留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道穿越断层破碎带突水机制及岩墙最小安全厚度研究

袁东 肖坤

袁东,肖坤,2025. 隧道穿越断层破碎带突水机制及岩墙最小安全厚度研究[J]. 地质力学学报,31(1):80−90 doi: 10.12090/j.issn.1006-6616.2024065
引用本文: 袁东,肖坤,2025. 隧道穿越断层破碎带突水机制及岩墙最小安全厚度研究[J]. 地质力学学报,31(1):80−90 doi: 10.12090/j.issn.1006-6616.2024065
YUAN D,XIAO K,2025. Water inrush mechanism and the minimum safety thickness of the rock wall of a tunnel crossing a fault fracture zone[J]. Journal of Geomechanics,31(1):80−90 doi: 10.12090/j.issn.1006-6616.2024065
Citation: YUAN D,XIAO K,2025. Water inrush mechanism and the minimum safety thickness of the rock wall of a tunnel crossing a fault fracture zone[J]. Journal of Geomechanics,31(1):80−90 doi: 10.12090/j.issn.1006-6616.2024065

隧道穿越断层破碎带突水机制及岩墙最小安全厚度研究

doi: 10.12090/j.issn.1006-6616.2024065
基金项目: 西藏自治区重点研发计划(XZ202201ZY0021G);中国中铁股份有限公司科技研究开发计划(2021-重大-01,2022-重大-01);中铁二院工程集团有限责任公司引导项目(KDNQ213043)
详细信息
    作者简介:

    袁东(1991—),男,高级工程师,主要从事铁路工程地质工作。Email:1804802380@qq.com

  • 中图分类号: TU452;U25

Water inrush mechanism and the minimum safety thickness of the rock wall of a tunnel crossing a fault fracture zone

Funds: This research is financially supported by the Key Research and Development Program of Xizang Autonomous Region (Grant No. XZ202201ZY0021G); the China Railway Group Limited Technology Research and Development Plan (Grants No. 2021-Major-01 and 2022-Major-01) and the Guided Project of China Railway Eryuan Engineering Group Co., Ltd (Grant No. KDNQ213043).
  • 摘要: 隧道穿越富水断层破碎带时,掌子面前方的隔水岩体在高渗压作用下容易发生水力劈裂破坏,诱发围岩塌方突水等灾害。基于翼裂纹模型,文章从断裂力学角度分析了岩体含水裂纹扩展及岩桥贯通破坏机理,并且重点考虑了隧道开挖扰动导致岩体损伤弱化,提出了临近断层隔水岩体的最小抗劈裂厚度计算方法。通过对不同影响因素的敏感性分析,发现岩体抗劈裂厚度随隧道断面尺寸、断层水压力、开挖扰动因子的增大而增大,随隧道竖向应力和岩体强度的增大而减小;同时开挖扰动损伤对于岩体抗劈裂厚度的计算结果影响最为显著。最后,以临近雅拉河断裂的川西某隧道为例,考虑实际工程扰动和断层水压力因素,计算了现场施工风险防控岩盘厚度,进一步为类似工程提供理论借鉴。

     

  • 图  1  翼裂纹模型示意图

    ${\sigma _1}$—最大主应力,MPa;${\sigma _3}$—最小主应力,MPa

    Figure  1.  Schematic diagram of the wing crack model

    ${\sigma _1}$−maximum principal stress, MPa; ${\sigma _3}$−minimum principal stress, MPa

    图  2  渗压−应力作用下微裂纹起裂示意图

    ${\sigma _1}$—最大主应力,MPa;${\sigma _3}$—最小主应力,MPa;$l$—翼裂纹长度,m;$a$—裂纹半径,m;${F_{\mathrm{p}}}$—裂纹有效法向力,N;${F_{\mathrm{e}}}$—裂纹有效切向力,N;${F_{\mathrm{w}}}$—楔入力,N;$\varphi $—裂纹与最大主应力方向的夹角

    Figure  2.  Schematic diagram of microcrack initiation under osmotic pressure stress

    ${\sigma _1}$−maximum principal stress, MPa; ${\sigma _3}$−minimum principal stress, MPa; $l$−wing crack length, m; $a$−crack radius, m; ${F_{\mathrm{p}}}$−effective normal force of the crack, N; ${F_{\mathrm{e}}}$−effective tangential force of the crack, N; ${F_{\mathrm{w}}}$−wedging force, N; $\varphi $−angle between the crack and the direction of the maximum principal stress

    图  3  渗压−应力环境下翼型裂纹扩展贯通示意图

    ${\sigma _1}$—最大主应力,MPa;${\sigma _3}$—最小主应力,MPa;${F_{\mathrm{w}}}$—楔入力,MPa;$p$—渗压,MPa;$\sigma _3^{\,\mathrm{i}} $—有效张拉应力,MPa

    Figure  3.  Schematic diagram of wing crack propagation and penetration under an osmotic stress environment

    ${\sigma _1}$−maximum principal stress, MPa; ${\sigma _3}$−minimum principal stress, MPa; ${F_{\mathrm{w}}}$−wedge force, N; $p$−osmotic pressure, MPa; $\sigma _3^{\mathrm{i}} $−effective tensile stress

    图  4  DK262+018.1里程掌子面渗水与失稳情况

    Figure  4.  Seepage and instability situation of a tunnel face at D6K262+018.1 mileage

    图  5  最小安全厚度示意图

    h—最小安全厚度,m;hc—岩体抗劈裂厚度,m;hf—裂隙带区厚度,m

    Figure  5.  Schematic diagram of the minimum safety thickness

    h−minimum safety thickness, m; hc−anti-splitting thickness of the rock mass, m; hf−fracture zone thickness, m

    图  6  TSP成果图

    Figure  6.  TSP achievement chart

    图  7  断层水压力对岩体抗劈裂厚度的影响

    $\gamma $—岩层容重,N/m3H—隧道埋深,m;D—开挖扰动因子

    Figure  7.  The influence of the fault water pressure on the anti-splitting thickness of a rock mass

    $\gamma $−rock unit weight, N/m3; H−tunnel burial depth, m; D−excavation disturbance factor

    图  8  竖向应力对岩体抗劈裂厚度的影响

    D—开挖扰动因子;${p_{\mathrm{w}}}$—断层水压力,MPa

    Figure  8.  The influence of vertical stress on the anti-splitting thickness of rock mass

    D−excavation disturbance factor; ${p_{\mathrm{w}}}$fault water pressure, MPa

    图  9  开挖扰动因子对岩体抗劈裂厚度的影响

    $\gamma $—岩层容重,N/m3H—隧道埋深,m;${p_{\mathrm{w}}}$—断层水压力,MPaa—不同断层水压力条件下;b—不同竖向应力条件下

    Figure  9.  The influence of the excavation disturbance factor on the anti-splitting thickness of a rock mass

    (a) Under different fault water pressures; (b) Under different vertical stresses $\gamma $rock unit weight, N/m3; H −tunnel burial depth, m; ${p_{\mathrm{w}}}$fault water pressure, MPa

    表  1  地质条件计算基本参数表

    Table  1.   Basic parameters for the geological condition calculation

    地应力环境 地下水 掌子面岩体特征
    水平应
    力/MPa
    竖向应
    力/MPa
    侧压力
    系数
    地下水
    压力/MPa
    原生裂纹
    半径a/m
    裂纹与最大主
    应力夹角φ/(°)
    翼裂纹
    长度l/m
    裂隙面
    摩擦系数
    岩石单轴抗压
    强度/MPa
    岩石单轴抗拉
    强度/MPa
    完整性
    系数
    7.48 5.81 1.44 0.97 0.8 35 0.1 0.577 9.9 3.8 0.5
    下载: 导出CSV
  • [1] ASHBY M F, HALLAM S D, 1986. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metallurgica, 34(3): 497-510. doi: 10.1016/0001-6160(86)90086-6
    [2] ASHBY M F, SAMMIS C G, 1990. The damage mechanics of brittle solids in compression[J]. Pure and Applied Geophysics, 133(3): 489-521. doi: 10.1007/BF00878002
    [3] CAI Z Y, QIAO S F, LIU Y Q, 2024. Analysis of disaster mechanism and influence of water inrush in tunnel construction under complex environment[J]. Journal of Railway Science and Engineering, 21(12): 5140-5150. (in Chinese with English abstract
    [4] GAN K R, YANG Y, LI J S, 2007. Analysis on karst water inflow mechanisms and determination of thickness of safe rock walls: case study on a tunnel[J]. Tunnel Construction, 27(3): 13-16, 50. (in Chinese with English abstract
    [5] GUO C B, ZHANG Y S, WANG T, et al., 2017. Discussion on geological hazards and major engineering geological problems in the middle part of the north-south active tectonic zone, China[J]. Journal of Geomechanics, 23(5): 707-722. (in Chinese with English abstract
    [6] GUO J Q, 2011. Study on against-inrush thickness and waterburst mechanism of karst tunnel[D]. Beijing: Beijing Jiaotong University. (in Chinese with English abstract
    [7] GUO J Q, QIAO C S, 2012. Study on water-inrush mechanism and safe thickness of rock wall of karst tunnel face[J]. Journal of the China Railway Society, 34(3): 105-111. (in Chinese with English abstract
    [8] GUO J Q, CHEN J X, CHEN F, et al., 2018. Water inrush criterion and catastrophe process of a karst tunnel face with non-persistent joints[J]. China Journal of Highway and Transport, 31(10): 118-129. (in Chinese with English abstract
    [9] HE C H, 2022. Study on the safe thickness of water-resisting rock mass and water inrush mechanism of water-filling karst cave tunnel[D]. Chongqing: Chongqing University. (in Chinese with English abstract
    [10] JIANG H M, LI L, RONG X L, et al., 2017. Model test to investigate waterproof-resistant slab minimum safety thickness for water inrush geohazards[J]. Tunnelling and Underground Space Technology, 62: 35-42. doi: 10.1016/j.tust.2016.11.004
    [11] KONG F M, 2022. Hazard-causing mechanism of dynamic water and mud inrush triggered by deep buried tunnel of Sichuan-Tibet railway crossing active fault[D]. Ji’nan: Shandong University. (in Chinese with English abstract
    [12] LI J, LU H, XIA Y P, 2014. Survey and research on estimation method of against-inrush safe thickness of rock strata in karst tunnels[J]. Tunnel Construction, 34(9): 862-872. (in Chinese with English abstract
    [13] LI L, RONG X L, WANG M Y, et al., 2016. Development and application of 3D model test system for water inrush geohazards in long and deep tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 35(3): 491-497. (in Chinese with English abstract
    [14] LI L P, ZHU Y Z, ZHOU Z Q, et al. , 2020. Calculation methods of rock thickness for preventing water inrush in tunnels and their applicability evaluation[J]. Rock and Soil Mechanics, 41(S1): 41-50, 170. (in Chinese with English abstract
    [15] LI S C, YUAN Y C, LI L P, et al., 2015. Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation[J]. Chinese Journal of Geotechnical Engineering, 37(2): 313-320. (in Chinese with English abstract
    [16] LI S C, WANG J, LI L P, et al., 2019. The theoretical and numerical analysis of water inrush through filling structures[J]. Mathematics and Computers in Simulation, 162: 115-134. doi: 10.1016/j.matcom.2018.12.014
    [17] LI X P, LI Y N, 2014. Research on risk assessment system for water inrush in the karst tunnel construction based on GIS: case study on the diversion tunnel groups of the Jinping II Hydropower Station[J]. Tunnelling and Underground Space Technology, 40: 182-191. doi: 10.1016/j.tust.2013.10.005
    [18] LI X Z, QI C Z, SHAO Z S, 2020. Study on strength weakening model induced by microcrack growth in rocks[J]. Chinese Journal of Underground Space and Engineering, 16(1): 26-34. (in Chinese with English abstract
    [19] LI X Z, ZHANG Q S, CAI B C, et al., 2023. A static creep fracture model after dynamic damage in brittle rocks[J]. Chinese Journal of Theoretical and Applied Mechanics, 55(4): 903-914. (in Chinese with English abstract
    [20] LUO L R, LIU Z G, 2009. Influence of fault crush belts on the stability of tunnel rock[J]. Journal of Geomechanics, 15(3): 226-232. (in Chinese with English abstract
    [21] MA J F, LI X Q, ZHANG C C, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone[J]. Journal of Geomechanics, 28(6): 956-968. (in Chinese with English abstract
    [22] SUN L J, ZHAO Z B, PAN J W, et al., 2021. The stress and strain state of Yalahe fault in the Kangding segment of the Xianshuihe fault zone and its seismogenic environment[J]. Acta Petrologica Sinica, 37(10): 3225-3240. (in Chinese with English abstract doi: 10.18654/1000-0569/2021.10.15
    [23] WANG J, CUI J Y, CHEN Z L, et al., 2021. Prediction formula of critical safety thickness of tunnel water inrush in water-rich fault zone[J]. Tunnel Construction, 41(S1): 256-264. (in Chinese with English abstract
    [24] WU Z S, LI S, TU Y L, et al. , 2020. Study on safety thickness theory of palm surface outburst prevention based on unified strength theory[J]. Chinese Journal of Underground Space and Engineering, 16(6): 1705-1710, 1721. (in Chinese with English abstract
    [25] XIAO K, ZHANG Z T, ZHA E S, et al., 2023. A non-linear creep model considering disturbance damage at different depths[J]. Thermal Science, 27(5A): 3863-3868.
    [26] XIAO Q F, LI W L, FU W X, et al., 2022. Analytical solution to the minimum safe thickness of circular tunnel anti-inrushing structure in water-rich area[J]. Advanced Engineering Sciences, 54(3): 159-168. (in Chinese with English abstract
    [27] XIAO X, ZHAO X Y, ZHANG J F, et al., 2022. Classification of water inrush failure mode and rock thickness for preventing water inrush in karst tunnels[J]. Journal of Engineering Geology, 30(2): 459-474. (in Chinese with English abstract
    [28] YANG Z H, YANG X L, XU J S, et al., 2017. Two methods for rock wall thickness calculation in karst tunnels based on upper bound theorem[J]. Rock and Soil Mechanics, 38(3): 801-809. (in Chinese with English abstract
    [29] ZENG Y, 2015. Study on the calculation method of safe thickness of rock masses in karst tunnels and the mechanism of water inrush disasters[D]. Chengdu: Southwest Petroleum University. (in Chinese t
    [30] ZHA E S, 2022. Seepage-creep behavior of marble under environments with disturbance conditions corresponding to different depths[D]. Chengdu: Sichuan University. (in Chinese with English abstract
    [31] ZHANG A L, XIE H P, ZHANG Z T, et al., 2024. Mechanical responses in rocks with different lithologies under mining loading–unloading: an insight by energy damage and ultrasonic characterization[J]. Rock Mechanics and Rock Engineering, 57(11): 10047-10069. doi: 10.1007/s00603-024-04081-4
    [32] ZHENG X Y, SHI C H, WANG Z X, et al., 2023. Calculation method for safe thickness of water insulation rock in tunnelling based on timoshenko beam theory[J]. Modern Tunnelling Technology, 60(4): 14-22. (in Chinese with English abstract
    [33] ZHOU Z Q, LI L P, SHI S S, et al., 2020. Study on tunnel water inrush mechanism and simulation of seepage failure process[J]. Rock and Soil Mechanics, 41(11): 3621-3631. (in Chinese with English abstract
    [34] ZHU C Y, YU S C, 2001. Study on the criterion of rockmass damage caused by blasting[J]. Engineering Blasting, 7(1): 12-16. (in Chinese with English abstract
    [35] 蔡子勇,乔世范,刘屹颀,2024. 复杂环境下隧道施工涌水致灾机理及影响分析[J]. 铁道科学与工程学报,21(12):5140-5150.
    [36] 干昆蓉,杨毅,李建设,2007. 某隧道岩溶突水机理分析及安全岩墙厚度的确定[J]. 隧道建设,27(3):13-16,50. doi: 10.3969/j.issn.1672-741X.2007.03.004
    [37] 郭长宝,张永双,王涛,等,2017. 南北活动构造带中段地质灾害与重大工程地质问题概论[J]. 地质力学学报,23(5):707-722. doi: 10.3969/j.issn.1006-6616.2017.05.008
    [38] 郭佳奇,2011. 岩溶隧道防突厚度及突水机制研究[D]. 北京:北京交通大学.
    [39] 郭佳奇,乔春生,2012. 岩溶隧道掌子面突水机制及岩墙安全厚度研究[J]. 铁道学报,34(3):105-111. doi: 10.3969/j.issn.1001-8360.2012.03.018
    [40] 郭佳奇,陈建勋,陈帆,等,2018. 岩溶隧道断续节理掌子面突水判据及灾变过程[J]. 中国公路学报,31(10):118-129. doi: 10.3969/j.issn.1001-7372.2018.10.011
    [41] 贺辰昊,2022. 充水溶洞隧道掌子面隔水岩体安全厚度及突水机理研究[D]. 重庆:重庆大学.
    [42] 孔凡猛,2022. 川藏铁路深埋隧道穿越活动断裂动力突水突泥致灾机理研究[D]. 济南:山东大学.
    [43] 李集,卢浩,夏沅谱,2014. 岩溶隧道防突安全厚度研究综述及估算方法探讨[J]. 隧道建设,34(9):862-872.
    [44] 李浪,戎晓力,王明洋,等,2016. 深长隧道突水地质灾害三维模型试验系统研制及其应用[J]. 岩石力学与工程学报,35(3):491-497.
    [45] 李利平,朱宇泽,周宗青,等,2020. 隧道突涌水灾害防突厚度计算方法及适用性评价[J]. 岩土力学,41(S1):41-50,170.
    [46] 李术才,袁永才,李利平,等,2015. 钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J]. 岩土工程学报,37(2):313-320.
    [47] 李晓照,戚承志,邵珠山,2020. 岩石裂纹扩展诱发的强度弱化模型研究[J]. 地下空间与工程学报,16(1):26-34.
    [48] 李晓照,张骐烁,柴博聪,等,2023. 动力损伤后的脆性岩石静力蠕变断裂模型研究[J]. 力学学报,55(4):903-914. doi: 10.6052/0459-1879-22-597
    [49] 罗利锐,刘志刚,2009. 断层对隧道围岩稳定性的影响[J]. 地质力学学报,15(3):226-232. doi: 10.3969/j.issn.1006-6616.2009.03.004
    [50] 马剑飞,李向全,张春潮,等,2022. 金沙江断裂带中段岩溶发育和地下水循环特征[J]. 地质力学学报,28(6):956-968.
    [51] 孙丽静,赵中宝,潘家伟,等,2021. 鲜水河断裂带康定段雅拉河断裂深部应力应变状态及其孕震环境[J]. 岩石学报,37(10):3225-3240.
    [52] 王军,崔江余,陈泽龙,等,2021. 富水断层带隧道突水临界安全厚度预测公式研究[J]. 隧道建设(中英文),41(S1):256-264.
    [53] 吴祖松,李松,涂义亮,等,2020. 统一强度理论下掌子面防突安全厚度理论研究[J]. 地下空间与工程学报,16(6):1705-1710,1721.
    [54] 肖前丰,李文龙,符文熹,等,2022. 富水构造区圆形隧道抗突体最小安全厚度解析解[J]. 工程科学与技术,54(3):159-168.
    [55] 肖喜,赵晓彦,张巨峰,等,2022. 岩溶隧道涌突水破坏模式分类及防突厚度研究[J]. 工程地质学报,30(2):459-474.
    [56] 杨子汉,杨小礼,许敬叔,等,2017. 基于上限原理的两种岩溶隧道岩墙厚度计算方法[J]. 岩土力学,38(3):801-809.
    [57] 曾艺,2015. 岩溶隧道岩盘安全厚度计算方法及突水灾害发生机理研究[D]. 成都:西南石油大学.
    [58] 查尔晟,2022. 不同深度环境及扰动条件下大理岩渗流-蠕变力学行为研究[D]. 成都:四川大学.
    [59] 郑晓悦,施成华,王祖贤,等,2023. 基于Timoshenko梁理论的隧道隔水岩体安全厚度计算方法[J]. 现代隧道技术,60(4):14-22.
    [60] 周宗青,李利平,石少帅,等,2020. 隧道突涌水机制与渗透破坏灾变过程模拟研究[J]. 岩土力学,41(11):3621-3631.
    [61] 朱传云,喻胜春,2001. 爆破引起岩体损伤的判别方法研究[J]. 工程爆破,7(1):12-16.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  22
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 修回日期:  2024-12-09
  • 录用日期:  2024-12-11
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回