Water inrush mechanism and the minimum safety thickness of the rock wall of a tunnel crossing a fault fracture zone
-
摘要: 隧道穿越富水断层破碎带时,掌子面前方的隔水岩体在高渗压作用下容易发生水力劈裂破坏,诱发围岩塌方突水等灾害。基于翼裂纹模型,文章从断裂力学角度分析了岩体含水裂纹扩展及岩桥贯通破坏机理,并且重点考虑了隧道开挖扰动导致岩体损伤弱化,提出了临近断层隔水岩体的最小抗劈裂厚度计算方法。通过对不同影响因素的敏感性分析,发现岩体抗劈裂厚度随隧道断面尺寸、断层水压力、开挖扰动因子的增大而增大,随隧道竖向应力和岩体强度的增大而减小;同时开挖扰动损伤对于岩体抗劈裂厚度的计算结果影响最为显著。最后,以临近雅拉河断裂的川西某隧道为例,考虑实际工程扰动和断层水压力因素,计算了现场施工风险防控岩盘厚度,进一步为类似工程提供理论借鉴。Abstract:
Objective With the relocation of major national strategic plans to western China, railway construction has gradually focused on the complex and dangerous mountainous regions of Yunnan, Sichuan, and Xizang Provinces, where the proportion of tunnels along the railway is very high. When a tunnel passes through a water-rich fault fracture zone, the rock mass in front of the palm face is prone to hydraulic fracturing and damage under high osmotic pressure, leading to disasters such as rock collapse and water inrush. Methods The wing crack model is introduced to fully account for the initiation and propagation of secondary wing cracks in water-saturated fractures, as well as the impact of excavation disturbances. The effective tensile stress and rock bridge size between intermittent fractures in the rock are revised. The tensile-shear failure mechanism of the water-insulating rock mass in front of the tunnel face is analyzed, and the critical water pressure for hydraulic fracturing of the water-insulating rock mass is derived. The minimum safety thickness for the tunnel face against water inrush in the proximity of a fault fracture zone is proposed. Results The theoretical formulas indicate that the anti-splitting thickness of the water-insulating rock mass is related to factors such as tunnel section size, fault water pressure, excavation disturbance, in-situ stress, rock mass strength, crack size, and fracture parameters. Through analysis of the sensitivity of the different influencing factors, it is found that the anti-splitting thickness of the rock mass increases with the increase of the tunnel section size, the fault water pressure, and the excavation disturbance factor, but decreases with the increase of the vertical tunnel stress and the rock mass strength. At the same time, the excavation disturbance damage has the most significant impact on the calculated anti-splitting thickness of the rock mass. Conclusion In practical engineering, there are certain empirical judgments and errors in obtaining excavation disturbance factors via rock integrity assessment and rock wave velocity testing. Therefore, this method requires accurate acquisition of the damage conditions of the rock mass in front of the tunnel face. Various assessment methods can be used for comparison and selection, and a conservative approach can be adopted by using a larger value for the excavation disturbance factor. Significance Finally, taking a tunnel in western Sichuan near the Yalahe fault as an example and considering the actual engineering disturbance and fault water pressure, the minimum safety thickness of the rock wall at the tunnel face is calculated to verify the engineering applicability of the proposed method. This research can effectively guide on-site risk prediction and plan formulation; it provides a theoretical basis for the prevention and control of water inrush in tunnels crossing water-rich fault fracture zones. -
0. 引言
随着“中长期铁路网规划”和“西部大开发”等国家战略规划的纵深推进,铁路建设逐步聚焦于云南、贵州、四川、西藏等西部构造复杂艰险山区。隧址主要分布于构造活跃区高山峡谷地带,由于深大断裂附近软弱破碎岩体多、区域水平构造应力强、围岩富水特征差异大,导致隧道内突水突泥等地质灾害问题极为突出(李利平等,2020;周宗青等,2020)。隧道突涌是一个复杂的地质力学和工程问题(郭长宝等,2017;蔡子勇等,2024),主要表现为隧道临空面与隐伏灾害源之间的岩土体失稳破坏,亟需厘清防突结构的破坏形式和致灾机制,建立对应可靠的防突厚度计算方法。
针对防突结构的组成和灾害演化差异,将突涌水灾害分为隔水岩体渐进破坏和充填体渗透失稳两种模式,隔水岩体渐进破坏主要是由于隔水岩体发生水力劈裂,隔水岩体破裂失稳诱发突涌(Li and Li,2014;Jiang et al.,2017)。充填体渗透失稳主要是断层破碎带或者溶洞等致灾构造内的充填介质,在地下水的渗透压力作用下发生破坏并随地下水渗流,最终形成渗流通道发生突涌灾害(罗利锐和刘志刚,2009;Li et al.,2019;马剑飞等,2022)。
在隔水岩体安全厚度的理论研究中常常将隔水岩体简化成梁、板模型(肖前丰等,2022;郑晓悦等,2023),结合强度理论或突变理论得出隔水岩体安全厚度的计算公式(吴祖松等,2020),认为隔水岩体主要发生剪切或弯曲破坏,众多学者对经验公式法、洞顶坍塌法、坍塌平衡法、梁板受力模型法、剪切计算法等进行了大量的研究(郭佳奇,2011;李集等,2014;曾艺,2015;杨子汉等,2017),安全厚度计算可分为定性分析、半定量分析和定量分析三类(贺辰昊,2022)。然而,上述方法仅适用于隔水岩体为一定厚度的完整岩体的情况。将掌子面前方隔水岩体计算方法按照力学模型和适用对象,可划分为完整岩体型和裂隙岩体型两类(李利平等,2020)。在实际工程中,隧道掌子面与高压含水体之间的岩体由于自身地质赋存条件和开挖扰动影响,常见为块状或层状结构岩体,包含了许多断续裂隙(郭佳奇等,2018;肖喜等,2022)。在适用于裂隙岩体类型方面,断裂力学可以更好地揭示裂隙扩展破坏机制,干昆蓉等(2007)考虑开挖扰动和地应力等因素,提出了岩体含水裂隙扩展的临界水压力和安全厚度计算方法。郭佳奇和乔春生(2012)运用断裂力学和水力学理论分析了隧道裂隙岩体水力劈裂破坏模式,建立了基于临界水压力的掌子面岩墙安全厚度计算公式。李术才等(2015)基于“两带”理论,给出了钻爆施工条件下岩溶隧道掌子面岩体含水裂纹扩展机理及防突最小安全厚度。孔凡猛(2022)考虑断裂错动和地震等动力作用下的裂纹起裂机制,建立了针对活动断裂隔水岩体的最小安全厚度计算方法。但是,上述方法采用的断裂力学模型为单裂纹模型,未考虑断续裂隙之间的相互影响。
西部复杂艰险山区隧道穿越断层破碎带时,围岩结构破碎程度高,在富水结构高压水作用下,断续裂隙之间的岩桥贯通破坏是诱发防突结构失稳破坏的主要原因之一。因此,文章引入翼裂纹模型,充分考虑含水裂隙次生翼裂纹起裂扩展和开挖扰动影响,修正了断续裂隙之间岩桥有效张拉应力和岩桥尺寸,分析了掌子面前方隔水裂隙岩体的拉剪破坏机制,推导了隔水岩体水力劈裂的临界水压力,提出了临近断层破碎带掌子面突涌最小安全厚度。
1. 隔水岩体突水机制
1.1 翼型裂纹起裂与扩展模型
隧道开挖临近富水断层破碎带时,由于开挖扰动可能导致临近断裂位置岩体原有的裂隙劣化,同时在地下水持续作用下,引起裂纹扩展,导致安全厚度不够而发生突涌的动力现象,其核心力学机制是由水力劈裂导致。断裂力学的翼型裂纹起裂与扩展模型(Ashby and Hallam,1986;李晓照等,2020)能够较好地描述岩体内部断续裂隙起裂、扩展直至失效的全过程。如图1所示,主要包括以下两个阶段:一是岩体次生翼裂纹的起裂;二是裂隙间岩桥破裂贯通。在翼裂纹基础上,考虑渗透压力对岩体破裂的影响,在起裂阶段,假设应力作用产生了如图2所示的单条微裂纹,裂纹半径为a,其远场应力作用下含水裂纹的裂隙面应力状态为:
σN=σ1+σ32−σ1−σ32cos2φ−pτ=σ1−σ32sin2φ (1) 式中σN为裂隙面法向应力,MPa;τ为裂隙面切向应力,MPa;σ1为最大主应力,MPa;σ3为最小主应力,MPa;φ为裂纹与最大主应力方向的夹角;p为渗压,MPa。裂纹在驱动力作用下发生滑移,在渗透压力作用下裂隙面的有效切向应力σe为:
σe=τ−fσN = σ1−σ32sin2φ−f(σ1+σ32−σ1−σ32cos2φ−p) (2) 式中σe为有效切向应力,MPa;f为摩擦系数;其他参数含义与公式(1)一致。
图 2 渗压−应力作用下微裂纹起裂示意图 —最大主应力,MPa;σ1 —最小主应力,MPa;σ3 —翼裂纹长度,m;l —裂纹半径,m;a —裂纹有效法向力,N;Fp —裂纹有效切向力,N;Fe —楔入力,N;Fw —裂纹与最大主应力方向的夹角φ Figure 2. Schematic diagram of microcrack initiation under osmotic pressure stress −maximum principal stress, MPa;σ1 −minimum principal stress, MPa;σ3 −wing crack length, m;l −crack radius, m;a −effective normal force of the crack, N;Fp −effective tangential force of the crack, N;Fe −wedging force, N;Fw −angle between the crack and the direction of the maximum principal stressφ 1.2 有效张拉应力计算
假设在三维应力状态下,有效剪切应力均匀作用在裂隙上,则其合力在裂隙面上的投影可以表征为:
Fw=σeπa2sinφ=[σ1−σ32sin2φ−f(σ1+σ32−σ1−σ32cos2φ−p)]πa2sinφ (3) 式中Fw为楔入力,N;a为裂纹半径,m;其他参数含义与公式(1)一致。裂纹产生的初期,岩体内次生翼裂隙主要依靠楔入力张拉产生,随着地下水进一步渗入翼裂纹,裂纹尖端张拉应力进一步增大,次生翼裂纹间形成的岩桥将发生相互贯通,如图3所示。考虑渗透压力对次生翼裂纹的作用,因此,投影在裂隙面上的岩桥内有效张拉应力为:
图 3 渗压−应力环境下翼型裂纹扩展贯通示意图 —最大主应力,MPa;σ1 —最小主应力,MPa;σ3 —楔入力,MPa;Fw —渗压,MPa;p —有效张拉应力,MPaσi3 Figure 3. Schematic diagram of wing crack propagation and penetration under an osmotic stress environment −maximum principal stress, MPa;σ1 −minimum principal stress, MPa;σ3 −wedge force, N;Fw −osmotic pressure, MPa;p −effective tensile stressσi3 σi3=Fw+pπl2S−π(l+acosφ)2 (4) 式中σi3为投影在裂隙面上的岩桥内有效张拉应力,MPa;l为翼裂纹长度,m;S为平均每个裂纹在裂纹扩展过程的影响面积;其他参数含义与公式(3)一致。
1.3 基于开挖扰动的临界水压力计算
考虑隧道开挖扰动对突涌灾害的影响,其影响主要包括隔水岩体内部裂纹数量增加和裂纹扩展(李晓照等,2023),因此,引入扰动损伤因子D对平均每个裂纹在裂纹扩展过程的影响面积S进行修正,由于损伤程度与微裂纹体积具有线性关系:
D=43π(acosφ)3N (5) 式中N为单位体积内的裂纹数量。当岩体损伤增加时,平均每个裂纹在裂纹扩展过程的影响面积减小,岩桥的尺寸减小,则S修正为:
S=π13(34N)23=π(acosφ)2(1D)23 (6) 其中扰动损伤因子可通过现场声波对比测试、弹模对比、原位加载试验、经验估计等方法获得,采用朱传云和喻胜春(2001)提出的岩体爆破损伤度D与弹性模量E、岩体完整性系数KV、波速v和声速降低率η之间的关系:
D=1−EE0=1−(vv0)2=1−KV=1−(1−η)2 (7) 式中E0表示初始弹性模量,GPa;v0表示初始波速,m/s。Ashby and Hallam(1986)在前期实验研究中发现,压缩荷载作用下岩体的翼裂纹扩展以I型裂纹为主,Ⅱ型裂纹应力强度因子几乎为0。而在次生翼裂纹扩展过程中的I型裂纹尖端应力强度因子包含楔入力Fw和岩桥内有效张拉应力σi3对裂纹扩展的贡献,则翼裂纹尖端的I型应力强度因子表达式为(Ashby and Sammis,1990):
KI=KI(Fw)+KI(σi3)=Fw[π(l+βa)]32 + 2π(σi3−σ3)√πl (8) 式中KI为翼裂纹尖端的I型应力强度因子;KI(Fw)为Fw对I型应力强度因子的贡献;KI(σi3)为σi3对I型应力强度因子的贡献;引入参数β消除l=0时KI的奇异性(查尔晟,2022),定义为:
β=1π√1+f2+f√1+f2−f (9) 联立上述公式得到翼型裂纹尖端的应力强度因子表达式:
KI={1[π(l+βa)]32+2√πlπ[π(acosφ)2(1D)23−π(l+acosφ)2]}[σ1−σ32sin2φ−f(σ1+σ32−σ1−σ32cos2φ−p)]⋅πa2sinφ+2pl2√πlπ(acosφ)2(1D)23−π(l+acosφ)2−2πσ3√πl (10) 其中I型断裂韧度KIC作为已知条件,因此令KI=KIC,反解得到隔水岩体发生劈裂破坏的临界水压力p:
p=KIC+2πσ3√πl−πa2sinφ⋅{1[π(l+βa)]32+2√πlπ[π(acosφ)2(1D)23−π(l+acosφ)2]}⋅[σ1−σ32sin2φ−f(σ1+σ32−σ1−σ32cos2φ)]2l2√πlπ(acosφ)2(1D)23−π(l+acosφ)2+fπa2sinφ⋅{1[π(l+βa)]32+2√πlπ[π(acosφ)2(1D)23−π(l+acosφ)2]} (11) 2. 断层破碎带突涌安全厚度分析
隧道开挖爆破扰动和临空面卸荷造成围岩应力重新分布,以及岩体内部裂隙发育贯通导致损伤加剧。根据翼裂纹扩展模型,水压劈裂临界水压力受围岩应力σ1和σ3影响,由于掌子面处的最大主应力σ1应力集中和最小主应力σ3应力卸荷,从而导致临界水压力降低。采用侧压力系数表征σ1和σ3的应力重分布,即水压劈裂临界水压力随侧压力系数降低而降低。掌子面前方隔水岩体某点侧压力系数随其与掌子面距离的演化关系如下。
假定扰动区内岩体侧压力系数具有同掌子面前方隧道边界上径向位移相同变化规律,则扰动区侧压力系数为(郭佳奇和乔春生,2012;李术才等,2015):
λx=λ{1−[exp(x1.1R)]−1.7} (12) 式中x为掌子面前方隔水岩体内任意断面到掌子面的距离,m;R为隧道断面半径或断面等效圆半径,m;λx为掌子面前方x处侧压力系数;λ为原始侧压力系数,隧道由于构造应力作用,λ一般大于1,即水平主应力为最大主应力。
在开挖掌子面推进过程中,隔水岩体厚度不断减小,水力劈裂的影响范围逐渐发展至掌子面,当某次循环掌子面的水力劈裂临界水压力小于断层水压力时,隔水岩体发生破裂失稳诱发突涌,此时该掌子面到富水断层破碎带边缘距离x即为隔水岩体抗劈裂厚度h。随着开挖推进,水平主应力逐渐卸荷为0,引起最大主应力、最小主应力异向,根据翼裂纹模型推导过程的严谨性,需要分情况考虑。
由公式(12)知,λx随x增加单调递增,首先得到掌子面前方隔水岩体侧压力系数等于1的断面位置,即最大最小主应力异向的位置,令λx=1,则有:
h1=x1=11R17[lnλ−ln(λ−1)] (13) 则根据公式(11),在最大最小主应力异向的断面发生劈裂破坏的临界水压力为:
p1=KIC+2πσ1√πl+fσ1πa2sinφ⋅{1[π(l+βa)]32+2√πlπ[π(acosφ)2(1D)23−π(l+acosφ)2]}2l2√πlπ(acosφ)2(1D)23−π(l+acosφ)2+fπa2sinφ⋅{1[π(l+βa)]32+2√πlπ[π(acosφ)2(1D)23−π(l+acosφ)2]} (14) ①若断层水压力pw>p1,发生劈裂破坏断面位置距掌子面距离大于h1,发生劈裂的断层水平主应力为最大主应力,即σ1=λxγH,则最小主应力σ3=γH。其中γ为岩层容重,H为隧道埋深。根据劈裂破坏条件pw⩾,由公式(11)和公式(12)可推得隔水岩体抗劈裂厚度需满足:
{\begin{split} &h\geqslant \dfrac{11R}{17}\mathrm{ln}\lambda -\dfrac{11R}{17}\mathrm{ln}\\ &\left\{\lambda -\dfrac{{K}_{{\mathrm{IC}}}+\dfrac{2}{{\text{π}} }\gamma H\sqrt{{\text{π}} l}-{p}_{{\mathrm{w}}}\left\{\dfrac{2{l}^{2}\sqrt{{\text{π}} l}}{{\text{π}} {\left(a\mathrm{cos}\varphi \right)}^{2}{\left(\dfrac{1}{D}\right)}^{\tfrac{2}{3}}-{\text{π}} {\left(l+a\mathrm{cos}\varphi \right)}^{2}}+f{\text{π}} {a}^{2}\mathrm{sin}\varphi \cdot \left\{\dfrac{1}{{\left[{\text{π}} \left(l+\beta a\right)\right]}^{{\tfrac{3}{2}}}}+\dfrac{2\sqrt{{\text{π}} l}}{{\text{π}} \left[{\text{π}} {\left(a\mathrm{cos}\varphi \right)}^{2}{\left(\dfrac{1}{D}\right)}^{\tfrac{2}{3}}-{\text{π}} {\left(l+a\mathrm{cos}\varphi \right)}^{2}\right]}\right\}\right\}}{{\text{π}} {a}^{2}\mathrm{sin}\varphi \cdot \left\{\dfrac{1}{{\left[{\text{π}} \left(l+\beta a\right)\right]}^{{\tfrac{3}{2}}}}+\dfrac{2\sqrt{{\pi} l}}{{\text{π}} \left[{\text{π}} {\left(a\mathrm{cos}\varphi \right)}^{2}{\left(\dfrac{1}{D}\right)}^{\tfrac{2}{3}}-{\text{π}} {\left(l+a\mathrm{cos}\varphi \right)}^{2}\right]}\right\}\cdot \dfrac{\gamma H}{2}\left(\mathrm{sin}2\varphi -f+f\mathrm{cos}2\varphi \right)}-\dfrac{\mathrm{sin}2\varphi +f+f\mathrm{cos}2\varphi }{\mathrm{sin}2\varphi -f+f\mathrm{cos}2\varphi }\right\} \end{split}} (15) ②若断层水压力{p_{\mathrm{w}}} < {p_1},发生劈裂破坏断面位置距掌子面距离小于h1,然后最大最小主应力异向{\lambda _x} < 1,即竖向应力等于最大主应力{\sigma _1} = \gamma H,最小主应力{\sigma _3} = {\lambda _x}\gamma H。根据劈裂破坏条件{p_{\mathrm{w}}} \geqslant p,由公式(11)和公式(12)可推得隔水岩体抗劈裂厚度需满足:
\begin{split} {{h\geqslant}} & {{\dfrac{11R}{17}\mathrm{ln}\lambda -\dfrac{11R}{17}\mathrm{ln}\left\{\lambda +\dfrac{{K}_{{\mathrm{IC}}}-{p}_{{\mathrm{w}}}\left\{\dfrac{2{l}^{2}\sqrt{{\text{π}} l}}{{\text{π}} {\left(a\mathrm{cos}\varphi \right)}^{2}{\left(\dfrac{1}{D}\right)}^{\tfrac{2}{3}}-{\text{π}} {\left(l+a\mathrm{cos}\varphi \right)}^{2}}+f{\text{π}} {a}^{2}\mathrm{sin}\varphi \cdot \left\{\dfrac{1}{{\left[{\text{π}} \left(l+\beta a\right)\right]}^{{\tfrac{3}{2}}}}+\dfrac{2\sqrt{{\text{π}} l}}{{\text{π}} \left[{\text{π}} {\left(a\mathrm{cos}\varphi \right)}^{2}{\left(\dfrac{1}{D}\right)}^{\tfrac{2}{3}}-{\text{π}} {\left(l+a\mathrm{cos}\varphi \right)}^{2}\right]}\right\}\right\}}{{\text{π}} {a}^{2}\mathrm{sin}\varphi \cdot \left\{\dfrac{1}{{\left[{\text{π}} \left(l+\beta a\right)\right]}^{{\tfrac{3}{2}}}}+\dfrac{2\sqrt{{\text{π}} l}}{{\text{π}} \left[{\text{π}} {\left(a\mathrm{cos}\varphi \right)}^{2}{\left(\dfrac{1}{D}\right)}^{\tfrac{2}{3}}-{\text{π}} {\left(l+a\mathrm{cos}\varphi \right)}^{2}\right]}\right\}\cdot \dfrac{\gamma H}{2}\left(\mathrm{sin}2\varphi +f+f\mathrm{cos}2\varphi \right)+\dfrac{2}{{\text{π}} }\gamma H\sqrt{{\text{π}} l}}-\right.}}\\ & {{\left.\dfrac{\mathrm{sin}2\varphi -f+f\mathrm{cos}2\varphi }{\mathrm{sin}2\varphi +f+f\mathrm{cos}2\varphi +\dfrac{4\sqrt{{\text{π}} l}}{{{\text{π}} }^{2}{a}^{2}\mathrm{sin}\varphi \cdot \left\{\dfrac{1}{{\left[{\text{π}} \left(l+\beta a\right)\right]}^{{\tfrac{3}{2}}}}+\dfrac{2\sqrt{{\text{π}} l}}{{\text{π}} \left[{\text{π}} {\left(a\mathrm{cos}\varphi \right)}^{2}{\left(\dfrac{1}{D}\right)}^{\tfrac{2}{3}}-{\text{π}} {\left(l+a\mathrm{cos}\varphi \right)}^{2}\right]}\right\}}}\right\}}}\\[-1pt] \end{split} (16) 由此可从断裂力学角度确定隧道穿越富水断层破碎带隔水岩体最小抗劈裂厚度hc。公式(15)和公式(16)表明隔水岩体抗劈裂厚度受隧道断面尺寸、断层水压力、开挖扰动因子、地应力、岩体强度、裂纹尺寸、结构面参数等因素影响。并且从公式(11)可以发现,开挖扰动因子越大,岩体发生劈裂破坏的临界水压力越小,说明隧道开挖或爆破扰动可作为基本触发条件,当掌子面与断层破碎带之间的隔水岩体达到临界厚度时,导致高压地下水涌入隧道而发生突水突泥灾害。
3. 工程案例分析
川西某隧道隧址区为高山峡谷地貌,地质构造非常复杂、地质条件差。隧道穿越断裂、断层共18条,其中活动断裂2条,分别为雅拉河和康定−色拉哈断裂。进口段线路整体与雅拉河活动断裂、雅拉河支断层呈小夹角相交,雅拉河断裂为鲜水河断裂带次级断裂(孙丽静等,2021),断裂带物质呈碎块状、角砾状、含断层泥,受断裂带和高地应力的叠加影响,节理和小微构造极其发育,透水性良好、富含地下水,具有极强的复杂性和不可预见性。隧道采用三台阶施工,上台阶高度(等效半径)约4.5 m,开挖岩性以砂岩、板岩互层为主,局部夹含炭质板岩,强风化为主,砂岩岩体整体较破碎,而炭质板岩夹层多以角砾状为主,隐伏小型断层、节理密集带、褶皱等极为发育,裂隙产状为N25°E/60°NW,最大主应力方向为N10°W,裂隙与最大主应力夹角35°。
2023年6月11日,掌子面施工至DK262+018.1里程,位于雅拉河活动断裂带西侧影响范围,如图4所示,掌子面开挖后右侧拱腰掉渣形成小型空腔,破碎岩体裂隙松弛张开,地下水沿裂隙呈线流状或股状出水,出水水质浑浊且时大时小,右侧稳定性较差,有掉块失稳现象,总水量约100 m3/h,现场立即采取反压回填应急措施以及进行超前周边注浆加固。后续通过洞内、地表取样,以及小区域水文调查和室内分析等工作,进一步分析了该隧道段的地下水补径排关系。水化学和同位素分析表明涌水补给来源并非地表河(沟)水直接补给,为大气降水下渗补给,并在山体基岩裂隙形成静储量。依据同位素补给推测的补给高程,岩性、构造圈定集水面积约9.5 km2,通过大气降雨入渗估算的降水补给量为0.36×104 m3/d。在该涌水点处,隧道段埋深约223 m,位于地下水位线以下97 m,略高于该地区最低排泄基准面—雅拉河。涌水较大的主要原因是北西侧山体来水,隧道开挖后形成新排泄点,加剧了山体的静储量通过基岩裂隙向洞内排泄,最终形成降落漏斗。
根据上述开挖揭示情况与地质报告,相关地质参数如表1所示。其中岩体Ⅰ型断裂韧度{K_{{\mathrm{IC}}}}可通过该隧道掌子面岩石单轴抗压强度和H-B强度准则经验参数m确定(孔凡猛,2022),其计算公式如下:
表 1 地质条件计算基本参数表Table 1. Basic parameters for the geological condition calculation地应力环境 地下水 掌子面岩体特征 水平应
力/MPa竖向应
力/MPa侧压力
系数地下水
压力/MPa原生裂纹
半径a/m裂纹与最大主
应力夹角φ/(°)翼裂纹
长度l/m裂隙面
摩擦系数岩石单轴抗压
强度/MPa岩石单轴抗拉
强度/MPa完整性
系数7.48 5.81 1.44 0.97 0.8 35 0.1 0.577 9.9 3.8 0.5 {K_{{\mathrm{IC}}}} = \frac{{{R_{\mathrm{c}}}(\sqrt {{m^2} + 24.177} - m)}}{{63.103}} (17) H-B强度准则参数m可通过岩石单轴抗压强度和单轴抗拉强度计算得到:
m = 1.318\frac{{{R_{\mathrm{c}}}}}{{{R_{\mathrm{t}}}}} - 4.586\frac{{{R_{\mathrm{t}}}}}{{{R_{\mathrm{c}}}}} (18) 因此获得该隧道掌子面岩体的Ⅰ型断裂韧度{K_{{\mathrm{IC}}}} = 0.552\;{\mathrm{MPa}} \cdot {{\mathrm{m}}^{1/2}}。当隧道临近断层破碎带时,需预留安全岩盘或调整开挖循环进尺,确保采用相应的加强措施或泄水降压满足最小安全范围要求,参考“两带”理论(郭佳奇和乔春生,2012;孔凡猛,2022),建立最小安全厚度计算公式如下:
h = {h_{\mathrm{c}}} + {h_{\mathrm{f}}} (19) 掌子面临近富水断层破碎带的最小安全厚度见图5,式中h为最小安全厚度,m;hc为岩体抗劈裂厚度,m;hf为裂隙带区厚度,m。
掌子面出现浑水和掉块,表明已临近断裂带影响范围,根据物探手段地震波反射法(Tunnel Seismic Prodection,TSP)判断前方裂隙带区厚度hf,如图6所示,DK262+020至DK262+026里程为掌子面前方的裂隙带区,厚度约6 m;DK262+026至DK262+038里程的岩体波速最低,预测为富水破碎带。
由公式(14)计算得到最大最小主应力异号位置处的临界水压力P1=1.81 MPa。因地下水头Pw=0.97 MPa<P1,故按照公式(16)计算掌子面前方隔水岩体抗劈裂厚度hc=1.06 m;然后根据公式(19)计算得到该掌子面前方要求的最小安全岩盘厚度为7.06 m,因此,预测在DK262+018.9里程处会发生隔水岩体水力劈裂破坏导致突水突泥灾害。在实际隧道开挖推进过程中,DK262+018.1里程掌子面出现了渗水失稳情况,现场立即封闭掌子面反压回填,涌水点与采用该方法预测的位置相近,从而验证了该方法的准确性。同时,根据该方法预测,若继续开挖至DK262+018.9则会出现大规模突水突泥。采用超前周边注浆加固后,经过超前探孔验证表明岩体裂隙填充密实,掌子面恢复掘进,期间掌子面探孔内有少量出水,总水量降低至约20 m³/h。综上所述,根据现场处理方案,建议类似情况开展超前周边注浆加固(拱部、右边墙及右拱底轮廓线外5 m),开挖循环进尺小于1 m,确保施工安全。
4. 讨论
断层水压力、开挖扰动因子、地应力等岩层赋存环境作为诱发岩体裂隙起裂扩展的最主要影响因素(李浪等,2016),公式(15)和公式(16)表明其对岩体抗劈裂厚度的影响为非线性的,因此,在上述工程案例的参数基础上,文章设定不同的断层水压力、开挖扰动因子和竖向应力,进一步探究所提出的临近断层隔水岩体最小安全厚度理论的适用性以及岩体抗劈裂厚度对岩体赋存环境的敏感性。
4.1 断层水压力的影响
设定竖向应力\gamma H = 6\;{\text{MPa}},图7展示了不同开挖扰动因子条件下岩体抗劈裂厚度与断层水压力的关系,发现岩体抗劈裂厚度随断层水压力增加呈现非线性的增加趋势,且断层水压力越大,岩体安全厚度增加速率越大;在岩体抗劈裂厚度相同的条件下,开挖扰动因子越小,即岩体损伤越小,岩体所能承受的渗透水压力越大。由于在裂纹起裂阶段:高水压持续作用导致裂隙面的法向有效应力减小和裂纹软化溶蚀(李术才等,2015),减少了裂隙面间的摩擦,使原生裂隙起裂的楔形力增大;同时,在次生翼裂纹贯通阶段,渗透压力以拉应力形式促进岩桥贯通。因此,在裂纹起裂和贯通阶段,渗透压力的增加均将促进裂纹进一步扩展,从而导致掌子面前方要求的岩体安全厚度越大,进一步说明提前降水泄压有利于掌子面自稳。
4.2 竖向应力的影响
如图8所示,设定了相同开挖扰动因子D = 0.4,在不同断层水压力的情况下,岩体抗劈裂厚度均随竖向应力增加而减小,最后下降趋势逐渐平缓,说明竖向应力对渗压诱发岩体开裂有一定的抑制作用,并且在低地应力情况下,岩体抗劈裂厚度对竖向应力敏感;王军等(2021)通过数值模拟分析了埋深对防突安全厚度的影响规律,同样发现浅部临界安全厚度受埋深影响更显著。由于在隔水岩体破坏过程中存在2个关键竞争机制:①轴向应力增加引起的微裂纹压密(Zhang et al., 2024);②高渗压引起的微裂纹重启和扩展,从而随着竖向应力越来越大,岩体微裂纹压密导致岩体抗劈裂厚度对竖向应力的敏感性降低。因此,对于浅部岩体工程,隧道发生突涌水的概率受竖向应力的影响较大,随着上覆岩体深度的增加,岩体抗劈裂厚度主要由渗压和开挖扰动决定。需要注意的是,随着渗压增加,曲线逐渐右移,表明当保持岩体抗劈裂厚度一致时,竖向应力越大,隔水岩体前方所能承受的渗压越大,这与Jiang et al.(2017)通过隧道突水突泥三维模型模拟试验得到的结论一致,即随着埋深的增加,突水时的水力压力呈增大趋势,但增大幅度逐渐减小。
4.3 开挖扰动因子的影响
在不同断层水压力和不同竖向应力条件下,开挖扰动因子越大,岩体越破碎,则要求岩体抗劈裂厚度越大(图9)。从公式(6)也可以看出,开挖扰动因子越大,岩体内部初始裂纹数量越多,在断裂力学理论中导致岩桥尺寸越小,使得岩体裂纹更容易贯通发生劈裂破坏。除此之外,断层水压力越大,则岩体抗劈裂厚度对开挖扰动因子越敏感,曲线增加趋势越显著(图9a),这是由于渗压同样会促进裂纹扩展,因此断层水压力会放大开挖扰动的影响。从图9b中可见在低地应力情况下,随开挖扰动因子增加,岩体抗劈裂厚度增加幅度更大。然而,在高应力情况下,掌子面岩体在开挖过程中受到应力集中和应力卸荷重分布的影响,扰动损伤和范围随着赋存深度的增加而加剧(Xiao et al.,2023)。因此,在深埋隧道开挖过程中,即使临界安全厚度随着地应力增加逐渐减小,仍然需要重视深部开挖剧烈扰动诱发突涌水灾害的风险。
图 9 开挖扰动因子对岩体抗劈裂厚度的影响 —岩层容重,N/m3;H—隧道埋深,m;\gamma —断层水压力,MPaa—不同断层水压力条件下;b—不同竖向应力条件下{p_{\mathrm{w}}} Figure 9. The influence of the excavation disturbance factor on the anti-splitting thickness of a rock mass(a) Under different fault water pressures; (b) Under different vertical stresses −rock unit weight, N/m3; H −tunnel burial depth, m;\gamma −fault water pressure, MPa{p_{\mathrm{w}}} 值得指出的是,根据前述的不同参数敏感性分析,发现开挖扰动因子对岩体抗劈裂厚度的影响最显著,例如在图7中开挖扰动因子D = 0.35与D = 0.45两种情况下的结果曲线存在较大差异。然而,在实际工程中,对于岩体完整性评估、岩体波速测试等开挖扰动因子的获取手段存在一定的经验判断和误差。因此,该方法需要精准获取隧道掌子面前方岩体的损伤情况,可以利用多种评估方法进行比选,并可采用偏保守的方式取开挖扰动因子的较大值。
5. 结论
(1)基于翼型裂纹起裂与扩展模型,叠加考虑工程扰动和断层渗压影响,分析了断续节理裂隙之间的相互作用与岩桥破裂贯通机制,从断裂力学的角度建立了临近断层破碎带隔水岩体抗劈裂厚度计算方法。理论公式表明隔水岩体抗劈裂厚度与隧道断面尺寸、断层水压力、开挖扰动因子、地应力、岩体强度、裂纹尺寸、结构面参数等因素相关。
(2)通过对断层水压力、开挖扰动因子和地应力的敏感性分析,发现隔水岩体抗劈裂厚度受开挖扰动损伤影响最为显著,进一步说明隧道穿越断层破碎带时,掌子面开挖扰动容易诱发突涌灾害。因此,引入扰动损伤因子D,对于进一步细化突涌影响因素,做好隧道风险防控具有较好的指导意义。
(3)临近富水断层破碎带最小安全厚度主要包括隔水岩体抗劈裂厚度和破碎带厚度,结合具体工程实例对比验证,表明该计算方法基本合理,能有效指导现场风险预测和方案制定,可为穿越富水断层破碎带隧道突水防控提供理论依据。
-
图 2 渗压−应力作用下微裂纹起裂示意图
{\sigma _1}—最大主应力,MPa;{\sigma _3}—最小主应力,MPa;l—翼裂纹长度,m;a—裂纹半径,m;{F_{\mathrm{p}}}—裂纹有效法向力,N;{F_{\mathrm{e}}}—裂纹有效切向力,N;{F_{\mathrm{w}}}—楔入力,N;\varphi —裂纹与最大主应力方向的夹角
Figure 2. Schematic diagram of microcrack initiation under osmotic pressure stress
{\sigma _1}−maximum principal stress, MPa; {\sigma _3}−minimum principal stress, MPa; l−wing crack length, m; a−crack radius, m; {F_{\mathrm{p}}}−effective normal force of the crack, N; {F_{\mathrm{e}}}−effective tangential force of the crack, N; {F_{\mathrm{w}}}−wedging force, N; \varphi −angle between the crack and the direction of the maximum principal stress
图 3 渗压−应力环境下翼型裂纹扩展贯通示意图
{\sigma _1}—最大主应力,MPa;{\sigma _3}—最小主应力,MPa;{F_{\mathrm{w}}}—楔入力,MPa;p—渗压,MPa;\sigma _3^{\,\mathrm{i}} —有效张拉应力,MPa
Figure 3. Schematic diagram of wing crack propagation and penetration under an osmotic stress environment
{\sigma _1}−maximum principal stress, MPa; {\sigma _3}−minimum principal stress, MPa; {F_{\mathrm{w}}}−wedge force, N; p−osmotic pressure, MPa; \sigma _3^{\mathrm{i}} −effective tensile stress
图 9 开挖扰动因子对岩体抗劈裂厚度的影响
\gamma —岩层容重,N/m3;H—隧道埋深,m;{p_{\mathrm{w}}}—断层水压力,MPaa—不同断层水压力条件下;b—不同竖向应力条件下
Figure 9. The influence of the excavation disturbance factor on the anti-splitting thickness of a rock mass
(a) Under different fault water pressures; (b) Under different vertical stresses \gamma −rock unit weight, N/m3; H −tunnel burial depth, m; {p_{\mathrm{w}}}−fault water pressure, MPa
表 1 地质条件计算基本参数表
Table 1. Basic parameters for the geological condition calculation
地应力环境 地下水 掌子面岩体特征 水平应
力/MPa竖向应
力/MPa侧压力
系数地下水
压力/MPa原生裂纹
半径a/m裂纹与最大主
应力夹角φ/(°)翼裂纹
长度l/m裂隙面
摩擦系数岩石单轴抗压
强度/MPa岩石单轴抗拉
强度/MPa完整性
系数7.48 5.81 1.44 0.97 0.8 35 0.1 0.577 9.9 3.8 0.5 -
[1] ASHBY M F, HALLAM S D, 1986. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metallurgica, 34(3): 497-510. doi: 10.1016/0001-6160(86)90086-6 [2] ASHBY M F, SAMMIS C G, 1990. The damage mechanics of brittle solids in compression[J]. Pure and Applied Geophysics, 133(3): 489-521. doi: 10.1007/BF00878002 [3] CAI Z Y, QIAO S F, LIU Y Q, 2024. Analysis of disaster mechanism and influence of water inrush in tunnel construction under complex environment[J]. Journal of Railway Science and Engineering, 21(12): 5140-5150. (in Chinese with English abstract [4] GAN K R, YANG Y, LI J S, 2007. Analysis on karst water inflow mechanisms and determination of thickness of safe rock walls: case study on a tunnel[J]. Tunnel Construction, 27(3): 13-16, 50. (in Chinese with English abstract [5] GUO C B, ZHANG Y S, WANG T, et al., 2017. Discussion on geological hazards and major engineering geological problems in the middle part of the north-south active tectonic zone, China[J]. Journal of Geomechanics, 23(5): 707-722. (in Chinese with English abstract [6] GUO J Q, 2011. Study on against-inrush thickness and waterburst mechanism of karst tunnel[D]. Beijing: Beijing Jiaotong University. (in Chinese with English abstract [7] GUO J Q, QIAO C S, 2012. Study on water-inrush mechanism and safe thickness of rock wall of karst tunnel face[J]. Journal of the China Railway Society, 34(3): 105-111. (in Chinese with English abstract [8] GUO J Q, CHEN J X, CHEN F, et al., 2018. Water inrush criterion and catastrophe process of a karst tunnel face with non-persistent joints[J]. China Journal of Highway and Transport, 31(10): 118-129. (in Chinese with English abstract [9] HE C H, 2022. Study on the safe thickness of water-resisting rock mass and water inrush mechanism of water-filling karst cave tunnel[D]. Chongqing: Chongqing University. (in Chinese with English abstract [10] JIANG H M, LI L, RONG X L, et al., 2017. Model test to investigate waterproof-resistant slab minimum safety thickness for water inrush geohazards[J]. Tunnelling and Underground Space Technology, 62: 35-42. doi: 10.1016/j.tust.2016.11.004 [11] KONG F M, 2022. Hazard-causing mechanism of dynamic water and mud inrush triggered by deep buried tunnel of Sichuan-Tibet railway crossing active fault[D]. Ji’nan: Shandong University. (in Chinese with English abstract [12] LI J, LU H, XIA Y P, 2014. Survey and research on estimation method of against-inrush safe thickness of rock strata in karst tunnels[J]. Tunnel Construction, 34(9): 862-872. (in Chinese with English abstract [13] LI L, RONG X L, WANG M Y, et al., 2016. Development and application of 3D model test system for water inrush geohazards in long and deep tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 35(3): 491-497. (in Chinese with English abstract [14] LI L P, ZHU Y Z, ZHOU Z Q, et al. , 2020. Calculation methods of rock thickness for preventing water inrush in tunnels and their applicability evaluation[J]. Rock and Soil Mechanics, 41(S1): 41-50, 170. (in Chinese with English abstract [15] LI S C, YUAN Y C, LI L P, et al., 2015. Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation[J]. Chinese Journal of Geotechnical Engineering, 37(2): 313-320. (in Chinese with English abstract [16] LI S C, WANG J, LI L P, et al., 2019. The theoretical and numerical analysis of water inrush through filling structures[J]. Mathematics and Computers in Simulation, 162: 115-134. doi: 10.1016/j.matcom.2018.12.014 [17] LI X P, LI Y N, 2014. Research on risk assessment system for water inrush in the karst tunnel construction based on GIS: case study on the diversion tunnel groups of the Jinping II Hydropower Station[J]. Tunnelling and Underground Space Technology, 40: 182-191. doi: 10.1016/j.tust.2013.10.005 [18] LI X Z, QI C Z, SHAO Z S, 2020. Study on strength weakening model induced by microcrack growth in rocks[J]. Chinese Journal of Underground Space and Engineering, 16(1): 26-34. (in Chinese with English abstract [19] LI X Z, ZHANG Q S, CAI B C, et al., 2023. A static creep fracture model after dynamic damage in brittle rocks[J]. Chinese Journal of Theoretical and Applied Mechanics, 55(4): 903-914. (in Chinese with English abstract [20] LUO L R, LIU Z G, 2009. Influence of fault crush belts on the stability of tunnel rock[J]. Journal of Geomechanics, 15(3): 226-232. (in Chinese with English abstract [21] MA J F, LI X Q, ZHANG C C, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone[J]. Journal of Geomechanics, 28(6): 956-968. (in Chinese with English abstract [22] SUN L J, ZHAO Z B, PAN J W, et al., 2021. The stress and strain state of Yalahe fault in the Kangding segment of the Xianshuihe fault zone and its seismogenic environment[J]. Acta Petrologica Sinica, 37(10): 3225-3240. (in Chinese with English abstract doi: 10.18654/1000-0569/2021.10.15 [23] WANG J, CUI J Y, CHEN Z L, et al., 2021. Prediction formula of critical safety thickness of tunnel water inrush in water-rich fault zone[J]. Tunnel Construction, 41(S1): 256-264. (in Chinese with English abstract [24] WU Z S, LI S, TU Y L, et al. , 2020. Study on safety thickness theory of palm surface outburst prevention based on unified strength theory[J]. Chinese Journal of Underground Space and Engineering, 16(6): 1705-1710, 1721. (in Chinese with English abstract [25] XIAO K, ZHANG Z T, ZHA E S, et al., 2023. A non-linear creep model considering disturbance damage at different depths[J]. Thermal Science, 27(5A): 3863-3868. [26] XIAO Q F, LI W L, FU W X, et al., 2022. Analytical solution to the minimum safe thickness of circular tunnel anti-inrushing structure in water-rich area[J]. Advanced Engineering Sciences, 54(3): 159-168. (in Chinese with English abstract [27] XIAO X, ZHAO X Y, ZHANG J F, et al., 2022. Classification of water inrush failure mode and rock thickness for preventing water inrush in karst tunnels[J]. Journal of Engineering Geology, 30(2): 459-474. (in Chinese with English abstract [28] YANG Z H, YANG X L, XU J S, et al., 2017. Two methods for rock wall thickness calculation in karst tunnels based on upper bound theorem[J]. Rock and Soil Mechanics, 38(3): 801-809. (in Chinese with English abstract [29] ZENG Y, 2015. Study on the calculation method of safe thickness of rock masses in karst tunnels and the mechanism of water inrush disasters[D]. Chengdu: Southwest Petroleum University. (in Chinese t [30] ZHA E S, 2022. Seepage-creep behavior of marble under environments with disturbance conditions corresponding to different depths[D]. Chengdu: Sichuan University. (in Chinese with English abstract [31] ZHANG A L, XIE H P, ZHANG Z T, et al., 2024. Mechanical responses in rocks with different lithologies under mining loading–unloading: an insight by energy damage and ultrasonic characterization[J]. Rock Mechanics and Rock Engineering, 57(11): 10047-10069. doi: 10.1007/s00603-024-04081-4 [32] ZHENG X Y, SHI C H, WANG Z X, et al., 2023. Calculation method for safe thickness of water insulation rock in tunnelling based on timoshenko beam theory[J]. Modern Tunnelling Technology, 60(4): 14-22. (in Chinese with English abstract [33] ZHOU Z Q, LI L P, SHI S S, et al., 2020. Study on tunnel water inrush mechanism and simulation of seepage failure process[J]. Rock and Soil Mechanics, 41(11): 3621-3631. (in Chinese with English abstract [34] ZHU C Y, YU S C, 2001. Study on the criterion of rockmass damage caused by blasting[J]. Engineering Blasting, 7(1): 12-16. (in Chinese with English abstract [35] 蔡子勇,乔世范,刘屹颀,2024. 复杂环境下隧道施工涌水致灾机理及影响分析[J]. 铁道科学与工程学报,21(12):5140-5150. [36] 干昆蓉,杨毅,李建设,2007. 某隧道岩溶突水机理分析及安全岩墙厚度的确定[J]. 隧道建设,27(3):13-16,50. doi: 10.3969/j.issn.1672-741X.2007.03.004 [37] 郭长宝,张永双,王涛,等,2017. 南北活动构造带中段地质灾害与重大工程地质问题概论[J]. 地质力学学报,23(5):707-722. doi: 10.3969/j.issn.1006-6616.2017.05.008 [38] 郭佳奇,2011. 岩溶隧道防突厚度及突水机制研究[D]. 北京:北京交通大学. [39] 郭佳奇,乔春生,2012. 岩溶隧道掌子面突水机制及岩墙安全厚度研究[J]. 铁道学报,34(3):105-111. doi: 10.3969/j.issn.1001-8360.2012.03.018 [40] 郭佳奇,陈建勋,陈帆,等,2018. 岩溶隧道断续节理掌子面突水判据及灾变过程[J]. 中国公路学报,31(10):118-129. doi: 10.3969/j.issn.1001-7372.2018.10.011 [41] 贺辰昊,2022. 充水溶洞隧道掌子面隔水岩体安全厚度及突水机理研究[D]. 重庆:重庆大学. [42] 孔凡猛,2022. 川藏铁路深埋隧道穿越活动断裂动力突水突泥致灾机理研究[D]. 济南:山东大学. [43] 李集,卢浩,夏沅谱,2014. 岩溶隧道防突安全厚度研究综述及估算方法探讨[J]. 隧道建设,34(9):862-872. [44] 李浪,戎晓力,王明洋,等,2016. 深长隧道突水地质灾害三维模型试验系统研制及其应用[J]. 岩石力学与工程学报,35(3):491-497. [45] 李利平,朱宇泽,周宗青,等,2020. 隧道突涌水灾害防突厚度计算方法及适用性评价[J]. 岩土力学,41(S1):41-50,170. [46] 李术才,袁永才,李利平,等,2015. 钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J]. 岩土工程学报,37(2):313-320. [47] 李晓照,戚承志,邵珠山,2020. 岩石裂纹扩展诱发的强度弱化模型研究[J]. 地下空间与工程学报,16(1):26-34. [48] 李晓照,张骐烁,柴博聪,等,2023. 动力损伤后的脆性岩石静力蠕变断裂模型研究[J]. 力学学报,55(4):903-914. doi: 10.6052/0459-1879-22-597 [49] 罗利锐,刘志刚,2009. 断层对隧道围岩稳定性的影响[J]. 地质力学学报,15(3):226-232. doi: 10.3969/j.issn.1006-6616.2009.03.004 [50] 马剑飞,李向全,张春潮,等,2022. 金沙江断裂带中段岩溶发育和地下水循环特征[J]. 地质力学学报,28(6):956-968. [51] 孙丽静,赵中宝,潘家伟,等,2021. 鲜水河断裂带康定段雅拉河断裂深部应力应变状态及其孕震环境[J]. 岩石学报,37(10):3225-3240. [52] 王军,崔江余,陈泽龙,等,2021. 富水断层带隧道突水临界安全厚度预测公式研究[J]. 隧道建设(中英文),41(S1):256-264. [53] 吴祖松,李松,涂义亮,等,2020. 统一强度理论下掌子面防突安全厚度理论研究[J]. 地下空间与工程学报,16(6):1705-1710,1721. [54] 肖前丰,李文龙,符文熹,等,2022. 富水构造区圆形隧道抗突体最小安全厚度解析解[J]. 工程科学与技术,54(3):159-168. [55] 肖喜,赵晓彦,张巨峰,等,2022. 岩溶隧道涌突水破坏模式分类及防突厚度研究[J]. 工程地质学报,30(2):459-474. [56] 杨子汉,杨小礼,许敬叔,等,2017. 基于上限原理的两种岩溶隧道岩墙厚度计算方法[J]. 岩土力学,38(3):801-809. [57] 曾艺,2015. 岩溶隧道岩盘安全厚度计算方法及突水灾害发生机理研究[D]. 成都:西南石油大学. [58] 查尔晟,2022. 不同深度环境及扰动条件下大理岩渗流-蠕变力学行为研究[D]. 成都:四川大学. [59] 郑晓悦,施成华,王祖贤,等,2023. 基于Timoshenko梁理论的隧道隔水岩体安全厚度计算方法[J]. 现代隧道技术,60(4):14-22. [60] 周宗青,李利平,石少帅,等,2020. 隧道突涌水机制与渗透破坏灾变过程模拟研究[J]. 岩土力学,41(11):3621-3631. [61] 朱传云,喻胜春,2001. 爆破引起岩体损伤的判别方法研究[J]. 工程爆破,7(1):12-16. -