留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TY系列高精度体应变仪研制及映震能力分析与应用

孙尧 彭华 姜景捷 马秀敏 郝飞 张斌

孙尧,彭华,姜景捷,等,2023. TY系列高精度体应变仪研制及映震能力分析与应用[J]. 地质力学学报,29(3):324−338 doi: 10.12090/j.issn.1006-6616.20232903
引用本文: 孙尧,彭华,姜景捷,等,2023. TY系列高精度体应变仪研制及映震能力分析与应用[J]. 地质力学学报,29(3):324−338 doi: 10.12090/j.issn.1006-6616.20232903
SUN Y,PENG H,JIANG J J,et al.,2023. Development of TY-series high-precision volumetric strain gauge: Analysis and application of its seismic reflection capability[J]. Journal of Geomechanics,29(3):324−338 doi: 10.12090/j.issn.1006-6616.20232903
Citation: SUN Y,PENG H,JIANG J J,et al.,2023. Development of TY-series high-precision volumetric strain gauge: Analysis and application of its seismic reflection capability[J]. Journal of Geomechanics,29(3):324−338 doi: 10.12090/j.issn.1006-6616.20232903

TY系列高精度体应变仪研制及映震能力分析与应用

doi: 10.12090/j.issn.1006-6616.20232903
基金项目: 中国地质调查局地质调查项目(DD20230249,DD20230014,DD2019290,DD20221644);中国地质科学院地质力学研究所基本科研业务费项目(DZLXJK202106)
详细信息
    作者简介:

    孙尧(1983—),男,博士,助理研究员,从事地震学、地应力测量和监测等方面研究。E-mail: 980483939@qq.com

    通讯作者:

    彭华(1964—),男,博士,研究员,从事地应力、地应力测量和监测、地学仪器设备研制、岩石力学等方面研究。E-mail: 1391161856@qq.com

  • 中图分类号: P315.72+7;P716+.8

Development of TY-series high-precision volumetric strain gauge: Analysis and application of its seismic reflection capability

Funds: This research is financially supported by the China Geological Survey Projects (Grants DD20230249, DD20230014, DD2019290, DD20221644) and the Basic Research Funds of the Institute of Geomechanics, Chinese Academy of Geological Sciences (Grant DZLXS202106).
  • 摘要:

    文章综述了钻孔体应变仪的发展历程,针对体应变仪目前存在的稳定性和带宽不足、标定精度低等问题,创新与改进液压传感器、控制电路、标定方法等技术,研制出TY-2B型钻孔体积应变仪。改进的液压传感器提高了仪器精度,缩小了仪器体积;改善了控制电路,提高了仪器采样率、带宽及稳定性;创新的压电陶瓷标定技术提高了监测数据可靠性。测试结果表明改进型的TY-2B型体应变仪功耗低,小于3 W;长期稳定性好;灵敏度高,分辨率达到10−11ε;高频特性和低频特性好,采样率10~100 Hz,可采集完整地震应变波波形,固体潮波形清晰稳定;体积小重量轻,外径缩小至Φ89 mm,适用于Φ100 mm钻孔,长度1300 mm,重量45 kg,运输和安装方便。经室内检验、野外台站15年的测试,获取了良好的监测数据,体现了高灵敏的映震能力,龙门山北段体应变台站对2010年玉树地震及2023年土耳其地震的观测响应表明TY系列高精度体应变仪不仅是静态应变仪,还是宽频应变地震仪,具有动−静态标定能力,且相对于摆式地震仪有着极宽响应频带的独特优势,既可以观测地壳长期缓慢变形及其积累的特征,还可观测地壳破裂变形的瞬态细微特征。汶川地震以来青川—汉中地区体应变台站及2021年以来广州台站获取的监测曲线长期变化趋势与地震、构造地质等资料所反映的区域地质特征相符,表明TY-2B型体应变仪可在地球动力学研究、地质灾害预测预警等领域推广使用。

     

  • 图  1  不同类型体积式钻孔应变仪原理图

    Figure  1.  Schematic diagram of volumetric borehole strain gauges

    图  2  地质力学所自主研发的液位式TY-1型体应变仪及液压式TY-2B型体应变仪示意图

    Figure  2.  Schematic diagram of liquid-level-type TY-1 volumetric strain gauge and hydraulic-type TY-2B volumetric strain gauge developed by the Institute of Geomechanics, CAGS

    图  3  体积单元三轴向应力作用

    σ—正应力;τ—常应力;ε—轴向应变

    Figure  3.  Triaxial stress action of volumetric elements

    σ–positive stress;τ–normal stress;ε–axial strain

    图  4  内径Φ8.1 cm的钢筒设置不同芯柱直径与体积压缩模量关系

    Figure  4.  Relationship between different core diameters and volumetric compression modulus for cylinder setup with an inner diameter of Φ 8.1 cm

    图  5  应变仪的体应变−电转换关系图.

    Figure  5.  Volume strain-electric conversion diagram for a strain gauge

    图  6  压电陶瓷驱动定量泵

    Figure  6.  Piezoelectric ceramic quantitative pump

    图  7  TY-2B型体应变仪结构示意图及实物

    Figure  7.  Structural diagram and profile display of TY-2B volumetric strain gauge

    图  8  体应变仪监测网络拓扑图

    Figure  8.  Monitoring network topology of volumetric strain gauge

    图  9  汶川地震及玉树地震前后体应变变化曲线

    Figure  9.  Volumetric strain curves recorded before and after the Wenchuan earthquake and Yushu earthquake

    图  10  2023年2月6日土耳其地震体应变响应及其与摆式地震计响应对比

    Figure  10.  Volumetric strain response of the February 6, 2023 Turkish earthquake and its comparison with pendulum seismometer response

    图  11  广州主要断裂活动造成的体应变变化模拟与实测曲线的对比

    Figure  11.  Comparison between measured curves and simulated volumetric strain changes caused by major fault activities in Guangzhou

    表  1  TY-2B型体应变仪技术指标

    Table  1.   Technical index of TY-2B volumetric strain gauge

    项目名称技术指标
    系统供电电压 12~48 V/DC
    系统功耗 井下功耗<3 W
    AD位数 24位数据井下采集
    系统采样速率 20~100Hz
    数据传输模式 RS485传输
    系统观测灵敏度 ≈1×10−11ε
    系统观测动态范围 ≥1×105ε
    下载: 导出CSV

    表  2  广州主要断裂产状及活动特征

    Table  2.   Occurrence and activity characteristics of main faults in Guangzhou

    断裂名称断裂走向/(°)断裂倾向倾角/(°)断裂长度/km活动特征
    白坭−沙湾断裂 320~330SW/NE>50125正断   
    狮子洋断裂   310~330NE/SW70~8550正断   
    广州−从化断裂带40NW/SE40~6065正断兼走滑
    下载: 导出CSV
  • [1] ALLEN R V, 1972. A borehole tiltmeter for measurements at tidal sensitivity[J]. Bulletin of the Seismological Society of America, 62(3): 815-821. doi: 10.1785/BSSA0620030815
    [2] BAI J P, PENG H, MA X M, et al. , 2013. Hollow inclusion strain gauge geostress measuring instrument in deep borehole and its application example[J]. Chinese Journal of Rock Mechanics and Engineering, 32(5): 902-908. (in Chinese with English abstract)
    [3] BARBOUR A J, CROWELL B W, 2017. Dynamic strains for earthquake source characterization[J]. Seismological Research Letters, 88(2A): 354-370. doi: 10.1785/0220160155
    [4] BENIOFF H, 1935. A linear strain seismograph[J]. Bulletin of the Seismological Society of America, 25(4): 283-309. doi: 10.1785/BSSA0250040283
    [5] BENIOFF H, PRESS F, SMITH S, 1961. Excitation of the free oscillations of the earth by earthquakes[J]. Journal of Geophysical Research, 66(2): 605-619. doi: 10.1029/JZ066i002p00605
    [6] BONACCORSO A, LINDE A, CURRENTI G, et al. , 2016. The borehole dilatometer network of Mount Etna: A powerful tool to detect and infer volcano dynamics[J]. Journal of Geophysical Research: Solid Earth, 121(6): 4655-4669. doi: 10.1002/2016JB012914
    [7] EVERTSON D W, 1977. Borehole strainmeters for seismology[R]. Austin: Applied Research Lab.
    [8] FENG C J, LI B, LI H, et al. , 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics, 28(6): 919-937. (in Chinese with English abstract)
    [9] FURUYA I, FUKUDOME A, 1986. Characteristics of borehole volume strainmeter and its application to seismology[J]. Journal of Physics of the Earth, 34(3): 257-296. doi: 10.4294/jpe1952.34.257
    [10] FURUYA I, YAMASATO H, SEINO M, 1991. Rayleigh waves recorded by the volumetric strainmeters at the time of a rather small volcanic eruption[J]. Papers in Meteorology and Geophysics, 42(3): 93-103. doi: 10.2467/mripapers.42.93
    [11] GLADWIN M T, 1984. High-precision multicomponent borehole deformation monitoring[J]. Review of Scientific Instruments, 55(12): 2011-2016. doi: 10.1063/1.1137704
    [12] HIKAWA H, SATO K, NIHEI S, et al. , 1983. Correction due to atmospheric pressure changes of data of borehole volume strainmeter[J]. Quarterly Journal of Seismology, 47: 91-111. (in Japanese)
    [13] KAMIGAICHI O, 1987. Physical considerations on the correction methods of volumetric strain and tilt data for the effects of atmospheric pressure change[J]. Quarterly Journal of Seismology, 50: 41-49. (in Japanese)
    [14] KIMURA K, TSUYUKI T, SUGANUMA I, et al. , 2015. Rainfall correction of volumetric strainmeter data by tank models[J]. Quarterly Journal of Seismology, 78: 93-158. (in Japanese)
    [15] LEE J S, 1976. Geomechanical method[M]. Beijing: Science Press. (in Chinese)
    [16] LI F Q, 1985. In-situ stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 4(1): 95-111. (in Chinese)
    [17] LIAO C T, SHI Z X, 1983. In-situ stress measurements and their application to engineering design in the Jinchuan mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2(1): 103-112. (in Chinese with English abstract)
    [18] LIAO C T, CUI M D, REN X F, et al. , 1985. In-situ Stress Measurements and Tectonic Stress Field in the Jinchuan Mine Area[M]. Beijing: Geological Publishing House. (in Chinese)
    [19] LINDE A T, GLADWIN M T, JOHNSTON M J S, et al. , 1996. A slow earthquake sequence on the San Andreas fault[J]. Nature, 383(6595): 65-68. doi: 10.1038/383065a0
    [20] LOU J S, TIAN J Y, 2022. Review on seismic strain-wave observation based on high-resolution borehole strainmeters[J]. Progress in Geophysics, 37(1): 51-58. (in Chinese with English abstract)
    [21] MENG W, TIAN T, SUN D S, et al. , 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model[J]. Journal of Geomechanics, 28(4): 537-549. (in Chinese with English abstract)
    [22] PENG H, CUI W, MA X M, et al. , 2006b. Hydrofracturing in-situ stress measurements of the water diversion area in the first stage of the South-North Water Diversion Project (western line)[J]. Journal of Geomechanics, 12(2): 182-190. (in Chinese with English abstract)
    [23] PENG H, WU Z H, MA X M, 2006a. Unmanned in-situ stress monitoring stations along the Qinghai-Tibet railway[J]. Journal of Geomechanics, 12(1): 96-104. (in Chinese with English abstract)
    [24] PENG H, MA X M, JIANG J J, 2008. Analysis of the volume strain data from the Shandan in-situ stress monitoring station[J]. Journal of Geomechanics, 14(2): 97-108. (in Chinese with English abstract)
    [25] PENG H, MA X M, JIANG J J, 2009. Stability and stress measurement near the Qingchuan fault in the northern Longmen mountains[J]. Journal of Geomechanics, 15(2): 114-130. (in Chinese with English abstract)
    [26] PENG H, MA X M, JIANG J J, et al. , 2011a. Strain characteristics of WFSD stress stations and its co-seismic effects analysis: A case study upon Mw9.0 earthquake in Japan[J]. Journal of Geomechanics, 17(1): 1-14. (in Chinese with English abstract)
    [27] PENG H, MA X M, JIANG J J, et al. , 2011b. Research on stress field and hydraulic fracturing in-situ stress measurement of 1000 m deep hole in Zhaolou coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 30(8): 1638-1645. (in Chinese with English abstract)
    [28] QIU Z H, TANG L, ZHANG B H, et al. , 2012. Extracting anomaly of the Wenchuan earthquake from the dilatometer recording at NSH by means of wavelet-overrun rate analysis[J]. Chinese Journal of Geophysics, 55(2): 538-546. (in Chinese with English abstract)
    [29] QIU Z H, 2017. The observations of borehole strainmeters: theory and applications[M]. Beijing: Seismological Press: 1-407. (in Chinese)
    [30] QIU Z H, TANG L, ZHAO S X, et al. , 2020. Fundamental principle to determine seismic source moment tensor using strain seismographs[J]. Chinese Journal of Geophysics, 63(2): 551-561. (in Chinese with English abstract)
    [31] QUAN J J, LAI J S, CHEN S H, et al. , 2021. Analysis of observation quality and earthquake reflecting ability of borehole body strain meter at Xiaotao seismic station[J]. South China Journal of Seismology, 41(1): 26-33. (in Chinese with English abstract)
    [32] ROELOFFS E A, 2006. Evidence for aseismic deformation rate changes prior to earthquakes[J]. Annual Review of Earth and Planetary Sciences, 34: 591-627. doi: 10.1146/annurev.earth.34.031405.124947
    [33] SACKS I S, SUYEHIRO S, EVERTSON D W, 1971. Sacks-Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps[J]. Proceedings of the Japan Academy, 47(9): 707-712. doi: 10.2183/pjab1945.47.707
    [34] SACKS I S, LINDE A T, SUYEHIRO S, et al. , 1978. Slow earthquakes and stress redistribution[J]. Nature, 275(5681): 599-602. doi: 10.1038/275599a0
    [35] SU K Z, 1982. The working principle of liquid level volume strain gauge[J]. Seismological Research(4): 57-62. (in Chinese with English abstract)
    [36] SU K Z, LIU R M, PEI Y Z, 1993. Volume strain meters in China[J]. Inland Earthquake, 7(2): 151-157. (in Chinese with English abstract)
    [37] SU K Z, LI X H, ZHANG J, et al. , 2003a. Manufacture of TJ-2 volume strain meter[J]. Bulletin of the Institute of Crustal Dynamics, (4)113-121. (in Chinese)
    [38] SU K Z, LI H L, ZHANG J, et al. , 2003b. New progress in borehole strain observation[M]. Beijing: Seismological Press. (in Chinese)
    [39] SUN Y M, ZHA N, REN X, et al. , 2021. A review of application research on the borehole body strain gauge in earthquake precursory observation[J]. Seismological Research of Northeast China, 37(4): 69-74. (in Chinese with English abstract)
    [40] TAKANAMI T, LINDE A T, SACKS S I, et al. , 2013. Modeling of the post-seismic slip of the 2003 Tokachi-Oki earthquake M 8 off Hokkaido: Constraints from volumetric strain[J]. Earth, Planets and Space, 65(7): 731-738. doi: 10.5047/eps.2012.12.003
    [41] WANG L J, PAN L Z, LIAO C T, et al. , 1991. Geostress measurements and their application to engineering[M]. Beijing: Geological Publishing House. (in Chinese)
    [42] ZHANG L K, NIU A F, 2008. Borehole volume strainmeter conseismic change observation result in China[J]. Recent Developments in World Seismology(11): 120. (in Chinese)
    [43] ZHANG L K, WANG G C, NIU A F, 2011. Analysis on several factors of periodic air pressure wave affecting crustal strain field[J]. Acta Seismologica Sinica, 33(3): 351-361. (in Chinese with English abstract)
    [44] ZHANG L K, NIU A F, 2019. Theoretical solution of periodic pressure wave effect on crustal rock strain measurement[J]. Progress in Geophysics, 34(4): 1366-1370. (in Chinese with English abstract)
    [45] ZHOU L S, QIU Z H, TANG L, 2008. The response of crustal strain field to short-period atmospheric pressure variation[J]. Progress in Geophysics, 23(6): 1717-1726. (in Chinese with English abstract)
    [46] 白金朋, 彭华, 马秀敏, 等, 2013. 深孔空心包体法地应力测量仪及其应用实例[J]. 岩石力学与工程学报, 32(5): 902-908. doi: 10.3969/j.issn.1000-6915.2013.05.007
    [47] 丰成君, 李滨, 李惠, 等, 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨[J]. 地质力学学报, 28(6): 919-937. doi: 10.12090/j.issn.1006-6616.20222820
    [48] 檜皮久義, 佐藤馨, 二瓶信一, 等, 1983. 埋込式体積歪言十の気圧補正[J]. 験震時報, 47: 91-111.
    [49] 李方全, 1985. 地应力测量[J]. 岩石力学与工程学报, 4(1): 95-111.
    [50] 李四光, 1976. 地质力学方法[M]. 北京: 科学出版社.
    [51] 廖椿庭, 施兆贤, 1983. 金川矿区原岩应力实测及在矿山设计中的应用[J]. 岩石力学与工程学报, 2(1): 103-112.
    [52] 廖椿庭, 崔鸣铎, 任希飞, 等, 1985. 金川矿区应力测量与构造应力场[M]. 北京: 地质出版社.
    [53] 娄家墅, 田家勇, 2022. 基于高分辨率钻孔应变仪的地震应变波观测研究进展[J]. 地球物理学进展, 37(1): 51-58.
    [54] 孟文, 田涛, 孙东生, 等, 2022. 基于原位地应力测试及流变模型的深部泥页岩储层地应力状态研究[J]. 地质力学学报, 28(4): 537-549.
    [55] 木村一洋, 露木貴裕, 菅沼一成, 等, 2015. タンクモデルによる体積ひずみ計データの降水補正について[J]. 験震時報, 78: 93-158.
    [56] 彭华, 崔巍, 马秀敏, 等, 2006b. 南水北调西线第一期工程调水区水压致裂地应力测量及其工程意义[J]. 地质力学学报, 12(2): 182-190.
    [57] 彭华, 吴珍汉, 马秀敏, 2006a. 青藏铁路无人值守地应力综合监测站[J]. 地质力学学报, 12(1): 96-104.
    [58] 彭华, 马秀敏, 姜景捷, 2008. 山丹地应力监测站体应变仪的地震效应[J]. 地质力学学报, 14(2): 97-108. doi: 10.3969/j.issn.1006-6616.2008.02.001
    [59] 彭华, 马秀敏, 姜景捷, 2009. 龙门山北端青川断层附近应力测量与断层稳定性[J]. 地质力学学报, 15(2): 114-130.
    [60] 彭华, 马秀敏, 姜景捷, 等, 2011a. WFSD地应力台应变特征及其同震效应分析: 以日本MW9.0级特大地震为例[J]. 地质力学学报, 17(1): 1-14.
    [61] 彭华, 马秀敏, 姜景捷, 等, 2011b. 赵楼煤矿1000m深孔水压致裂地应力测量及其应力场研究[J]. 岩石力学与工程学报, 30(8): 1638-1645.
    [62] 邱泽华, 唐磊, 张宝红, 等, 2012. 用小波-超限率分析提取宁陕台汶川地震体应变异常[J]. 地球物理学报, 55(2): 538-546.
    [63] 邱泽华, 2017. 钻孔应变观测理论和应用[M]. 北京: 地震出版社: 1-407.
    [64] 邱泽华, 唐磊, 赵树贤, 等, 2020. 用应变地震观测求解震源矩张量的基本原理[J]. 地球物理学报, 63(2): 551-561. doi: 10.6038/cjg2020M0609
    [65] 全建军, 赖见深, 陈珊桦, 等, 2021. 小陶地震台钻孔体应变仪观测质量与映震能力分析[J]. 华南地震, 41(1): 26-33. doi: 10.13512/j.hndz.2021.01.04
    [66] 上垣内修, 1987. 体積歪, 傾斜デ-タに対する気圧の影響の補正に関する物理的考察[J]. 験震時報, 50: 41-49.
    [67] 苏恺之, 1982. 液位型体积式应变仪的工作原理[J]. 地震科学研究(4): 57-62.
    [68] 苏恺之, 刘瑞民, 裴玉珍, 1993. 中国的三种体积式应变仪[J]. 内陆地震, 7(2): 151-157.
    [69] 苏恺之, 李秀环, 张钧, 等, 2003a. TJ-2型体应变仪的研制[J]. 地壳构造与地壳应力文集, (15)113-121.
    [70] 苏恺之, 李海亮, 张钧, 等, 2003b. 钻孔地应变观测新进展[M]. 北京: 地震出版社.
    [71] 孙艺玫, 查楠, 任雪, 等, 2021. 钻孔体应变仪在地震前兆观测中的理论和应用研究综述[J]. 防灾减灾学报, 37(4): 69-74. doi: 10.13693/j.cnki.cn21-1573.2021.04.011
    [72] 王连捷, 潘立宙, 廖椿庭, 等, 1991. 地应力测量及其在工程中的应用[M]. 北京: 地质出版社.
    [73] 张凌空, 牛安福, 2008. 中国钻孔体应变仪同震变化观测结果[J]. 国际地震动态(11): 120.
    [74] 张凌空, 王广才, 牛安福, 2011. 周期气压波对地壳应变场观测影响的若干因素分析[J]. 地震学报, 33(3): 351-361. doi: 10.3969/j.issn.0253-3782.2011.03.008
    [75] 张凌空, 牛安福, 2019. 周期气压波对地壳岩石应变测量影响的理论解[J]. 地球物理学进展, 34(4): 1366-1370. doi: 10.6038/pg2019CC0244
    [76] 周龙寿, 邱泽华, 唐磊, 2008. 地壳应变场对气压短周期变化的响应[J]. 地球物理学进展, 23(6): 1717-1726.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  185
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-05-19
  • 录用日期:  2023-05-24

目录

    /

    返回文章
    返回