留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微动方法提高浅层横波波速结构反演精度−以海口江东新区为例

张前 吴小洁 钟宙灿 蔡水库

张前,吴小洁,钟宙灿,等,2025. 基于微动方法提高浅层横波波速结构反演精度:以海口江东新区为例[J]. 地质力学学报,31(1):109−123 doi: 10.12090/j.issn.1006-6616.2024055
引用本文: 张前,吴小洁,钟宙灿,等,2025. 基于微动方法提高浅层横波波速结构反演精度:以海口江东新区为例[J]. 地质力学学报,31(1):109−123 doi: 10.12090/j.issn.1006-6616.2024055
ZHANG Q,WU X J,ZHONG Z C,et al.,2025. Improving the inversion accuracy of shallow shear wave velocity structure based on microtremor method: A case study of Haikou Jiangdong New District[J]. Journal of Geomechanics,31(1):109−123 doi: 10.12090/j.issn.1006-6616.2024055
Citation: ZHANG Q,WU X J,ZHONG Z C,et al.,2025. Improving the inversion accuracy of shallow shear wave velocity structure based on microtremor method: A case study of Haikou Jiangdong New District[J]. Journal of Geomechanics,31(1):109−123 doi: 10.12090/j.issn.1006-6616.2024055

基于微动方法提高浅层横波波速结构反演精度−以海口江东新区为例

doi: 10.12090/j.issn.1006-6616.2024055
基金项目: 海南省海洋地质资源与环境重点实验室自主课题(22-HNHYDZZYHJKF023,HNHYDZZYHJZZ003)
详细信息
    作者简介:

    张前(1982—),男,高级工程师,主要从事综合物探应用研究。 Email:251254900@qq.com

    通讯作者:

    吴小洁(1983—),女,高级工程师,主要从事综合物探应用研究。 Email:12738455@qq.com

  • 中图分类号: P315.61

Improving the inversion accuracy of shallow shear wave velocity structure based on microtremor method: A case study of Haikou Jiangdong New District

Funds: This research is financially supported by Key Laboratory of Marine Geological Resources and Environment of Hainan Province (Grants No. 22-HNHYDZZYHJKF023 and HNHYDZZYHJZZ003).
  • 摘要: 微动方法不受地震源时空分布的限制,已成为探测浅层地下横波速度空间结构的重要方法。在海口江东新区开展微动与钻孔、横波测井的对比试验,试验显示:微动反演结果与测井曲线形态一致,对应深度地层的横波速度基本吻合,取得了一定的应用效果;但在分层上微动和钻孔结果并非完全对应,就波速而言,微动结果未反演出一个波速差异较小界面,钻孔结果未区分出一个波速差异较大界面,对两者在微动反演结果中的影响机制进行研究,有助于提高对微动反演模型的认识,获得更合理的反演结果。基于波速差异较小和较大界面,设计物性分层模型、地质分层模型以及组合模型,从频散曲线形态、软弱夹层、分层变化等方面讨论两类界面影响反演结果的规律。结果显示:物性分层模型反演结果能更好地反映出软弱层位置;改变界面主要影响相邻地层,增加波速差异较小和较大界面,分别使相邻地层波速误差增大和减小;波速差异较大界面对相邻层波速的影响程度要小于差异较小界面,误差大幅变化主要是由波速差异较小界面引起,反演对波速差异较小界面更敏感。微动方法在海口江东新区实际应用研究表明,合并模型中波速差异较小界面或增设波速差异较大的界面,不改变地层局部的变化趋势时,有助于提高波速的反演精度。选取实测数据反演得到二维微动横波速度剖面,结合钻孔提供工程基岩面的埋深及起伏信息,为海口江东新区场地条件评价和地下空间利用规划提供可靠依据。

     

  • 图  1  海口江东新区位置及收集钻孔分布图

    a—海口江东新区区位;b—钻孔及微动剖面线位置

    Figure  1.  Location and distribution map of the bore holes collected in Haikou Jiangdong New District

    (a) Location of Haikou Jiangdong New District; (b) Position of the bore holes and the microtremor profile line

    图  2  江东新区孔中横波测井成果

    a—JDSK005横波测井曲线;b—JDSK008横波测井曲线;c—JDSK006横波测井曲线

    Figure  2.  Shear wave logging results in bore holes in Jiangdong New District

    (a) JDSK005 shear wave logging curve; (b) JDSK008 shear wave logging curve; (c) JDSK006 shear wave logging curve

    图  3  微动探测台阵示意图

    r—台阵圆周半径

    Figure  3.  Illustration of the microtremor observation station

    r−Circumference radius of the microtremor stations

    图  4  微动数据主要处理流程(钟宙灿等,2023

    a—微动原始数据;b—频散曲线提取;c—分层反演

    Figure  4.  Main processing flow of microtremor sound data (Zhong et al.,2023)

    (a) Microtremor data; (b) Dispersion curve extraction; (c) Hierarchical inversion

    图  5  微动反演成果曲线与横波测井曲线对比

    a—微动频散曲线;b—JDSK006横波测井曲线

    Figure  5.  Comparison between the microtremor inversion and shear wave logging curve

    (a) Microtremor dispersion curve; (b) JDSK006 shear wave logging curve

    图  6  微动反演速度结构与钻孔钻遇地层对比

    Figure  6.  Comparison of the wave velocity structure of microtremor inversion and drilled geological strata

    图  7  各层波速标准差和微动反演底界深度相对误差交汇图

    Figure  7.  Intersection diagram of the standard deviation of the wave velocity and the relative error of the bottom boundary depth of microtremor inversion

    图  8  模型1—6横波速度反演结果

    a—模型1;b—模型2;c—模型3;d—模型4;e—模型5;f—模型6

    Figure  8.  Results of shear wave velocity inversion in models 1-6

    (a) Model 1; (b) Model 2; (c) Model 3; (d) Model 4; (e) Model 5; (f) Model 6

    图  9  模型1—6地层反演波速对比

    Figure  9.  Comparison of wave velocity inversion for models 1-6

    图  10  模型1—6地层反演波速绝对误差对比

    Figure  10.  Comparison of the absolute errors of wave velocity inversion for models 1-6

    图  11  模型1—6地层反演波速均方相对误差对比

    Figure  11.  Comparison of mean square relative errors of wave velocity inversion for models 1-6

    图  12  微动探测综合解释剖面

    a—二维微动横波速度剖面;b—地质解译剖面

    Figure  12.  Comprehensive interpretation profile of the microtremor survey

    (a) 2D microtremor shear wave velocity; (b) Geological interpretation

    表  1  微动反演结果与JDSK006钻孔钻遇地层、孔中测井结果对比

    Table  1.   Comparison of microtremor inversion results with geological strata and logging results of borehole JDSK006

    钻孔钻遇地层 孔中测井 微动反演结果 底界深度
    相对误差/%
    层速度绝对
    误差/(m/s)
    测井波速
    标准差/(m/s)
    土的
    类型
    时代单元 岩性名称 底界
    深度/m
    层速度/
    (m/s)
    底界
    深度/m
    层速度/
    (m/s)
    第四系烟墩组、秀英组 粉细砂、黏土 15.35 163 15.6 184 1.62 21 30.8 软弱土−
    中软土
    新近系海口组3段 含贝壳碎屑砾砂 23.70 375 22.3 392 6.09 17 76.0 中硬土
    新近系海口组2段 粉质黏土 47.00 646 48.2 695 2.52 49 50.5 坚硬土
    贝壳碎屑岩 52.70 675 软质岩
    粉质黏土
    (层间含贝壳碎屑)
    666 60.2 620 4.55 46 30.7 坚硬土
    77.70 714 75.0 711 3.54 3 38.4 坚硬土
    粉质黏土
    (砾粒增多)
    94.00 736 92.5 770 1.62 34 30.5 坚硬土
    新近系海口组1段 贝壳碎屑砂砾岩(砾砂互层) 109.30 793 114.0 811 4.21 18 52.7 较硬岩
    贝壳碎屑砂砾岩 133.80 133.0 767 0.60 较硬岩
    新近系灯楼角组 多层相间的粉质黏土、中砂及粉砂 169.13 162.0 816 4.31 坚硬土
    多层相间的粉质黏土、粗砂及粉砂 200.17 216.0 963 坚硬土
    下载: 导出CSV

    表  2  模型1—3微动反演结果及误差分析

    Table  2.   Results and error analysis of microtremor inversion in models 1-3

    层编号钻探分层
    深度/m
    测井横波
    波速/(m/s)
    模型1模型2模型3
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    115.35163.0015.60183.8920.8915.60184.6921.6915.60182.6119.61
    223.70375.0022.30391.5816.5822.30381.006.0022.30403.7728.77
    347.00646.0048.20695.3449.3448.20735.1889.1848.20664.5018.50
    452.70675.0052.65461.90213.1052.65451.50223.50
    5666.0060.20620.2345.7760.20558.77107.23
    677.70714.0075.00711.012.9975.00724.4910.4975.00768.0754.07
    794.00736.0092.50769.6733.6792.60783.1847.1892.40752.5416.54
    8109.30793.00114.00811.2618.26114.00817.5524.55114.00809.5016.50
    9133.80133.80767.25133.20763.26133.20766.27
    10169.13162.00816.04162.00817.78162.00827.15
    11200.17216.00962.73216.00958.50216.00972.89
    均方相对误差4.58%均方相对误差11.42%均方相对误差11.43%
    下载: 导出CSV

    表  3  模型4—6微动反演结果及误差分析

    Table  3.   Results and error analysis of microtremor inversion in models 4-6

    层编号钻探分层
    深度/m
    测井横波
    波速/(m/s)
    模型4模型5模型6
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    115.35163.0015.36180.0517.0515.36181.4018.4015.36180.9017.90
    223.70375.0023.70461.4586.4523.70446.1871.1823.70454.2179.21
    347.00646.0047.00634.3611.6447.00707.9261.9247.00662.9816.98
    452.70675.0052.65480.12194.8852.65495.54179.46
    5666.0060.20565.78100.2260.20637.6728.33
    677.70714.0077.60804.1290.1277.60774.1560.1577.60757.4043.40
    794.00736.0094.00746.2610.2694.00773.5337.5394.00761.5025.50
    8109.30793.00109.25735.8357.17109.25745.3747.63109.25739.4753.53
    9133.80133.80825.48133.80822.23133.80821.04
    10169.13169.20867.89169.20854.44169.20858.23
    11200.17200.00921.52200.00902.97200.00909.55
    均方相对误差11.55%均方相对误差10.70%均方相对误差6.51%
    下载: 导出CSV
  • [1] AKI K, 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 35: 415-456.
    [2] AKI K, 1965. A note on the use of microseisms in determining the shallow structures of the earth’s crust[J]. Geophysics, 30(4): 665-666. doi: 10.1190/1.1439640
    [3] BEATY K S, SCHMITT D R, SACCHI M, 2002. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 151(2): 622-631. doi: 10.1046/j.1365-246X.2002.01809.x
    [4] CAI W, SONG X H, YUAN S C, et al., 2018. Inversion of Rayleigh wave dispersion curves based on firefly and bat algorithms[J]. Chinese Journal of Geophysics, 61(6): 2409-2420. (in Chinese with English abstract
    [5] CHO I, NAKKKANISHI I, LING S, et al., 1999. Application of forking genetic algorithm FGA to an exploration method using microtremors; Bidotansaho heno kotaigun tansaku bunkigata identeki arugorizumu fGA no tekiyo[J]. Geophysical Exploration, 52(3): 227-246.
    [6] CHAVEZ-GARCIA F J, RODRIDUEZ M, STEPHENSON W R, 2005. Analternative approach to the SPAC analysis of microtremors: exploiting stationarity of noise[J]. Bull. Seism. Soc. Am.,95(1): 277-293.
    [7] FU W, XU P F, LING S Q, et al., 2012. Application of the microtremor survey method to geothermal exploration[J]. Shanghai Land & Resources, 33(3): 71-75. (in Chinese with English abstract
    [8] GAO Y H, HUANG S H, LIU D, et al., 2018. Microtremor detection technology and its new progress in engineering application[J]. Science Technology and Engineering, 18(23): 146-155. (in Chinese with English abstract
    [9] HE Z Q, DING Z F, JIA H, et al., 2007. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 50(2): 492-498. (in Chinese with English abstract
    [10] HE Z Q, HU G, LU L Y, et al., 2013. The shallow velocity structure for the Tonghai basin in Yunnan[J]. Chinese Journal of Geophysics, 56(11): 3819-3827. (in Chinese with English abstract
    [11] HORIKE M, 1985. Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas[J]. Journal of Physics of the Earth, 33(2): 59-96. doi: 10.4294/jpe1952.33.59
    [12] HUANG H Q, 2011. Research on application of passive suface wave methods in the metallic ore zone[J]. Geology of Fujian, 30(4): 320-326. (in Chinese with English abstract
    [13] LI Q L, LEI X D, LI C, et al., 2019. Exploring thick overburden structure by microtremor survey: a case study in the subsidiary administrative center[J]. Progress in Geophysics, 34(4): 1635-1643. (in Chinese with English abstract
    [14] LIANG D Y, XU G Q, XIAO Y, et al., 2021. Neogene-quaternary stratigraphic standard and combined zoning of Haikou Jiangdong new district[J]. Science Technology and Engineering, 21(26): 11052-11063. (in Chinese with English abstract
    [15] LIU H P, BOORE D M, JOYNER W B, et al., 2000. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles[J]. Bulletin of the Seismological Society of America, 90(3): 666-678. doi: 10.1785/0119980186
    [16] LIU Y Z, MEI R W, YE P, et al., 2016. Data acquisition and processing system of WD intelligent natural source surface wave and its application test[J]. Geophysical and Geochemical Exploration, 40(5): 1007-1015. (in Chinese with English abstract
    [17] LI X Y, CHEN X F, YANG Z T, et al., Application of high-order surface waves in shallow exploration: An example of the Suzhou river, Shanghai[J]. Chinese Journal of Geophysics, 63(1): 247-255.
    [18] NI S D, LI Z W, SOMERVILLE P, 2014. Estimating subsurface shear velocity with radial to vertical ratio of local P waves[J]. Seismological Research Letters, 85(1): 82-90. doi: 10.1785/0220130128
    [19] SONG X H, GU H M, ZHANG X Q, et al., 2008. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computers & Geosciences, 34(6): 611-624.
    [20] SONG X H, TANG L, LV X C, et al., 2012. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 84: 1-13. doi: 10.1016/j.jappgeo.2012.05.011
    [21] TIAN B Q, DU Y N, YOU Z W, et al., 2019. Measuring the sediment thickness in urban areas using revised H/V spectral ratio method[J]. Engineering Geology, 260: 105223. doi: 10.1016/j.enggeo.2019.105223
    [22] TSAI V C, MOSCHETTI M P, 2010. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results[J]. Geophysical Journal International, 182(1): 454-460.
    [23] XIA J H, MILLER R D, PARK C B, 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 64(3): 691-700. doi: 10.1190/1.1444578
    [24] XIE P, WANG Q L, LI J G, et al., 2019. Application of SPAC method on stratification of stratigraphic structure in Jianghan Plain[J]. China Earthquake Engineering Journal, 41(3): 717-723. (in Chinese with English abstract
    [25] XU H, WU X P, SHENG Y, et al., 2021. Application of microtremor survey method in detection of urban land subsidence[J]. Geophysical and Geochemical Exploration, 45(6): 1512-1519. (in Chinese with English abstract
    [26] XU P F, LI C J, LING S Q, et al., 2009. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 52(7): 1923-1930. (in Chinese with English abstract
    [27] XU P F, LING S Q, LI C J, et al., 2012. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 188(1): 115-122. doi: 10.1111/j.1365-246X.2011.05266.x
    [28] XU P F, SHI W, LING S Q, et al., 2012. Mapping spherically weathered “boulders” using 2D microtremor profiling method: a case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 55(6): 2120-2128. (in Chinese with English abstract
    [29] XU P F, LI S H, DU J G, et al., 2013a. Microtremor survey method: a new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 29(5): 1841-1845. (in Chinese with English abstract
    [30] XU P F, LI S H, LING S Q, et al., 2013b. Application of SPAC method to estimate the crustal S-wave velocity structure[J]. Chinese Journal of Geophysics, 56(11): 3846-3854. (in Chinese with English abstract
    [31] XU P F, DU Y N, LING S Q, et al., 2020. Microtremor survey method based on inversion of the SPAC coefficient of multi-mode Rayleigh waves and its application[J]. Chinese Journal of Geophysics, 63(10): 3857-3867. (in Chinese with English abstract
    [32] XU Y X, ZHANG B L, LUO Y H, et al., 2013b. Surface-wave observations after integrating active and passive source data[J]. The Leading Edge, 32(6): 634-637. doi: 10.1190/tle32060634.1
    [33] XU Y X, LUO Y H, 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics, 58(8): 2618-2636, doi: 10.6038/cjg20150803. (in Chinese with English abstract
    [34] YANG T C, HE J S, LU S L, et al., 2004a. Dispersion curves of Rayleigh wave in three-layer media[J]. Geophysical and Geochemical Exploration, 28(1): 41-45. (in Chinese with English abstract
    [35] YANG T C, HE J S, LV S L, et al., 2004b. Multimodes of Rayleigh guided waves and their dispersion and displacement characteristics in three-layer media[J]. Computing Techniques for Geophysical and Geochemical Exploration, 26(1): 20-26. (in Chinese with English abstract
    [36] YANG T C, XIAO Q L, 2009. Dispersion characteristics of Rayleigh waves in multilayered media[J]. Geophysical and Geochemical Exploration, 33(3): 299-303. (in Chinese with English abstract
    [37] ZHANG B X, LU L Y, BAO G S, 2002. A study on zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 45(2): 263-274. (in Chinese with English abstract
    [38] ZHAO D, 2010. Passive surface waves: methods and applications[J]. Geophysical and Geochemical Exploration, 34(6): 759-764. (in Chinese with English abstract
    [39] ZHAO H P, HE D K, HONG Y, 2022. Inversion of microtremor recordings dispersion curve based on geological unit[J]. Journal of Mining Science and Technology, 7(6): 662-669. (in Chinese with English abstract
    [40] ZHONG Z C, CAI S K, LIU Q X, et al., 2023. Application of SPAC method on to the fine division of Neogene-quaternary strata in Haikou Jiangdong new district[J]. Science Technology and Engineering, 23(36): 15393-15403. (in Chinese with English abstract
    [41] 蔡伟,宋先海,袁士川,等,2018. 基于萤火虫和蝙蝠群智能算法的瑞雷波频散曲线反演[J]. 地球物理学报,61(6):2409-2420. doi: 10.6038/cjg2018L0322
    [42] 付微,徐佩芬,凌苏群,等,2012. 微动勘探方法在地热勘查中的应用[J]. 上海国土资源,33(3):71-75.
    [43] 高艳华,黄溯航,刘丹,等,2018. 微动探测技术及其工程应用进展[J]. 科学技术与工程,18(23):146-155. doi: 10.3969/j.issn.1671-1815.2018.23.020
    [44] 何正勤,丁志峰,贾辉,等,2007. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报,50(2):492-498. doi: 10.3321/j.issn:0001-5733.2007.02.021
    [45] 何正勤,胡刚,鲁来玉,等,2013. 云南通海盆地的浅层速度结构[J]. 地球物理学报,56(11):3819-3827. doi: 10.6038/cjg20131123
    [46] 黄海清,2011. 被动源面波勘探在金属矿区的应用探索[J]. 福建地质,30(4):320-326. doi: 10.3969/j.issn.1001-3970.2011.04.008
    [47] 李巧灵,雷晓东,李晨,等,2019. 微动测深法探测厚覆盖层结构:以北京城市副中心为例[J]. 地球物理学进展,34(4):1635-1643. doi: 10.6038/pg2019CC0128
    [48] 李雪燕,陈晓非,杨振涛,等,2020. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报,63(1):247-255.
    [49] 梁定勇,许国强,肖瑶,等,2021. 海口江东新区新近纪-第四纪标准地层与组合分区[J]. 科学技术与工程,21(26):11052-11063. doi: 10.3969/j.issn.1671-1815.2021.26.008
    [50] 刘云祯,梅汝吾,叶佩,等,2016. WD智能天然源面波数据采集处理系统及其应用试验[J]. 物探与化探,40(5):1007-1015.
    [51] 谢朋,王秋良,李井冈,等,2019. SPAC法在江汉平原地层结构分层中的应用[J]. 地震工程学报,41(3):717-723. doi: 10.3969/j.issn.1000-0844.2019.03.717
    [52] 徐浩,吴小平,盛勇,等,2021. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探,45(6):1512-1519.
    [53] 徐佩芬,李传金,凌甦群,等,2009. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报,52(7):1923-1930. doi: 10.3969/j.issn.0001-5733.2009.07.028
    [54] 徐佩芬,侍文,凌苏群,等,2012. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报,55(6):2120-2128. doi: 10.6038/j.issn.0001-5733.2012.06.034
    [55] 徐佩芬,李世豪,杜建国,等,2013a. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报,29(5):1841-1845.
    [56] 徐佩芬,李世豪,凌甦群,等,2013b. 利用SPAC法估算地壳S波速度结构[J]. 地球物理学报,56(11):3846-3854.
    [57] 徐佩芬,杜亚楠,凌甦群,等,2020. 微动多阶瑞雷波SPAC系数反演方法及应用研究[J]. 地球物理学报,63(10):3857-3867. doi: 10.6038/cjg2020O0148
    [58] 徐义贤,罗银河,2015. 噪声地震学方法及其应用[J]. 地球物理学报,58(8):2618-2636
    [59] 杨天春,何继善,吕绍林,等,2004a. 三层层状介质中瑞利波的频散曲线特征[J]. 物探与化探,28(1):41-45.
    [60] 杨天春,何继善,吕绍林,等,2004b. 三层层状介质中的多导波模式及其频散和位移特征[J]. 物探化探计算技术,26(1):20-26.
    [61] 杨天春,肖巧玲,2009. 多层层状介质的瑞利面波频散特性[J]. 物探与化探,33(3):299-303.
    [62] 张碧星,鲁来玉,鲍光淑,2002. 瑞利波勘探中“之”字形频散曲线研究[J]. 地球物理学报,45(2):263-274. doi: 10.3321/j.issn:0001-5733.2002.02.013
    [63] 赵东,2010. 被动源面波勘探方法与应用[J]. 物探与化探,34(6):759-764.
    [64] 赵红鹏,何登科,洪雨,2022. 基于地质单元体的微动信号频散曲线反演[J]. 矿业科学学报,7(6):662-669.
    [65] 钟宙灿,蔡水库,刘巧霞,等,2023. SPAC法在海口江东新区新近纪-第四纪地层精细划分中的应用[J]. 科学技术与工程,23(36):15393-15403. doi: 10.12404/j.issn.1671-1815.2300424
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  22
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 修回日期:  2024-11-01
  • 录用日期:  2024-11-12
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回