留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年9月9日摩洛哥M 6.9地震静态应力触发研究

王润妍 万永魁 关兆萱 黄少华 顾培苑 宋泽尧 周明月

王润妍,万永魁,关兆萱,等,2025. 2023年9月9日摩洛哥M 6.9地震静态应力触发研究[J]. 地质力学学报,31(2):223−234 doi: 10.12090/j.issn.1006-6616.2024039
引用本文: 王润妍,万永魁,关兆萱,等,2025. 2023年9月9日摩洛哥M 6.9地震静态应力触发研究[J]. 地质力学学报,31(2):223−234 doi: 10.12090/j.issn.1006-6616.2024039
WANG R Y,WAN Y K,GUAN Z X,et al.,2025. Static stress triggering of Morocco M 6.9 earthquake on 9 September 2023[J]. Journal of Geomechanics,31(2):223−234 doi: 10.12090/j.issn.1006-6616.2024039
Citation: WANG R Y,WAN Y K,GUAN Z X,et al.,2025. Static stress triggering of Morocco M 6.9 earthquake on 9 September 2023[J]. Journal of Geomechanics,31(2):223−234 doi: 10.12090/j.issn.1006-6616.2024039

2023年9月9日摩洛哥M 6.9地震静态应力触发研究

doi: 10.12090/j.issn.1006-6616.2024039
基金项目: 国家自然科学基金项目(42174074,41674055, 42364005)
详细信息
    作者简介:

    王润妍(2000—),女,在读硕士,主要从事构造应力场、地震应力触发方面的研究工作。Email:yan8959853@163.com

    通讯作者:

    万永魁(1989—),男,讲师,主要从事地球动力学和地壳应力场方面研究工作。Email:1069839372@qq.com

  • 中图分类号: P315

Static stress triggering of Morocco M 6.9 earthquake on 9 September 2023

Funds: This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42174074, 41674055, and 42364005).
  • 摘要: 库仑应力变化是研究地震触发效应和评估地震危险性的重要工具。为研究2023年9月9日摩洛哥M 6.9地震的静态库仑破裂应力对周围的触发作用,通过确定发震断层的几何形态和滑动性质,分析地震产生的同震位移场及地表应变场,评估主震对余震及周围断层的触发效应,揭示了该地震对区域地震活动性的影响。首先,利用“中心解”算法确定该地震可能发生的2个节面,并将当地应力场投影到这2个节面上,选择库仑应力较大的节面作为发震断层面;并基于统计公式,确定该发震断层面的滑动性质;在均匀弹性半空间理论模型下,构建地震作用下区域同震位移场及地表应变场。其次,假定接收断层的余震震源机制与主震一致,计算主震对余震的触发作用。最后,计算主震在周围断层上产生的库仑破裂应力变化,评估地震危险性。研究结果表明,震中物质向外涌出,南北两侧物质向内涌入,震中表现为隆升,南北两侧略微沉降;主震产生的静态库仑应力促进了大部分浅层余震的发生,大量余震处于库仑应力变化高值区;此外,南阿特拉斯断层西段—西南段、北阿特拉斯断层南段以及南苏斯断层西段的库仑应力高值区均超过0.01 MPa阈值,地震危险性极高,值得关注。

     

  • 图  1  摩洛哥6.9级地震的地质构造背景(据香港中文大学地震学实验室资料https://cuhk.edu.hk/修改)

    黄色线条是板块边界线;红色方框为研究区(29.2°—34.5°N、3.5°—10°W);红色线条表示主要逆断层;红色沙滩球是此次摩洛哥6.9级地震;蓝色小沙滩球表示该区域1976年1月1日—2023年9月9日发生过的地震(https://www.globalcmt.org

    Figure  1.  Geological tectonics of the Morocco M 6.9 earthquake (according to the data from the Seismology Laboratory of the Chinese University of Hong Kong https://cuhk.edu.hk/, revised)

    The yellow line is the plate boundary line, the red box indicates the study area (29.2°N—34.5°N, 3.5°W—10°W), the red lines indicate major reverse faults, the red beach ball is the Morocco M 6.9 earthquake, and the small blue beach balls indicate historical earthquakes in the region from January 1, 1976 to September 9, 2023 (https://www.globalcmt.org).

    图  2  摩洛哥6.9级地震的震源机制中心解

    N、S、W、E表示地理方位北南西东;U、D表示上、下;图2a中红色箭头表示压轴(P轴)方向;黑色弧线是震源机制中心解的2个节面,绿色弧线为应力场不确定范围的剪应力最大节面,红点、蓝点、黄点表示中心解的P轴、T轴、B轴(中间轴),灰、蓝、黄3个圆弧形范围是震源机制中心解的P轴、T轴、B轴不确定性范围,黑点、灰点是各震源机制解T轴、P轴的投影,紫色弧线表示各研究机构的震源机制解节面;图2b中蓝色表示压缩区,红色表示膨胀区(万永革等,2011李佺洪和万永革,2024)a—地震震源机制中心解的等面积投影;b—地震震源机制中心解的空间三维辐射花样

    Figure  2.  The central focal mechanism of the Morocco 6.9 magnitude earthquake

    (a) Equal-area projection of the central focal mechanism of the earthquake; (b) 3-D radiation pattern of the central focal mechanism of the earthquake N, S, W, E denote north, south, west and east, respectively; U, D denote up and down; large red arrow denotes the direction of the pressure axis (P-axis); black arcs are the two nodal planes of the central focal mechanism solution; the green arcs are the maximum shear stress nodal plane under the range tectonic stress uncertainty; the red, blue, and yellow dots denote the P-axis, the T-axis, and the B-axis of the central solution; the red, blue, and yellow arcs are the uncertainty ranges of the P-, T-, and B-axes of the central solution; the black and green dots are the projections of the T- and P-axes of the solutions of each focal mechanism; the purple arcs indicate the focal mechanism solution nodal planes for each research organization in figure 2a; the blue show the compression zones; and the red show the expansion zones in figure 2b (Wan et al., 2011;Li and Wan, 2023).

    图  3  摩洛哥地区构造应力场在不同走向和倾角的断层上的相对应力

    沙滩球为应力场在对应走向和倾角的断层上的震源机制;底图颜色表示相应断层上的相对剪应力或正应力的大小a—节面上的相对剪应力; b—节面上的相对正应力

    Figure  3.  Relative stresses on faults with different strikes and dips generated by the tectonic stress field in the Moroccan region

    (a) Relative shear stress on the fault plane; (b) Relative normal stress on the fault plane The beach ball is the focal mechanism of the stress field on the corresponding strike and dip, and the background color indicates the magnitude of the relative shear or normal stresses on the corresponding faults.

    图  4  摩洛哥M 6.9地震产生的同震位移场及地表水平主应变和面应变场

    白色方框表示主震的发震断层位置;黑色线条表示主要逆断层;红色沙滩球是此次摩洛哥6.9级地震;图4a中箭头代表此次地震所产生的水平位移,颜色代表垂直位移,上升为正;图4b中黑色箭头和白色箭头分别表示水平主压应变和水平主张应变,背景色表示水平面应变,拉张为正a—摩洛哥M 6.9地震产生的同震位移场;b—摩洛哥M 6.9地震产生的地表水平主应变和面应变场

    Figure  4.  Co-seismic displacement field horizontal principal and areal strain fields produced by the Morocco M 6.9 earthquake

    (a) Co-seismic displacement field generated by the Morocco M 6.9 earthquake; (b) Horizontal principal and areal strain fields at the surface generated by the Morocco M 6.9 earthquake The arrows represent the horizontal displacements produced by the earthquake in; and the background colors represent the vertical displacements; with the rise being positive in figure 4a. The black arrow and white arrow represent the horizontal principal compressive and extensional strain (in units of 10−9), respectively; The background color represents the horizontal areal strain, with the tensile being positive in figure 4b. White boxes indicate the location of the seismogenic fault of the main shock; black lines indicate major reverse faults; the red beach ball is the Morocco M 6.9 earthquake.

    图  5  摩洛哥地震在余震平均深度7 km处产生的库仑应力变化

    白色圆圈表示2023年9月9日—9月20日深度小于30 km的摩洛哥M 6.9余震;白色方框表示主震的发震断层位置;黑色线条表示主要逆断层;红色沙滩球是此次摩洛哥M 6.9地震

    Figure  5.  Coulomb failure stress changes generated by the Morocco earthquake at the mean depth of (7 km) of the aftershocks

    White circles indicate M 6.9 aftershocks in Morocco at depths less than 30 km from September 9 to September 20, 2023; white boxes indicate the location of the seismogenic fault of the main shock; black lines indicate major reverse faults; the red beach ball is the Morocco M 6.9 earthquake.

    图  6  摩洛哥M 6.9地震在周围主要断层面上产生的库仑应力变化

    库仑应力变化采用断层填充颜色表示,大小如色标所示

    Figure  6.  Coulomb failure stress changes generated on the rupture of the Morocco M 6.9 earthquake

    The CFS changes are indicated the fault filled colors according the colorbar at the bottom.

    表  1  2023年9月9日摩洛哥6.9级地震源机制解及得到的中心震源机制解的标准差

    Table  1.   The focal mechanism of the Morocco M 6.9 earthquake on September 9th, 2023 and their standard deviation of the central focal mechanism

    序号 震源机制解
    走向/(°),倾角/(°),
    滑动角/(°)
    数据来源 作为初始解得到
    的中心震源机制
    走向/(°),倾角/(°),
    滑动角/(°)
    作为初始解
    得到的标准
    差S/(°)
    以美国地质调查局
    (W-phase)结果作为初始
    解的中心震源机制与
    其他震源机制的最小空间
    旋转角/(°)
    1 260,73,72 中国地震台网中心(https://news.ceic.ac.cn/ 253.44,45.43,81.04 35.259441 30.72
    2 253,67,72 中国地震局地球物理研究所张喆
    https://mp.weixin.qq.com/s/-0aUhZ7wKoNtFmEti9Lv-Q
    253.43,45.43,81.04 35.259441 23.28
    3 255,29,69 美国国家地震信息中心(https://www.usgs.gov/ 253.44,45.43,81.04 35.259440 21.13
    4 255,23,132 全球矩心矩张量(https://www.globalcmt.org/ 253.44,45.43,81.05 35.259440 54.19
    5 262,21,78 德国地球科学研究中心(https://www.gfz.de/ 253.44,45.43,81.04 35.259440 26.87
    6 257,37,59 巴黎地球物理研究所(https://www.ipgp.fr/ 253.43,45.43,81.03 35.259441 26.21
    7 252,34,144 法属波利尼西亚探测与地球物理实验室(https://www.cppt.org/ 253.44,45.43,81.04 35.259440 64.98
    8 259,30,68 意大利国立地球物理与火山学研究所(https://www.ingv.it/ 253.43,45.43,81.03 35.259442 23.52
    9 255,69,69 美国地质调查局(https://www.usgs.gov/;W-phase) 253.44,45.43,81.05 35.259440 26.86
    10 255,67,68 美国地质调查局(https://www.usgs.gov/ 253.43,45.43,81.04 35.259441 25.66
    下载: 导出CSV

    表  2  主震在周边活动断层上产生的库仑应力变化

    Table  2.   Coulomb failure stress changes on the nearby active faults generated by the Morocco earthquake

    断层名称 分段数 倾角/(°) 倾向 性质 滑动角/(°) 库仑应力变化区间/×10−6 MPa 平均库仑应力/×10−6 MPa
    安提阿特拉斯断层南段 3 45 逆断 90 166.7~584.4 358.5
    安提阿特拉斯断层北段 2 45 逆断 90 520.9~808.2 664.6
    南苏斯断层中段 4 45 逆断 90 −46.6~4258.0 1148.7
    南苏斯断层东段 2 45 逆断 90 −223.5~−110.9 −167.2
    南苏斯断层西段 2 45 逆断 90 10530.0~10740.0 10635.0
    南阿特拉斯断层中段 5 35 北西 逆断 90 −3378.0~−122.4 −856.4
    南阿特拉斯断层西段 1 35 北西 逆断 90 21000.0 21000.0
    南阿特拉斯断层西南段 3 35 北西 逆断 90 −744.2~13430.0 4035.2
    北阿特拉斯断层南段 4 22 南西 逆断 90 −42470.0~33750.0 −2066.5
    杰比莱特断层 4 45 逆断 90 −321.8~1020.0 236.7
    北阿特拉斯断层北段 2 22 南西 逆断 90 −170.1~−34.7 −102.4
    下载: 导出CSV
  • [1] CHELONI D, AMIGLIETTI N A, TOLOMEI C, et al., 2024. The 8 September 2023, MW 6.8, Morocco earthquake: a deep transpressive faulting along the active high Atlas mountain belt[J]. Geophysical Research Letters, 51(2): e2023GL106992. doi: 10.1029/2023GL106992
    [2] CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract
    [3] DAI Y L, WAN Y G, KONG X X, et al., 2022. Central focal mechanism of the Dengta, Liaoning M5.1 earthquake in 2013 and the analysis of its surrounding tectonic stress field[J]. Journal of Seismological Research, 45(4): 570-580. (in Chinese with English abstract
    [4] DENG J S, GURNIS M, KANAMORI H, et al., 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake[J]. Science, 282(5394): 1689-1692. doi: 10.1126/science.282.5394.1689
    [5] ELLERO A, OTTRIA G, MARCO G, et al. , 2012. Structural geological analysis of the high atlas (Morocco): evidences of a transpressional Fold-Thrust Belt[J/ OL]. Tectonics-recent advances, http://dx.doi.org/10.5772/50071.
    [6] FENG G, WAN Y G, XU X, et al. , 2021. Static stress influence of the 2021 Ms7.4 Madoi, Qinghaiearthquake on neighboring areas[J]. Chinese Journal of Geophysics, 64(12): 4562-4571. (in Chinese with English abstract
    [7] GUAN Z X, WAN Y G, HUANG S H, et al., 2023. Study on the triggering mechanism and earthquake dynamics of the 2022 Michoacan Mw7.6 earthquake sequence in Mexico[J]. Earthquake Research in China, 39(3): 584-595. (in Chinese with English abstract
    [8] GUAN Z X, WAN Y G, HUANG S H, 2024. The stress effect of the M5.5 earthquake on the surrounding area in Shandong Pingyuan in 2023[J]. Earthquake Research in China, 40(2): 378-388. (in Chinese with English abstract
    [9] HARRIS R A, 1998. Introduction to special section, stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 24347-24358. doi: 10.1029/98JB01576
    [10] HEIDBACH O, RAJABI M, CUI X F, et al., 2018. The World Stress Map database release 2016: crustal stress pattern across scales[J]. Tectonophysics, 744: 484-498. doi: 10.1016/j.tecto.2018.07.007
    [11] HUANG K, WEI G G, CHEN K J, et al., 2024. The 2023 Mw 6.8 Morocco earthquake: a lower crust event triggered by mantle upwelling?[J]. Geophysical Research Letters, 51(12): e2024GL109052, doi: 10.1029/2024GL109052
    [12] HUANG S H, WAN Y G, FENG G, et al., 2023. Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022[J]. Journal of Geomechanics, 29(5): 674-684. (in Chinese with English abstract
    [13] JAEGER J C, COOK N G W, ZIMMERMAN R. 2007. Fundamentals of rock mechanics[M]. 4th ed. Malden: Blackwell Publishing Ltd: 488.
    [14] JIN Z T, WAN Y G, LIU Z C, et al., 2019. The static stress triggering influences of the 2017Ms7.0 Jiuzhaigou earthquake on neighboring areas[J]. Chinese Journal of Geophysics, 62(4): 1282-1299. (in Chinese with English abstract
    [15] KING G C P, STEIN R S, LIN J, 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953.
    [16] LI Q H, WAN Y G, 2024. Geometry of seismogenic faults determination of the 2021 Maduo earthquake sequence by fuzzy clustering algorithm[J]. Earth Science, 49(9): 3363-3376. (in Chinese with English abstract
    [17] LI Y, WAN Y G, JIN Z T, et al., 2017. The study of static stress variation of the Mw6.3 Jinghe earthquake[J]. Earthquake Research in China, 33(4): 671-681. (in Chinese with English abstract
    [18] LI Z D, 2023. Warnings from the earthquake in Morocco[J]. Life & Disaster, 30(10): 32-35. (in Chinese)
    [19] LI Z Y, WAN Y G, JIN Z T, et al., 2020. The static Coulomb stress influence of the Mainling M6.9 earthquake in Tibet on November 18, 2017 to the subsequent earthquakes[J]. Seismology and Geology, 42(5): 1091-1108. (in Chinese with English abstract
    [20] NALBANT S S, HUBERT A, KING G C P, 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 24469-24486. doi: 10.1029/98JB01491
    [21] OKADA Y, 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018
    [22] SONG Z Y, WAN Y G, GUAN Z X, et al., 2024. Stress changes on surrounding faults and triggering of aftershocks induced by the Ms7.1 earthquake in Wushi County, Aksu Prefecture, Xinjiang, on January 23, 2024[J]. China Earthquake Engineering Journal, 46(4): 982-991. (in Chinese with English abstract
    [23] WAN Y G, SHEN Z K, ZENG Y H, et al., 2007. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Tibetan) plateau and its effect on large earthquake occurrence[J]. Acta Seismologica Sinica, 29(2): 115-129. (in Chinese with English abstract
    [24] WAN Y G, SHEN Z K, ZENG Y H, et al., 2008. Study on visco-elastic stress triggering model of the 1976 Tangshan earthquake sequence[J]. Acta Seismologica Sinica, 30(6): 581-593. (in Chinese with English abstract
    [25] WAN Y G, SHEN Z K, SHENG S Z, et al., 2009. The influence of 2008 Wenchuan earthquake on surrounding faults[J]. Acta Seismologica Sinica, 31(2): 128-139. (in Chinese with English abstract
    [26] WAN Y G, SHEN Z K, SHENG S Z, et al., 2010. The mechanical effects of the 2008 Ms7.3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism[J]. Chinese Journal of Geophysics, 53(2): 280-289. (in Chinese with English abstract
    [27] WAN Y G, SHENG S Z, XU Y R, et al., 2011. Effect of stress ratio and friction coefficient on composite P wave radiation patterns[J]. Chinese Journal of Geophysics, 54(4): 994-1001. (in Chinese with English abstract
    [28] WAN Y G, 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 62(12): 4718-4728. (in Chinese with English abstract
    [29] WAN Y G, 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics, 63(6): 2281-2296. (in Chinese with English abstract
    [30] WAN Y G, 2024. Focal mechanism classification based on areal strain of horizontal strain rosette of focal mechanism and characteristic analysis of overall focal mechanism of earthquake sequence[J]. Earth Science, 49(7): 2675-2684. (in Chinese with English abstract
    [31] WANG R Y, WAN Y G, SONG Z Y, et al., 2024. Focal mechanism and stress implication on the surrounding region of the Jishishan, Gansu Ms6.2 earthquake on December 18, 2023[J]. Earthquake, 44(1): 175-184. (in Chinese with English abstract
    [32] WANG X M, 2023. Striking similarities between the revelations of the Morocco earthquake and the Shandong Dezhou earthquake[J]. Overview of Disaster Prevention(5): 28-33. (in Chinese)
    [33] WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974
    [34] XU X, WAN Y G, LI Z Y., et al., 2022. Static stress triggering of the 2021 Yangbi Ms6.4 earthquake sequence in Yunnan Province[J]. China Earthquake Engineering Journal, 44(4): 970-979. (in Chinese with English abstract
    [35] ZHOU J, 2023. Brief introduction on the earthquake science research and disaster loss of M6.9 earthquake in morocco[J] . City and Disaster Reduction(6): 59-66. (in Chinese)
    [36] 陈群策,孙东生,崔建军,等,2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报,25(5):853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
    [37] 戴盈磊,万永革,孔祥雪,等,2022. 2013年辽宁灯塔M5.1地震震源机制中心解及震源区构造应力场特征分析[J]. 地震研究,45(4):570-580.
    [38] 冯淦,万永革,许鑫,等,2021. 2021年青海玛多Ms7.4地震对周围地区的应力影响[J]. 地球物理学报,64(12):4562-4571. doi: 10.6038/cjg2021P0454
    [39] 关兆萱,万永革,黄少华,等,2023. 2022年墨西哥米却肯州7.6级地震序列的触发关系及发震动力学探讨[J]. 中国地震,39(3):584-595. doi: 10.3969/j.issn.1001-4683.2023.03.010
    [40] 关兆萱,万永革,黄少华,2024. 2023年山东平原M5.5地震对周围区域的应力影响[J]. 中国地震,40(2):378-388. doi: 10.3969/j.issn.1001-4683.2024.02.009
    [41] 黄少华,万永革,冯淦,等,2023. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因[J]. 地质力学学报,29(5):674-684. doi: 10.12090/j.issn.1006-6616.2023056
    [42] 靳志同,万永革,刘兆才,等,2019. 2017年九寨沟Ms7.0地震对周围地区的静态应力影响[J]. 地球物理学报,62(4):1282-1299. doi: 10.6038/cjg2019L0675
    [43] 李佺洪,万永革,2024. 采用模糊聚类算法确定2021年玛多地震序列的断层结构[J]. 地球科学,49(9):3363-3376.
    [44] 李瑶,万永革,靳志同,等,2017. 新疆精河Mw6.3地震产生的静态应力变化研究[J]. 中国地震,33(4):671-681. doi: 10.3969/j.issn.1001-4683.2017.04.023
    [45] 李振月,万永革,靳志同,等,2020. 2017年11月18日西藏米林M6.9地震对后续地震的静态库伦应力的影响[J]. 地震地质,42(5):1091-1108. doi: 10.3969/j.issn.0253-4967.2020.05.005
    [46] 李忠东,2023. 摩洛哥地震的警示[J]. 生命与灾害,30(10):32-35.
    [47] 宋泽尧,万永革,关兆萱,等,2024. 2024年1月23日新疆阿克苏地区乌什县Ms7.1地震对周围断层的应力影响及对余震的触发作用[J]. 地震工程学报,46(4):982-991.
    [48] 万永革,沈正康,曾跃华,等,2007. 青藏高原东北部的库仑应力积累演化对大地震发生的影响[J]. 地震学报,29(2):115-129. doi: 10.3321/j.issn:0253-3782.2007.02.001
    [49] 万永革,沈正康,曾跃华,等,2008. 唐山地震序列应力触发的粘弹性力学模型研究[J]. 地震学报,30(6):581-593. doi: 10.3321/j.issn:0253-3782.2008.06.004
    [50] 万永革,沈正康,盛书中,等,2009. 2008年汶川大地震对周围断层的影响[J]. 地震学报,31(2):128-139. doi: 10.3321/j.issn:0253-3782.2009.02.002
    [51] 万永革,沈正康,盛书中,等,2010. 2008年新疆于田7.3级地震对周围断层的影响及其正断层机制的区域构造解释[J]. 地球物理学报,53(2):280-289. doi: 10.3969/j.issn.0001-5733.2010.02.006
    [52] 万永革,盛书中,许雅儒,等,2011. 不同应力状态和摩擦系数对综合P波辐射花样影响的模拟研究[J]. 地球物理学报,54(4):994-1001. doi: 10.3969/j.issn.0001-5733.2011.04.014
    [53] 万永革,2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718-4728. doi: 10.6038/cjg2019M0553
    [54] 万永革,2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报,63(6):2281-2296. doi: 10.6038/cjg2020M0472
    [55] 万永革,2024. 震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析[J]. 地球科学,49(7):2675-2684.
    [56] 王润妍,万永革,宋泽尧,等,2024. 2023年12月18日甘肃积石山6.2级地震震源机制及其对周围区域的应力影响[J]. 地震,44(1):175-184. doi: 10.12196/j.issn.1000-3274.2024.01.014
    [57] 王晓民,2023. 摩洛哥地震与山东德州地震的启示惊人相似[J]. 防灾博览(5):28-33.
    [58] 许鑫,万永革,李振月,等,2022. 2021年云南漾濞Ms6.4地震序列静态应力触发研究[J]. 地震工程学报,44(4):970-979.
    [59] 周健,2023. 摩洛哥地震科学研究简介与6.9级地震灾情分析[J]. 城市与减灾(6):59-66.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  22
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-17
  • 修回日期:  2025-02-14
  • 录用日期:  2025-02-20
  • 预出版日期:  2025-02-28
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回