留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆东天山哈尔里克山早二叠世超基性岩墙锆石U-Pb年龄、地球化学特征及其构造意义

杜晓飞 王威 张传林 马华东 朱炳玉 邱林

赵忠健, 何志祥, 李治平, 2006. 多油层分层参数测试新方法研究与实践. 地质力学学报, 12 (1): 71-76.
引用本文: 杜晓飞,王威,张传林,等,2025. 新疆东天山哈尔里克山早二叠世超基性岩墙锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质力学学报,31(1):156−168 doi: 10.12090/j.issn.1006-6616.2024020
ZHAO Zhong-jian, HE Zhi-xiang, LI Zhi-ping, 2006. NEW TEST METHODS FOR PARAMETERS OF INDIVIDUAL PAY ZONES IN A MULTI-ZONE RESERVOIR: RESEARCH AND PRACTICE. Journal of Geomechanics, 12 (1): 71-76.
Citation: DU X F,WANG W,ZHANG C L,et al.,2025. Zircon U-Pb age, geochemical characteristics, and tectonic implications of the early Permian ultrabasic dykes in the Harlik Mountain, east Tianshan, Xinjiang[J]. Journal of Geomechanics,31(1):156−168 doi: 10.12090/j.issn.1006-6616.2024020

新疆东天山哈尔里克山早二叠世超基性岩墙锆石U-Pb年龄、地球化学特征及其构造意义

doi: 10.12090/j.issn.1006-6616.2024020
基金项目: 新疆维吾尔自治区自然科学基金项目(2022D01A144);自治区公益性科研院所基本科研业务费(KY2024112)
详细信息
    作者简介:

    杜晓飞(1987—),男,高级工程师,主要从事矿产勘查及矿床地球化学研究。Email:503179378@qq.com

  • 中图分类号: P588.1;P597

Zircon U-Pb age, geochemical characteristics, and tectonic implications of the early Permian ultrabasic dykes in the Harlik Mountain, east Tianshan, Xinjiang

Funds: This research is financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2022D01A144) and the Basic Research Business Expenses of Public Welfare Research Institutes in the Autonomous Region (Grant No. KY2024112).
  • 摘要: 在东天山哈尔里克山发育多期岩浆活动,形成了大面积的花岗岩和超基性岩墙。为限定古亚洲洋在该区的闭合时限,同时阐述超基性岩墙形成的构造环境,文章报道了哈密沁城超基性岩墙(角闪石岩)岩相学、岩石地球化学和锆石U-Pb年龄。研究表明,角闪石岩SiO2含量为39.00%~45.48%、TiO2(1.60%~3.01%)、Mg#在50~60之间,轻稀土相对弱富集((La/Yb)N= 1.34~2.25)),铕异常不明显(δEu=0.76~1.12),富集大离子亲石元素(Rb、Ba、K、Sr),相对亏损高场强元素(Nb、Zr、Hf)。角闪石岩属于碱性系列岩石,3件角闪石岩样品的LA-MC-ICPMS锆石 U-Pb年龄分别为298.4±1.7 Ma、297.7±1.6 Ma、295.5 ±1.6 Ma。全岩Sr-Nd组成表明,岩石初始87Sr/86Sr比值为0.7047~0.7051之间,εNd(t)变化范围在−2.63至+1.81之间。结合对区域地质、年代学、元素地球化学以及Sr-Nd同位素等资料的全面分析,认为沁城早二叠世角闪石岩原岩的岩浆可能起源于岩石圈地幔的部分熔融,形成于后碰撞伸展环境下,同时,暗示哈尔里克山地区古亚洲洋在早二叠世之前闭合。

     

  • 图  1  哈尔里克山地区地质简图

    a—中亚造山带及邻区地质简图(据Jahn et al.,2000b修编);b—哈尔里克山地区区域地质图(据新疆维吾尔自治区地质局区域地质测量大队,1966修编)

    Figure  1.  Simplified geological map of the Harlik Mountain region

    (a) Geological sketch map of the Central Asian Orogenic Belt and the adjacent region (modified after Jahn et al., 2000b); (b) Regional geological map of the Harlik mountains (modified after Regional Geological Survey Brigade of the Geology Bureau of Xinjiang Uygur Autonomous Region, 1966)

    图  2  沁城角闪石岩野外及镜下特征

    a—超基性岩墙;b—角闪石岩;c—角闪石岩镜下照片(+);d—角闪石岩镜下照片(+)

    Figure  2.  Field and microscopic characteristics of hornblendite from Qincheng

    (a) Ultrabasic dike; (b) Hornblendite; (c) Photomicrograph of the hornblendite (+); (d) Photomicrograph of the hornblendite (+)

    图  3  角闪石岩锆石阴极发光图像

    Figure  3.  CL images of zircon from the hornblendites

    图  4  角闪石岩U-Pb年龄谐和图

    a—样品HQ-1年龄协和图;b—样品HQ-2年龄协和图;c—样品HQ-3年龄协和图

    Figure  4.  U-Pb concordia diagrams for zircon from the hornblendite

    (a) Concordia diagram for zircon from the sample HQ-1; (b) Concordia diagram for zircon from the sample HQ-2; (c) Concordia diagram for zircon from the sample HQ-3

    图  5  角闪石岩的TAS图解(Middlemost,1994

    Figure  5.  TAS diagram of the hornblendites (Middlemost, 1994)

    图  6  沁城角闪石岩稀土和微量元素图解

    a—球粒陨石标准化稀土元素配分模式图;b—原始地幔标准化微量元素蛛网图(球粒陨石标准化值据Boynton,1984;原始地幔标准化值据Sun and McDonough,1989

    Figure  6.  Rare earth element and trace element diagrams for the hornblendite in Qincheng

    (a) Chondrite-normalized rare earth element distribution pattern diagram; (b) Primary Mantle- normalized trace element spider diagram(the chondrite normalization values are from Boynton, 1984, and the primitive mantle normalization values are from Sun and McDonough, 1989)

    图  7  哈密沁城角闪石岩Sr-Nd同位素及Th/Yb-Nb/Yb图解

    a—(87Sr/86Sr)iεNd(t)图解;b—Th/Yb-Nb/Yb图解(Pearce,2008)a图中数字表示地壳物质参与的比例,计算采用的参数Nd(×10−6)、εNdt)、Sr(×10−6)和(87Sr/86Sr)i值如下:软流圈地幔分别为1.2、+8、20和0.703;玄武岩分别为15、+8、200和0.704;上地壳分别为30、−12、250和0.740(据Jahn et al.,2000a修改);下地壳分别为20、−15、230和0.708(据Wu et al.,2000修改

    Figure  7.  (87Sr/86Sr)ivs. εNd(t) diagram and Th/Yb-Nb/Yb diagram for the hornblendite in Qincheng, Hami

    (a) (87Sr/86Sr)i-εNd(t) diagram; (b) Th/Yb-Nb/Yb diagram (Pearce, 2008) The numbers in Figure a represent the proportion of crustal materials involved. The values of the parameters Nd (×10−6), εNd(t), Sr (×10−6) and (87Sr/86Sr)i used for the calculation are as follows: for the asthenospheric mantle, they are 1.2, +8, 20 and 0.703 respectively; for basalt, they are 15, +8, 200 and 0.704 respectively; for the upper crust, they are 30, −12, 250 and 0.740 respectively (after Jahn et al., 2000a); for the lower crust, they are 20, −15, 230 and 0.708 respectively (after Wu et al., 2000).

    表  1  角闪石岩LA-ICP-MS锆石U-Pb同位素分析结果

    Table  1.   LA-ICP-MS zircons U-Pb data for the hornblendites

    测点 元素含量/×10−6 Th/U 同位素比值 同位素年龄/ Ma
    Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    HQ.1-1 21 241 416 0.58 0.0515 0.0013 0.3365 0.0092 0.0474 0.0007 264 59 294 8 298 4
    HQ.1-2 8 66 156 0.42 0.0546 0.0030 0.3555 0.0199 0.0473 0.0007 394 123 309 17 298 4
    HQ.1-3 24 370 457 0.81 0.0539 0.0012 0.3443 0.0086 0.0463 0.0006 368 52 300 7 292 4
    HQ.1-4 28 366 536 0.68 0.0539 0.0012 0.3509 0.0084 0.0473 0.0007 365 48 305 7 298 4
    HQ.1-5 45 617 847 0.73 0.0541 0.0009 0.3566 0.0072 0.0478 0.0007 374 39 310 6 301 4
    HQ.1-6 22 300 422 0.71 0.0559 0.0015 0.3687 0.0105 0.0478 0.0007 449 59 319 9 301 4
    HQ.1-7 25 228 524 0.43 0.0567 0.0011 0.3662 0.0079 0.0469 0.0006 478 43 317 7 295 4
    HQ.1-8 47 768 845 0.91 0.0528 0.0009 0.3468 0.0069 0.0476 0.0007 321 39 302 6 300 4
    HQ.1-9 32 463 609 0.76 0.0550 0.0011 0.3587 0.0079 0.0473 0.0007 413 44 311 7 298 4
    HQ.1-10 14 203 252 0.81 0.0551 0.0023 0.3609 0.0157 0.0475 0.0007 416 93 313 14 299 4
    HQ.1-11 16 151 336 0.45 0.0526 0.0021 0.3433 0.0147 0.0473 0.0007 313 90 300 13 298 4
    HQ.1-12 17 160 341 0.47 0.0548 0.0015 0.3611 0.0105 0.0478 0.0007 403 61 313 9 301 4
    HQ.1-13 17 168 341 0.49 0.0536 0.0016 0.3510 0.0114 0.0475 0.0007 355 68 305 10 299 4
    HQ.1-14 14 126 285 0.44 0.0552 0.0017 0.3590 0.0118 0.0472 0.0007 419 69 311 10 297 4
    HQ.1-15 10 91 215 0.42 0.0596 0.0025 0.3899 0.0166 0.0475 0.0007 588 90 334 14 299 4
    HQ.1-16 31 479 567 0.84 0.0541 0.0013 0.3439 0.0086 0.0461 0.0006 375 52 300 7 291 4
    HQ.1-17 34 322 678 0.48 0.0563 0.0012 0.3683 0.0089 0.0474 0.0007 464 48 318 8 299 4
    HQ.1-18 8 91 155 0.59 0.0544 0.0028 0.3600 0.0191 0.0480 0.0007 388 118 312 17 302 4
    HQ.1-19 11 133 206 0.65 0.0532 0.0024 0.3463 0.0161 0.0472 0.0007 337 102 302 14 297 4
    HQ.1-20 14 196 251 0.78 0.0525 0.0021 0.3379 0.0139 0.0467 0.0006 306 91 296 12 294 4
    HQ.1-21 20 184 407 0.45 0.0495 0.0014 0.3189 0.0096 0.0467 0.0007 173 65 281 8 294 4
    HQ.1-22 9 126 175 0.72 0.0520 0.0029 0.3376 0.0196 0.0471 0.0007 284 129 295 17 297 4
    HQ.1-23 14 143 273 0.52 0.0541 0.0018 0.3544 0.0123 0.0476 0.0006 373 75 308 11 299 4
    HQ.1-24 15 163 289 0.56 0.0558 0.0015 0.3650 0.0107 0.0475 0.0006 443 62 316 9 299 4
    HQ.1-25 15 218 287 0.76 0.0513 0.0017 0.3331 0.0115 0.0471 0.0006 254 76 292 10 297 4
    HQ.2-1 15 144 326 0.44 0.0553 0.0014 0.3553 0.0096 0.0466 0.0007 422 55 309 8 294 4
    HQ.2-2 15 144 307 0.47 0.0552 0.0015 0.3566 0.0103 0.0469 0.0007 419 60 310 9 295 4
    HQ.2-3 15 139 315 0.44 0.0549 0.0015 0.3557 0.0103 0.0470 0.0007 409 60 309 9 296 4
    HQ.2-4 17 222 334 0.66 0.0573 0.0014 0.3776 0.0099 0.0478 0.0007 502 52 325 8 301 4
    HQ.2-5 16 222 308 0.72 0.0526 0.0016 0.3504 0.0114 0.0483 0.0007 311 70 305 10 304 4
    HQ.2-6 29 287 578 0.50 0.0517 0.0010 0.3431 0.0076 0.0481 0.0007 272 44 299 7 303 4
    HQ.2-7 79 772 1600 0.48 0.0519 0.0007 0.3407 0.0060 0.0476 0.0007 282 33 298 5 300 4
    HQ.2-8 28 263 566 0.46 0.0528 0.0010 0.3496 0.0075 0.0480 0.0007 321 43 304 7 302 4
    HQ.2-9 10 165 188 0.88 0.0533 0.0021 0.3519 0.0142 0.0479 0.0007 341 88 306 12 302 4
    HQ.2-10 54 541 1098 0.49 0.0524 0.0008 0.3455 0.0065 0.0478 0.0007 302 36 301 6 301 4
    HQ.2-11 50 612 956 0.64 0.0538 0.0009 0.3564 0.0069 0.0480 0.0007 364 37 310 6 302 4
    HQ.2-12 61 666 1201 0.55 0.0535 0.0008 0.3531 0.0065 0.0479 0.0007 348 35 307 6 302 4
    HQ.2-13 104 1557 1900 0.82 0.0537 0.0008 0.3553 0.0062 0.0480 0.0007 360 33 309 5 302 4
    HQ.2-14 247 4021 4426 0.91 0.0522 0.0007 0.3430 0.0059 0.0477 0.0007 294 32 299 5 300 4
    HQ.2-15 137 1680 2649 0.63 0.0522 0.0007 0.3415 0.0057 0.0474 0.0007 296 32 298 5 299 4
    HQ.2-16 34 457 652 0.70 0.0525 0.0011 0.3440 0.0081 0.0475 0.0007 308 49 300 7 299 4
    HQ.2-17 24 235 490 0.48 0.0542 0.0011 0.3561 0.0083 0.0476 0.0007 380 45 309 7 300 4
    HQ.2-18 41 408 817 0.50 0.0524 0.0008 0.3426 0.0066 0.0475 0.0007 301 37 299 6 299 4
    HQ.2-19 9 71 193 0.37 0.0535 0.0019 0.3492 0.0127 0.0473 0.0007 350 80 304 11 298 4
    HQ.2-20 62 767 1192 0.64 0.0534 0.0008 0.3486 0.0063 0.0473 0.0007 347 34 304 5 298 4
    HQ.2-21 218 3113 4157 0.75 0.0525 0.0007 0.3338 0.0056 0.0461 0.0007 307 31 292 5 291 4
    HQ.2-22 206 3487 3680 0.95 0.0544 0.0008 0.3520 0.0058 0.0469 0.0007 388 31 306 5 296 4
    HQ.2-23 19 302 347 0.87 0.0556 0.0015 0.3535 0.0101 0.0461 0.0007 437 59 307 9 291 4
    HQ.2-24 82 888 1620 0.55 0.0523 0.0008 0.3408 0.0061 0.0473 0.0007 299 34 298 5 298 4
    HQ.2-25 61 683 1240 0.55 0.0536 0.0008 0.3432 0.0062 0.0464 0.0006 355 36 300 5 293 4
    HQ.3-1 14 221 281 0.79 0.0536 0.0020 0.3401 0.0130 0.0460 0.0006 354 85 297 11 290 4
    HQ.3-2 201 3704 3656 1.01 0.0543 0.0007 0.3497 0.0059 0.0467 0.0006 384 31 304 5 294 4
    HQ.3-3 60 434 1268 0.34 0.0531 0.0008 0.3449 0.0060 0.0471 0.0006 333 34 301 5 297 4
    HQ.3-4 89 993 1769 0.56 0.0533 0.0008 0.3467 0.0058 0.0472 0.0006 341 32 302 5 297 4
    HQ.3-5 149 1199 3224 0.37 0.0540 0.0008 0.3407 0.0055 0.0458 0.0006 371 32 298 5 288 4
    HQ.3-6 62 798 1214 0.66 0.0539 0.0008 0.3472 0.0061 0.0467 0.0007 368 33 303 5 294 4
    HQ.3-7 83 923 1658 0.56 0.0539 0.0008 0.3531 0.0060 0.0475 0.0006 367 33 307 5 299 4
    HQ.3-8 56 241 1227 0.20 0.0538 0.0008 0.3510 0.0065 0.0473 0.0007 363 35 305 6 298 4
    HQ.3-9 188 3744 3165 1.18 0.0534 0.0007 0.3492 0.0059 0.0474 0.0007 346 31 304 5 299 4
    HQ.3-10 56 755 1053 0.72 0.0538 0.0008 0.3525 0.0066 0.0475 0.0007 364 34 307 6 299 4
    HQ.3-11 54 443 1109 0.40 0.0526 0.0008 0.3426 0.0062 0.0472 0.0007 312 35 299 5 298 4
    HQ.3-12 38 149 830 0.18 0.0526 0.0009 0.3425 0.0068 0.0473 0.0007 311 38 299 6 298 4
    HQ.3-13 23 212 476 0.45 0.0533 0.0011 0.3468 0.0081 0.0472 0.0007 341 48 302 7 297 4
    HQ.3-14 73 1709 1177 1.45 0.0527 0.0008 0.3404 0.0061 0.0469 0.0007 316 34 297 5 295 4
    HQ.3-15 20 152 423 0.36 0.0534 0.0013 0.3456 0.0089 0.0469 0.0007 347 54 301 8 296 4
    HQ.3-16 180 1452 3774 0.38 0.0528 0.0007 0.3405 0.0057 0.0468 0.0007 320 31 298 5 295 4
    HQ.3-17 13 118 252 0.47 0.0532 0.0023 0.3516 0.0152 0.0479 0.0008 338 98 306 13 302 5
    HQ.3-18 18 199 366 0.55 0.0549 0.0014 0.3558 0.0099 0.0470 0.0007 409 58 309 9 296 4
    HQ.3-19 26 173 561 0.31 0.0529 0.0010 0.3442 0.0073 0.0472 0.0006 326 43 300 6 297 4
    HQ.3-20 130 1257 2672 0.47 0.0526 0.0007 0.3425 0.0056 0.0472 0.0006 314 31 299 5 297 4
    HQ.3-21 17 140 350 0.40 0.0557 0.0012 0.3614 0.0088 0.0470 0.0007 441 49 313 8 296 4
    HQ.3-22 78 1530 1447 1.06 0.0536 0.0008 0.3434 0.0061 0.0465 0.0006 354 35 300 5 293 4
    HQ.3-23 20 165 435 0.38 0.0534 0.0013 0.3432 0.0086 0.0466 0.0006 345 53 300 8 294 4
    HQ.3-24 17 118 369 0.32 0.0523 0.0018 0.3345 0.0115 0.0463 0.0006 300 76 293 10 292 4
    HQ.3-25 27 248 566 0.44 0.0543 0.0013 0.3477 0.0091 0.0464 0.0006 383 55 303 8 293 4
    下载: 导出CSV

    表  2  沁城角闪石岩的主量(%)、稀土和微量元素(×10−6)分析结果

    Table  2.   Major (%), REE and trace element (×10−6) concentrations of the Qincheng hornblendite

    样号 HQ-1 HQ-2 HQ-3 HQ−4 ZK3−1−9 ZK1−2−7 样号 HQ-1 HQ-2 HQ-3 HQ−4 ZK3−1−9 ZK1−2−7
    岩性 角闪石岩 角闪石岩 角闪石岩 角闪石岩 角闪石岩 角闪石岩 岩性 角闪石岩 角闪石岩 角闪石岩 角闪石岩 角闪石岩 角闪石岩
    SiO2 44.32 45.48 41.06 39.00 40.30 41.22 Sb 0.29 0.25 0.19 0.35 0.02 0.12
    Al2O3 18.41 22.83 19.42 17.21 16.96 17.36 Cs 1.64 2.85 2.14 0.63 1.24 2.71
    CaO 9.88 9.36 11.43 10.01 9.96 7.85 Ba 201 241 104 96 101 177
    TFe2O3 13.42 10.41 14.12 18.78 16.38 15.23 La 10.20 5.33 3.83 5.06 3.90 7.49
    FeO 4.89 5.06 6.85 9.95 9.45 9.34 Ce 29.10 14.10 11.30 15.20 12.70 21.70
    K2O 0.81 1.41 0.42 0.35 0.37 1.07 Pr 4.21 2.07 1.96 2.41 2.14 3.34
    MgO 6.91 4.44 7.66 8.31 9.40 9.77 Nd 22.50 11.00 12.00 10.20 8.76 13.70
    MnO 0.11 0.08 0.11 0.13 0.13 0.16 Sm 6.69 3.66 4.40 4.57 4.03 5.19
    Na2O 2.31 2.24 1.90 1.75 1.92 1.77 Eu 1.98 1.23 1.48 1.35 1.21 1.35
    P2O5 0.23 0.06 0.03 0.02 0.03 0.08 Gd 5.52 2.98 3.45 5.05 4.60 5.70
    TiO2 2.05 1.60 2.03 3.01 2.74 2.03 Tb 1.10 0.55 0.65 0.88 0.78 0.96
    LOI 1.51 2.04 1.71 1.41 1.82 3.45 Dy 6.69 3.79 4.36 5.25 4.63 5.71
    Total 99.96 99.94 99.90 99.99 100.01 99.98 Ho 1.40 0.76 0.82 1.06 0.90 1.16
    Li 16.70 14.10 17.70 16.00 11.90 37.90 Er 3.60 1.84 2.26 2.67 2.45 2.91
    Be 1.00 1.09 0.43 0.46 0.43 0.86 Tm 0.50 0.29 0.33 0.37 0.33 0.43
    Sc 55.10 36.70 47.70 84.20 76.50 72.20 Yb 3.06 1.84 1.84 2.00 1.96 2.43
    V 553 410 576 1030 906 616 Lu 0.43 0.24 0.26 0.26 0.26 0.36
    Cr 5.03 2.54 34.60 27.00 31.00 95.40 Y 37.30 21.20 22.70 25.00 21.80 28.20
    Co 57.80 32.40 49.90 70.10 78.20 63.20 ΣREE 96.98 49.68 48.93 56.33 48.65 72.43
    Ni 12.60 11.50 52.40 12.80 14.40 32.70 LREE/HREE 3.35 3.04 2.51 2.21 2.06 2.68
    Cu 92.90 134.00 81.60 46.60 64.40 64.80 (La/Yb)N 2.25 1.95 1.40 1.71 1.34 2.08
    Zn 166 118 152 104 95 105 δEu 0.97 1.11 1.12 0.86 0.86 0.76
    Ga 22.20 24.00 22.90 22.30 18.40 18.40 Ta 0.29 0.26 0.21 0.77 0.62 0.66
    Rb 23.50 50.60 7.09 8.80 7.44 42.10 W 0.35 0.59 0.46 0.77 0.13 0.78
    Sr 529 594 612 508 440 334 Tl 0.17 0.38 0.07 0.044 0.028 0.26
    Hf 2.19 1.27 1.55 1.63 1.26 1.67 Pb 5.28 4.95 3.47 3.06 1.96 3.73
    Zr 43.10 29.70 36.00 43.00 31.60 45.20 Bi 0.15 0.25 0.22 0.31 0.05 0.16
    Nb 3.37 2.64 1.90 2.99 2.26 3.13 Th 1.27 1.41 0.30 0.6 0.54 0.98
    Mo 0.22 0.32 0.17 0.26 0.19 0.20 U 0.43 0.82 0.18 0.37 0.48 0.51
    Cd 0.17 0.17 0.14 0.18 0.04 0.15 Mg# 55 50 56 51 57 60
    In 0.10 0.10 0.09 0.13 0.09 0.10
    注:Mg# =(MgO/40.31)/(MgO/40.31+TFe2O3*0.8998/71.85*0.85)×100
    下载: 导出CSV

    表  3  全岩铷−锶和钐−钕同位素数据

    Table  3.   Whole rock Rb-Sr and Sm-Nd isotopic data

    样品 Rb / ×10−6 Sr / ×10−6 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm /×10−6 Nd /×10−6 147Sm/144Nd 143Nd/144Nd 2σ (143Nd/144Nd)i εNd(t)
    HQ-1 23.50 529 0.128 0.705626 17 0.705090 6.69 22.50 0.180 0.512639 10 0.512290 0.67
    HQ-2 50.60 594 0.246 0.706168 11 0.705139 3.66 11.00 0.201 0.512739 9 0.512347 1.81
    HQ-3 7.09 612 0.034 0.704935 14 0.704796 4.40 12.00 0.222 0.512551 11 0.512123 −2.63
    HQ-4 8.80 508 0.050 0.705065 6 0.704857 4.57 10.20 0.271 0.512757 3 0.512234 −0.47
    ZK3-1-9 7.44 440 0.049 0.705048 7 0.704845 4.03 8.76 0.278 0.512776 13 0.512239 −0.37
    ZK1-2-7 42.10 334 0.365 0.706207 9 0.704696 5.19 13.70 0.229 0.512673 3 0.512231 −0.53
    下载: 导出CSV
  • [1] BOYNTON W V, 1984. Cosmochemistry of the rare earth elements: meteorite studies[J]. Rare Earth Element Geochemistry, 2: 63-114.
    [2] CAO F G, TU Q J, ZHANG X M, et al., 2006. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik Mountains, East Tianshan, Xinjiang, China: evidence from zircon SHRIMP U-Pb dating of granite bodies in the Tashuihe area[J]. Geological Bulletin of China, 25(8): 923-927. (in Chinese with English abstract
    [3] CHEN X J, SHU L S, 2010. Features of the post-colisional tectono-magmatism and geochronological evidence in the Harlik Mt. , Xinjiang[J]. Acta Petrologica Sinica, 26(10): 3057-3064. (in Chinese with English abstract
    [4] CHEN X J, ZHANG K H, ZHOU J, 2016a. Geochronology and geochemistry characteristics of the Early Permian monzogranite and dioritic enclaves of East Tianshan and their tectonic implications[J]. Acta Geologica Sinica, 90(9): 2334-2354. (in Chinese with English abstract
    [5] CHEN X J, ZHANG K H, ZHANG G L, et al., 2016b. Characteristics, petrogenesis and tectonic implications of the Permian Omoertage alkaline granites in Harlik area, Xinjiang[J]. Acta Petrologica et Mineralogica, 35(6): 929-946. (in Chinese with English abstract
    [6] GU L X, HU S X, CHU Q, et al., 1999. Pre-collision granites and post‐collision intrusive assemblage of the Kelameili‐Harlik orogenic belt[J]. Acta Geologica Sinica-English Edition, 73(3): 316-329. doi: 10.1111/j.1755-6724.1999.tb00840.x
    [7] GU L X, ZHANG Z Z, WU C Z, et al., 2006. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China[J]. Acta Petrologica Sinica, 22(5): 1103-1120. (in Chinese with English abstract
    [8] GUO H C, ZHONG L, LI L Q, 2006. Zircon SHRIMP U-Pb dating of quartz diorite in the Koumenzi area, Karlik Mountains, East Tianshan, Xinjiang, China, and its geological significance[J]. Geological Bulletin of China, 25(8): 928-931. (in Chinese with English abstract
    [9] HAN B F, HE G Q, WU T R, et al., 2004. Zircon U-Pb dating and geochemical features of early Paleozoic granites from Tianshan, Xinjiang: implications for tectonic evolution[J]. Xinjiang Geology, 22(1): 4-11. (in Chinese with English abstract
    [10] HU A Q, ZHANG G X, CHEN Y B, et al. , 2006. Geologicalevolution, petrogenesis and metallogeny of North Xinjiang[M]. Beijing: Science Press: 1-146 (in Chinese).
    [11] HUO H L, CHEN Z L, CHEN G M, et al., 2019. The U-Pb geochronology and geochemical characteristics of the Saergan mafic rocks in the Keping area, Southwest Tianshan, China[J]. Journal of Geomechanics, 25(S1): 60-65. (in Chinese with English abstract).
    [12] HUO H L, CHEN Z L, ZHANG Q, et al., 2024. Quartz deformation characteristics, deformation temperature, and their constraints on pegmatites of the 509 Daobanxi lithium deposit in the West Kunlun area, Xinjiang[J]. Journal of Geomechanics, 30(1): 72-87. (in Chinese with English abstract
    [13] JAHN B M, WU F Y, HONG D W, 2000a. Important crustal growth in the Phanerozoic: isotopic evidence of granitoids from East-Central Asia[J]. Journal of Earth System Science, 109(1): 5-20. doi: 10.1007/BF02719146
    [14] JAHN B M, WU F Y, CHEN B, 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23(2): 82-92. doi: 10.18814/epiiugs/2000/v23i2/001
    [15] JIN L Y. 2014. Geological characteristics and its tectonic significance of the Paleozoic volcanic rocks in Bogda-Harlik[D]. Urumqi: Xinjiang University. (in Chinese with English abstract
    [16] LI H K, GENG J Z, HAO S, et al., 2009. Study on zircon U-Pb dating by LA-ICP MS[J]. Acta Mineralogica Sinica, 29(S1): 600-601. (in Chinese with English abstract
    [17] LI J H, HE W Y, QIAN X L, 1997. Genetic mechanism and tectonic setting of Proterozoic mafic dyke swarm: its implication for paleoplate reconstruction[J]. Geological Journal of China Universities, 3(3): 272-281. (in Chinese with English abstract
    [18] LI J Y, WANG K Z, LI Y P, et al., 2006. Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains[J]. Geological Bulletin of China, 25(8): 895-909. (in Chinese with English abstract
    [19] LIU L, HE X F, LI J T, et al., 2017. Petrogenesis and tectonic signficances of the Qincheng Tianshengquan pluton in the Harlik orogen of eastern Xinjiang[J]. Bulletin of Geological Science and Technology, 36(2): 86-96. (in Chinese with English abstract
    [20] MA X H, CHEN B, WANG C, et al., 2015. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica, 31(1): 89-104. (in Chinese with English abstract
    [21] MAO Q G, XIAO W J, HAN C M, et al., 2006. Zircon U-Pb age and the geochemistry of the Baishiquan mafic-ultramafic complex in the eastern Tianshan, Xinjiang province: constraints on the closure of the Paleo-Asian Ocean[J]. Acta Petrologica Sinica, 22(1): 153-162. (in Chinese with English abstract
    [22] MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
    [23] PEARCE J A, 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1-4): 14-48. doi: 10.1016/j.lithos.2007.06.016
    [24] PEARCE J A, 2014. Immobile element fingerprinting of ophiolites[J]. Elements, 10(2): 101-108. doi: 10.2113/gselements.10.2.101
    [25] SUN G H, LI J Y, CAO L M, et al., 2005. Zircon SHRIMP U-Pb age of a dioritic pluton in the Harlik Mountain, eastern Xinjiang, and its tectonic implication[J]. Geological Review, 51(4): 463-469. (in Chinese with English abstract
    [26] SUN G H, LI J Y, YANG T N, et al., 2006. Permian post-collisional NS-compression deformation in Tianshan orogen: example from Koumenzi ductile shear zone of thrusting-type in northern slope of Harlik mountains[J]. Acta Petrologica Sinica, 22(5): 1359-1368. (in Chinese with English abstract
    [27] SUN G H. 2007. Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang Since the Paleozoic[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract
    [28] SUN G H, LI J Y, ZHU Z X, et al., 2007. Zircons SHRIMP U-Pb dating of gneissoid-biotitic granite in Harlik Mountains, eastern of Xinjiang and it’s geological implications[J]. Xinjiang Geology, 25(1): 4-10. (in Chinese with English abstract
    [29] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//SAUNDERS A D, NORRY M J. Magmatism in the ocean basins. London: Geological Society, London, Special Publications, 42(1): 313-345.
    [30] Regional Geological Survey Brigade of the Geology Bureau of Xinjiang Uygur Autonomous Region, 1966. 1:200000 Geological and Mineral Map of Yiwu Sheet and Its Instruction Manual [R]. Qitai: Geology Bureau of Xinjiang Uygur Autonomous Region.
    [31] WANG C S, ZHANG Z Z, WU C Z, et al., 2009a. Petrologic characteristics, zircon geochronology of dioritic enclaves in Early Permian Badashi monzogranite of East Tianshan Mountains and their geological implications[J]. Acta Petrologica et Mineralogica, 28(4): 299-315. (in Chinese with English abstract
    [32] WANG C S, GU L X, ZHANG Z Z, et al., 2009b. Petrogenesis and tectonic implications of the Permian alkaline granite and quartz-syenite assemblage in Harlik Mountains, Xinjiang[J]. Acta Petrologica Sinica, 25(12): 3182-3196. (in Chinese with English abstract
    [33] WANG C Y, SHU L S, ZHAO M, et al., 1996. Late Paleozoic thrust tectonics and related magmatism in Haerlike area, North segment of eastern Tianshan belt[J]. Geological Journal of China Universities, 2(2): 198-206. (in Chinese with English abstract
    [34] WANG Y W, WANG J B, LI D D, et al., 2013. Types, temporal-spatial distribution and metallogenic lineage of ore deposits related to mantle-derived magma in northern Xinjiang[J]. Mineral Deposits, 32(2): 223-243. (in Chinese with English abstract
    [35] WU F Y, JAHN B M, WILDE S A, et al.,2000. Phanerozoic continental crustal growth: U- Pb and Sr- Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics,328:89-113
    [36] XIA L Q, LI X M, XIA Z Z, et al., 2006. Carboniferous-Permian rift-related volcanism and mantle plume in the Tianshan, northwestern China[J]. Northwestern Geology, 39(1): 1-49. (in Chinese with English abstract
    [37] XIANG Z J, YAN Q R, SONG B, et al., 2016. New evidence for the ages of ultramafic to mafic dikes and alkaline volcanic complexes in the North Daba Mountains and its geological implication[J]. Acta Geologica Sinica, 90(5): 896-916. (in Chinese with English abstract
    [38] XIAO W J, HAN C M, YUAN C, et al., 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China): constraints for the tectonics of the southern Paleoasian Domain[J]. Acta Petrologica Sinica, 22(5): 1062-1076. (in Chinese with English abstract
    [39] ZHANG C L, ZHOU G, WANG H Y, et al., 2010. A review on two types of mantle domains of the Permian large igneous province in Tarim and the western section of Central Asian orogenic belt[J]. Geological Bulletin of China, 29(6): 779-794. (in Chinese with English abstract
    [40] ZHAO B B, DENG Y F, ZHOU T F, et al., 2018. Petrogenesis of the Baixintan Ni-Cu sulfide-bearing mafic-ultramafic intrusion, East Tianshan: evidence from geochronology, petrogeochemistry and Sr-Nd isotope[J]. Acta Petrologica Sinica, 34(9): 2733-2753. (in Chinese with English abstract
    [41] ZHAO M, SHU L S, WANG C Y, 1997. Characteristics of metamorphism in the Harlik metamorphic belt, East Xinjiang, and its tectonic environment[J]. Geological Journal of China Universities, 3(1): 40-50. (in Chinese with English abstract
    [42] ZHAO M, WANG C Y, 1998. Characteristics of amphibole from the Harlik metamorphic belt in eastern Xinjiang and its geological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 17(1): 15-17. (in Chinese with English abstract
    [43] ZHAO M, SHU L S, ZHU W B, et al., 2002. Zircon U-Pb dating of the rocks from the Harlik metamorphic belt in eastern Xinjiang and its geological significance[J]. Acta Geologica Sinica, 76(3): 379-383. (in Chinese with English abstract
    [44] ZHU W B, SHU L S, WAN J L, et al., 2006. Fission-track evidence for the exhumation history of Bogda-Harlik Mountains, Xiniiang since the cretaceous[J]. Acta Geologica Sinica, 80(1): 16-22. (in Chinese with English abstract
    [45] ZHU X H, ZHU T, ZHANG X, et al., 2018. Petrogenesis and geological implications of late CARBONIFEROUS leucogranites in Harlik area, eastern Tianshan[J]. Earth Science, 43(12): 4443-4458. (in Chinese with English abstract
    [46] ZHU Z X, LI P, ZHAO T Y, et al., 2018. Tectonic magmatic evolution and minerralization of Bogda-Harlik tectonic belt, Xinjiang, China[J]. Xinjiang Geology, 36(1): 1-7. (in Chinese with English abstract
    [47] 曹福根,涂其军,张晓梅,等,2006. 哈尔里克山早古生代岩浆弧的初步确定:来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据[J]. 地质通报,25(8):923-927. doi: 10.3969/j.issn.1671-2552.2006.08.004
    [48] 陈希节,舒良树,2010. 新疆哈尔里克山后碰撞期构造-岩浆活动特征及年代学证据[J]. 岩石学报,26(10):3057-3064.
    [49] 陈希节,张奎华,周健,2016a. 东天山哈密地区早二叠世花岗岩体及镁铁质包体的年代学,岩石地球化学特征及其构造意义[J]. 地质学报,90(9):2334-2354.
    [50] 陈希节,张奎华,张关龙,等,2016b. 新疆东天山哈尔里克二叠纪奥莫尔塔格碱性花岗岩特征、成因及构造意义[J]. 岩石矿物学杂志,35(6):929-946.
    [51] 顾连兴,胡受奚,诸强,等,1999. 新疆克拉麦里-哈尔里克造山带碰撞前花岗岩和碰撞后侵入岩组合[J]. 地质学报,73(3):316-329.
    [52] 顾连兴,张遵忠,吴昌志,等,2006. 关于东天山花岗岩与陆壳垂向增生的若干认识[J]. 岩石学报,22(5):1103-1120. doi: 10.3321/j.issn:1000-0569.2006.05.005
    [53] 郭华春,钟莉,李丽群. 2006. 哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地质通报,25(8):928-931.
    [54] 韩宝福,何国琦,吴泰然,等,2004. 天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J]. 新疆地质,22(1):4-11. doi: 10.3969/j.issn.1000-8845.2004.01.002
    [55] 胡霭琴,张国新,陈义兵,等,2006. 中国新疆地壳演化主要地质事件年代学和地球化学[M]. 北京:地质出版社:1-146.
    [56] 霍海龙,陈正乐,陈贵民,等,2019. 西南天山柯坪地区萨尔干基性岩脉U-Pb年代学及地球化学特征[J]. 地质力学学报,25(S1):60-65. doi: 10.12090/j.issn.1006-6616.2019.25.S1.011
    [57] 霍海龙,陈正乐,张青,等,2024. 新疆西昆仑509道班西锂矿伟晶岩石英变形特征、温度及其对伟晶岩就位的约束[J]. 地质力学学报,30(1):72-87. doi: 10.12090/j.issn.1006-6616.2023078
    [58] 靳刘圆. 2014. 博格达—哈尔里克古生代火山岩地质特征及构造意义[D]. 乌鲁木齐:新疆大学.
    [59] 李怀坤,耿建珍,郝爽,等,2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报,29(S1):600-601.
    [60] 李江海,何文渊,钱祥麟,1997. 元古代基性岩墙群的成因机制、构造背景及其古板块再造意义[J]. 高校地质学报,3(3):33-42.
    [61] 李锦轶,王克卓,李亚萍,等,2006. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报,25(8):895-909.
    [62] 刘亮,何学锋,李江涛,等,2017. 新疆东部哈尔里克造山带沁城天生圈岩体岩石成因及其构造意义[J]. 地质科技情报,36(2):86-96.
    [63] 马星华,陈斌,王超,等,2015. 早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J]. 岩石学报,31(1):89-104.
    [64] 毛启贵,肖文交,韩春明,等,2006. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约[J]. 岩石学报,22(1):153-162. doi: 10.3321/j.issn:1000-0569.2006.01.016
    [65] 孙桂华,李锦轶,高立明,等,2005. 新疆东部哈尔里克山闪长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 地质论评,51(4):463-469. doi: 10.3321/j.issn:0371-5736.2005.04.015
    [66] 孙桂华,李锦轶,杨天南,等,2006. 天山造山带二叠纪后碰撞南北向挤压变形:以哈尔里克山北坡口门子逆冲型韧性剪切带为例[J]. 岩石学报,22(5):1359-1368. doi: 10.3321/j.issn:1000-0569.2006.05.024
    [67] 孙桂华,李锦轶,朱志新,等,2007. 新疆东部哈尔里克山片麻状黑云母花岗岩锆石SHRIMP U-Pb定年及其地质意义[J]. 新疆地质,25(1):4-10. doi: 10.3969/j.issn.1000-8845.2007.01.002
    [68] 汪传胜,张遵忠,吴昌志,等,2009a. 东天山八大石早二叠世二长花岗岩中闪长质包体的特征、锆石定年及其地质意义[J]. 岩石矿物学杂志,28(4):299-315.
    [69] 汪传胜,顾连兴,张遵忠,等,2009b. 新疆哈尔里克山二叠纪碱性花岗岩-石英正长岩组合的成因及其构造意义[J]. 岩石学报,25(12):3182-3196.
    [70] 王赐银,舒良树,赵明,等,1996. 东天山北部哈尔里克晚古生代推覆构造与岩浆作用研究[J]. 高校地质学报,2(2):198-206.
    [71] 王玉往,王京彬,李德东,等,2013. 新疆北部幔源岩浆矿床的类型、时空分布及成矿谱系[J]. 矿床地质,32(2):223-243. doi: 10.3969/j.issn.0258-7106.2013.02.001
    [72] 夏林圻,李向民,夏祖春,等,2006. 天山石炭—二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质,39(1):1-49. doi: 10.3969/j.issn.1009-6248.2006.01.001
    [73] 向忠金,闫全人,宋博,等,2016. 北大巴山超基性、基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义[J]. 地质学报,90(5):896-916. doi: 10.3969/j.issn.0001-5717.2016.05.006
    [74] 肖文交,韩春明,袁超,等,2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报,22(5):1062-1076. doi: 10.3321/j.issn:1000-0569.2006.05.002
    [75] 新疆维吾尔自治区地质局区域地质测量大队, 1966. 1: 200000 伊吾幅地质矿产图及说明书[R]. 奇台: 新疆维吾尔自治区地质局.
    [76] 张传林,周刚,王洪燕,等,2010. 塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区[J]. 地质通报,29(6):779-794. doi: 10.3969/j.issn.1671-2552.2010.06.001
    [77] 赵明,舒良树,王赐银,1997. 东疆哈尔里克变质地带变质作用特征及形成构造环境研究[J]. 高校地质学报,3(1):40-50.
    [78] 赵明,王赐银,1998. 东疆哈尔里克造山带中角闪石的特征及其地质意义[J]. 矿物岩石地球化学通报,17(1):15-17.
    [79] 赵明,舒良树,朱文斌,等,2002. 东疆哈尔里克变质带的U-Pb年龄及其地质意义[J]. 地质学报,76(3):379-383. doi: 10.3321/j.issn:0001-5717.2002.03.010
    [80] 朱文斌,舒良树,万景林,等,2006. 新疆博格达—哈尔里克山白垩纪以来剥露历史的裂变径迹证据[J]. 地质学报,80(1):16-22. doi: 10.3321/j.issn:0001-5717.2006.01.002
    [81] 朱小辉,朱涛,张欣,等,2018. 东天山哈尔里克地区晚石炭世淡色花岗岩成因及其地质意义[J]. 地球科学,43(12):4443-4458.
    [82] 朱志新,李平,赵同阳,等,2018. 新疆博格达-哈尔里克构造带构造岩浆演化与成矿作用研究[J]. 新疆地质,36(1):1-7. doi: 10.3969/j.issn.1000-8845.2018.01.001
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  39
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 修回日期:  2024-08-24
  • 录用日期:  2024-08-28
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回