年结果

    a—白垩系砂砾岩Ⅰ期方解石脉充填,哈浅23-浅10井224 m,显微照片;b—白垩系砂砾岩Ⅱ期方解石脉充填,哈浅23-浅10井225 m,显微照片;c—侏罗系砂岩Ⅰ期方解石脉充填,哈浅20井514 m,显微照片;d—白垩系砂岩Ⅱ期方解石充填,哈浅20井454 m,显微照片;e—第Ⅰ期方解石原位U-Pb定年结果;f—第Ⅱ期方解石原位U-Pb定年结果

    Figure  10.  U–Pb dating of calcite from the Qingshuihe Formation of Wells Haqian 23-Q10 and HQ 20 in the Hashan Area

    (a) Cretaceous sandstone: Stage I calcite vein filling, Well Haqian 23-Q10, 224 meters, photomicrograph; (b) Cretaceous sandstone: Stage II calcite vein filling, Well Haqian 23-Q10, 225 meters, photomicrograph; (c) Jurassic sandstone: Stage I calcite vein filling, Well Haqian 20, 514 meters, photomicrograph; (d) Cretaceous sandstone: Stage II calcite vein filling, Well Haqian HQ20, 454 m, K, photomicrograph; (e) In-situ U–Pb dating results of the first-stage calcite; (f) In-situ U–Pb dating results of the second-stage calcite.

    图  11  哈山山前构造浅层含油气系统埋藏史、热史和成藏史综合图

    ①哈山白垩系测得自生伊利石K-Ar年龄(白国娟,2009));②方解石U-Pb定年年龄;③准噶尔北缘磷灰石裂变径迹热史模拟第2次热事件时间(李振华,2011);④磷灰石裂变径迹热史模拟第3次弱热事件时间(李振华,2011);⑤方解石U-Pb定年年龄;⑥准噶尔北缘东段磷灰石裂变径迹(AFT)峰值年龄(王志维,2009);⑦准噶尔北缘东段AFT峰值年龄(王志维,2009);⑧准噶尔北缘侏罗系油砂Re-Os等时线年龄(黄少华等,2018

    Figure  11.  Petroleum system chart of shallow oil- and gas-bearing systems in the Hashan area

    ① The K–Ar age of authigenic illite measured for the Cretaceous strata of the Hasanshan area (Bai, 2009); ② The U–Pb age of calcite of this study, 72.8 ± 0.48 Ma; ③ The timing of the second thermal event obtained by apatite fission track dating (Li, 2011); ④ The timing of the third weak thermal event determined with the apatite fission track method (Li, 2011); ⑤ The U–Pb age of calcite of this study, 133.6 ± 2.7 Ma; ⑥ The AFT peak age of 90 Ma (Wang, 2009); ⑦ The AFT peak age of 70 Ma (Wang, 2009); ⑧ The Re–Os isochron age of Jurassic oil sands, 155 ± 2.7 Ma (Huang et al., 2018).

  • [1] BAI G J, 2009. The tectonic feature and hydrocarbon accumulation in the northwest part of Junggar Basin[D]. Xi’an: Northwest University. (in Chinese with English abstract
    [2] FENG J W, 2008. The tectonic evolution and it’s controlling on hydrocarbon in Wuxia fault belt of Junggar Basin[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract
    [3] GAO J B, ZHANG H H, PANG X Q, et al., 2011. Application of quantitative grain fluorescence (QGF) analysis in low permeability sandstone reservoirs: a case study of Chang4+ 5 oil formation in Ordos Basin[J]. Journal of Oil and Gas Technology, 33(10): 1-5. (in Chinese with English abstract
    [4] HAN X L, WU Q Q, LIN H X, et al., 2016. Types of carrier system and models of hydrocarbon migration and accumulation of Hala’alat Mountain structural belt in the northern margin of Junggar Basin[J]. Natural Gas Geoscience, 27(4): 609-618. (in Chinese with English abstract
    [5] HE D F, GUAN S W, ZHANG N F, et al. , 2006. Thrust belt structure and significance for petroleum exploration in Hala'alat mountain in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 27(3): 267-269, 298. (in Chinese with English abstract
    [6] HESTNES Å, DROST K, SØMME T O, et al., 2023. Constraining the tectonic evolution of rifted continental margins by u–pb calcite dating[J]. Scientific Reports, 13(1): 7876, doi: 10.1038/s41598-023-34649-z
    [7] HU Y, XIA B, 2012. An approach to the tectonic evolution and hydrocarbon accumulation in the Halaalate Mountain area, northern Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 32(2): 52-58. (in Chinese with English abstract
    [8] HUANG S H, QIN M K, SELBY D, et al., 2018. Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junggar Basin[J]. Earth Science Frontiers, 25(2): 254-266. (in Chinese with English abstract
    [9] LI Z H, 2011. Analysis on the tectonic event and paleo-geothermal feature of Yanshanian in the Northern Junggar Basin[D]. Xi’an: Northwest University. (in Chinese with English abstract
    [10] LIANG Y Y, 2020. Strike-slip fault system at the northwestern margin of Junggar Basin and its relationship with hydrocarbon accumulation[D]. Beijing: China University of Petroleum (Beijing). (in Chinese with English abstract
    [11] LIN H X, GUO R C, GONG Y J, et al., 2017. Geochemical characteristics of crude oil and cogenetic-bidirectional charging effect in Hashan Area[J]. Special Oil and Gas Reservoirs, 24(2): 35-39. (in Chinese with English abstract
    [12] LISK M, O’BRIEN G W, EADINGTON P J, 2002. Quantitative evaluation of the oil-leg potential in the Oliver gas field, Timor sea, Australia[J]. AAPG Bulletin, 86(9): 1531-1542.
    [13] LIU K Y, LU X S, GUI L L, et al., 2016. Quantitative fluorescence techniques and their applications in hydrocarbon accumulation studies[J]. Earth Science, 41(3): 373-384. (in Chinese with English abstract
    [14] National Energy Administration, 2021. Classification of oil reservoir: SY/T 6169-2021[S]. Beijing: Petroleum Industry Press. (in Chinese)
    [15] RAO S, ZHU Y K, HU D, et al., 2018. The thermal history of Junggar Basin: constraints on the Tectonic attribute of the Early-Middle Permian basin[J]. Acta Geologica Sinica, 92(6): 1176-1195. (in Chinese with English abstract
    [16] WANG S Z, ZHANG K H, XIAO X F, et al., 2012. Study on meshwork-carpet hydrocarbon pool-forming features in Hashan area, the sloping zone, the northern border of Junggar Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 27(6): 19-24. (in Chinese with English abstract
    [17] WANG S Z, 2015. The formation and evolution of Hashan structural belt and its controlling on hydrocarbon in the Northern of Junggar Basin[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract
    [18] WANG S Z, LIN H X, ZHANG K H, et al., 2015. Formation mechanism and hydrocarbon charging of Jurassic reservoirs in Hashan area northern sloping zone of Junggar Basin[J]. Natural Gas Geoscience, 26(3): 477-485. (in Chinese with English abstract
    [19] WANG S Z, WU Q Q, CHENG S W, et al., 2017. Hydrocarbon transmission system and accumulation in Hala’alat mountain structural belt in the northern margin of Junggar Basin[J]. Acta Sedimentologica Sinica, 35(2): 405-412. (in Chinese with English abstract
    [20] WANG S Z, WU Q Q, SONG M Y, et al., 2018. Quantitative evaluation of the transportation of fault zone and its controlling effect on hydrocarbon migration and accumulation: case study of Hala’alat Mountain tectonic belt in the north margin of Junggar Basin[J]. Natural Gas Geoscience, 29(11): 1559-1567. (in Chinese with English abstract
    [21] WANG Z W, 2009. Research on the tectonic event and thermal evolution history of piedmont zone in northern margin of Junggar Basin[D]. Xi’an: Northwest University. (in Chinese with English abstract
    [22] XU G S, DING S B, LIU W J, et al., 2014. Geochemical characteristics and correlation of oil with source correlation of hydrocarbon source rock in Hassan area of Xinjiang, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 41(6): 752-759. (in Chinese with English abstract
    [23] XU Y D, WANG L, LIU Z C, et al., 2020. Characteristics of fluid inclusions and time frame of hydrocarbon accumulation for volcanic reservoirs in Chepaizi Uplift[J]. Fault-Block Oil & Gas Field, 27(5): 545-550. (in Chinese with English abstract
    [24] XUE Y, LIN H X, ZHANG K H, et al., 2017. Tectonic characteristics and genetic simulation of Hala’alate mountain area[J]. Geotectonica et Metallogenia, 41(5): 843-852. (in Chinese with English abstract
    [25] YANG Y Z, LIU Q X, ZHANG F Q, et al., 2023. Study on quantitative grain fluorescence analysis technique applied to shallow reservoirs in Hashan area, Junggar Basin[J]. Mud Logging Engineering, 34(3): 22-31. (in Chinese with English abstract
    [26] YU C Y, JIA Y M, LI X X, et al., 2022. Determination of Carboniferous-Permian hydrocarbon accumulation period and time in Hala′alate Mountain area, Junggar Basin[J]. Mud Logging Engineering, 33(3): 110-116. (in Chinese with English abstract
    [27] ZHANG K H, 2014. Study on depositional features and hydrocarbon accumulation control factors of Jurassic in Hashan slope belt of Junggar Basin[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract
    [28] ZHANG K H, SUN Z L, ZHANG G L, et al., 2023. Shale dominant lithofacies and shale oil enrichment model of Lower Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. Petroleum Geology & Experiment, 45(4): 593-605. (in Chinese with English abstract
    [29] ZHANG Y, 2018. Research on geochemical characteristics and accumulation process of upper Paleozoic reservoir in Hashan Area[D]. Beijing: China University of Petroleum (Beijing). (in Chinese with English abstract
    [30] ZHOU J, 2016. Research on the role of the basin-marginal sequence architectural model in controlling the development of sand-bodies and traps: a case study of the Jurassic system in Hashan Area[J]. Science Technology and Engineering, 16(21): 177-185. (in Chinese with English abstract
    [31] 白国娟,2009. 准噶尔盆地西北部构造特征与油气成藏关系研究[D]. 西安:西北大学.
    [32] 冯建伟,2008. 准噶尔盆地乌夏断裂带构造演化及控油作用研究[D]. 青岛:中国石油大学(华东).
    [33] 高剑波,张厚和,庞雄奇,等,2011. 定量颗粒荧光技术在低渗透致密砂岩油藏研究中的应用:以鄂尔多斯盆地姬塬地区长4+5油层组为例[J]. 石油天然气学报,33(10):1-5. doi: 10.3969/j.issn.1000-9752.2011.10.001
    [34] 国家能源局,2021. 油藏分类:SY/T 6169-2021[S]. 北京:石油工业出版社.
    [35] 韩祥磊,吴倩倩,林会喜,等,2016. 准噶尔盆地北缘哈拉阿拉特山构造带油气输导系统类型及运聚模式[J]. 天然气地球科学,27(4):609-618. doi: 10.11764/j.issn.1672-1926.2016.04.0609
    [36] 何登发,管树巍,张年富,等,2006. 准噶尔盆地哈拉阿拉特山冲断带构造及找油意义[J]. 新疆石油地质,27(3):267-269,298. doi: 10.3969/j.issn.1001-3873.2006.03.001
    [37] 胡杨,夏斌,2012. 新疆北部哈山地区构造演化特征及油气成藏条件初步分析[J]. 沉积与特提斯地质,32(2):52-58. doi: 10.3969/j.issn.1009-3850.2012.02.008
    [38] 黄少华,秦明宽,SELBY D,等,2018. 准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re-Os同位素定年[J]. 地学前缘,25(2):254-266.
    [39] 李振华,2011. 准噶尔盆地北部燕山期构造事件及其古地温特征分析[D]. 西安:西北大学.
    [40] 梁媛媛,2020. 准噶尔盆地西北缘走滑构造特征及其控藏作用研究[D]. 北京:中国石油大学(北京).
    [41] 林会喜,郭瑞超,宫亚军,等,2017. 哈山地区原油地化特征及同源双向充注效应[J]. 特种油气藏,24(2):35-39.
    [42] 刘可禹,鲁雪松,桂丽黎,等,2016. 储层定量荧光技术及其在油气成藏研究中的应用[J]. 地球科学,41(3):373-384.
    [43] 饶松,朱亚珂,胡迪,等,2018. 准噶尔盆地热史恢复及其对早—中二叠世时期盆地构造属性的约束[J]. 地质学报,92(6):1176-1195.
    [44] 王圣柱,张奎华,肖雄飞,等,2012. 准北缘哈山地区斜坡带网毯式油气成藏规律[J]. 西安石油大学学报(自然科学版),27(6):19-24.
    [45] 王圣柱,2015. 哈山复杂构造带形成演化对油气成藏的控制作用[D]. 青岛:中国石油大学(华东).
    [46] 王圣柱,林会喜,张奎华,等,2015. 准北缘哈山斜坡带侏罗系原油稠化机理及充注特征[J]. 天然气地球科学,26(3):477-485.
    [47] 王圣柱,吴倩倩,程世伟,等,2017. 准噶尔盆地北缘哈山构造带油气输导系统与运聚规律[J]. 沉积学报,35(2):405-412.
    [48] 王圣柱,吴倩倩,宋梅远,等,2018. 断裂带内部结构及其对油气运聚的控制作用:以准噶尔盆地北缘哈山构造带为例[J]. 天然气地球科学,29(11):1559-1567.
    [49] 王志维,2009. 准噶尔盆地北缘山前带构造事件与热演化史研究[D]. 西安:西北大学.
    [50] 徐国盛,丁圣斌,刘文俊,等,2014. 哈山地区烃源岩地球化学特征及油源对比[J]. 成都理工大学学报(自然科学版),41(6):752-759.
    [51] 徐佑德,王林,刘子超,等,2020. 车排子地区火山岩油藏流体包裹体特征与成藏期次[J]. 断块油气田,27(5):545-550.
    [52] 薛雁,林会喜,张奎华,等,2017. 哈拉阿拉特山地区构造特征及成因机制模拟[J]. 大地构造与成矿学,41(5):843-852.
    [53] 杨蕴泽,刘庆新,张发强,等,2023. 定量颗粒荧光分析技术在准噶尔盆地哈山地区浅部储层中的应用研究[J]. 录井工程,34(3):22-31. doi: 10.3969/j.issn.1672-9803.2023.03.004
    [54] 于春勇,贾雨萌,李晓祥,等,2022. 准噶尔盆地哈山地区石炭-二叠系油气成藏期次及时间厘定[J]. 录井工程,33(3):110-116. doi: 10.3969/j.issn.1672-9803.2022.03.019
    [55] 张奎华,2014. 准噶尔盆地哈山斜坡带侏罗系沉积特征及成藏控制因素研究[D]. 青岛:中国石油大学(华东).
    [56] 张奎华,孙中良,张关龙,等,2023. 准噶尔盆地哈山地区下二叠统风城组泥页岩优势岩相与页岩油富集模式[J]. 石油实验地质,45(4):593-605. doi: 10.11781/sysydz202304593
    [57] 张阳,2018. 哈山地区上古生界油藏地球化学特征及成藏过程分析[D]. 北京:中国石油大学(北京).
    [58] 周健,2016. 盆缘层序构成模式下的控砂控圈作用研究:以哈山地区侏罗系为例[J]. 科学技术与工程,16(21):177-185. doi: 10.3969/j.issn.1671-1815.2016.21.028
  • 加载中
图(11)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  37
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 修回日期:  2025-04-14
  • 录用日期:  2025-04-21
  • 预出版日期:  2025-06-19
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回