留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯活动地块边界带第四纪晚期构造活动特征及强震孕育机制

郑文俊 孙鑫 雷启云 龚志康 王银 刘兴旺 李传友 冯子鉴

郑文俊, 孙鑫, 雷启云, 等, 2024. 鄂尔多斯活动地块边界带第四纪晚期构造活动特征及强震孕育机制. 地质力学学报, 30 (2): 206-224. DOI: 10.12090/j.issn.1006-6616.2023154
引用本文: 郑文俊, 孙鑫, 雷启云, 等, 2024. 鄂尔多斯活动地块边界带第四纪晚期构造活动特征及强震孕育机制. 地质力学学报, 30 (2): 206-224. DOI: 10.12090/j.issn.1006-6616.2023154
ZHENG Wenjun, SUN Xin, LEI Qiyun, et al., 2024. Late Quaternary tectonic activity and strong earthquake generation mechanism around the boundary zone of the Ordos active-tectonic block, central China. Journal of Geomechanics, 30 (2): 206-224. DOI: 10.12090/j.issn.1006-6616.2023154
Citation: ZHENG Wenjun, SUN Xin, LEI Qiyun, et al., 2024. Late Quaternary tectonic activity and strong earthquake generation mechanism around the boundary zone of the Ordos active-tectonic block, central China. Journal of Geomechanics, 30 (2): 206-224. DOI: 10.12090/j.issn.1006-6616.2023154

鄂尔多斯活动地块边界带第四纪晚期构造活动特征及强震孕育机制

doi: 10.12090/j.issn.1006-6616.2023154
基金项目: 

国家重点研发计划专项 2017YFC1500100

国家自然科学基金项目 42174062

详细信息
    作者简介:

    郑文俊(1972—),男,教授,主要从事新构造、活动构造、构造地貌与地震危险性方面研究。Email: zhengwenjun@mail.sysu.edu.cn

  • 中图分类号: P546;P315

Late Quaternary tectonic activity and strong earthquake generation mechanism around the boundary zone of the Ordos active-tectonic block, central China

Funds: 

the National Key Research and Development Program of China 2017YFC1500100

the National Natural Science Foundation of China 42174062

  • 摘要: 鄂尔多斯地块是位于中国大陆中心位置的典型活动地块,由于受西南部青藏地块和东部太平洋板块远程作用的影响,地块各边界带构造活动特征和变形具有明显的特殊性和差异性。文章总结了多年来围绕鄂尔多斯活动地块周缘边界带开展的活动断裂定量、地震孕育机制及活动特征等的已有研究结果,对地块周缘断裂活动特征及强震孕育机制进行系统总结。鄂尔多斯活动地块不同边界带断裂第四纪晚期活动特征的不同是强震孕育环境差异的最直接的证据。鄂尔多斯活动地块西边界构造变形样式复杂,受青藏高原向北东挤压扩展的影响,西边界南段断裂以走滑、逆走滑和逆冲为主要特征。而向北到西边界北段,以右旋走滑为主要特征;以青藏高原最新扩展前缘的三关口-牛首山断裂为界,北部的银川盆地表现为典型的断陷盆地,边界断裂有右旋走滑特征,地震活动多以正走滑型为主。北边界的河套盆地以北侧的正断层为其控盆构造,历史和古地震多集中在北侧边界断裂上。南边界的渭河盆地构造特征相对较为复杂,由两组正断层组成,历史大地震多发生在盆地南缘,盆地中北部有中强地震发生。东边界的山西地堑系由多个裂谷型盆地斜列组成,历史大地震表现为南强北弱,北部盆地受张-渤构造带的影响,盆地走向和断层运动性质均发生了明显变化,多具备发生7级左右地震的构造条件。综合认为,断裂活动特征典型的鄂尔多斯活动地块周缘各边界带,未来强震多发生在大地震离逝时间长的地震空区/空段,或是构造带的转换和交汇区。

     

  • 图  1  鄂尔多斯地块及周缘地震构造图(断裂及地震据郑文俊等, 2020, 2022修改)

    F1—狼山山前断裂; F2—色尔滕山山前断裂; F3—乌拉山山前断裂; F4—大青山山前断裂; F5—和林格尔断裂; F6—鄂尔多斯北缘断裂; F7—桌子山西麓断裂; F8—正谊关断裂; F9—巴彦乌拉山山前断裂; F10—贺兰山西麓断裂; F11—贺兰山东麓断裂; F12—黄河断裂; F13—三关口-牛首山断裂; F14—罗山东麓断裂; F15—烟筒山断裂; F16—香山-天景山断裂; F17—海原断裂; F18—六盘山东麓断裂; F19—固关-虢镇断裂; F20—歧山-马召断裂; F21—西秦岭北缘断裂; F22—秦岭北缘断裂; F23—渭河断裂; F24—扶风-三原断裂; F25—口镇-关山断裂; F26—渭南塬前断裂; F27—华山山前断裂; F28—中条山北麓断裂; F29—韩城断裂; F30—罗云山山前断裂; F31—双泉-临猗断裂; F32—峨眉台地北缘断裂; F33—霍山山前断裂; F34—太谷断裂; F35—交城断裂; F36—系舟山北麓断裂; F37—云中山山前断裂; F38—五台山北麓断裂; F39—太白-维山断裂; F40—恒山南麓断裂; F41—恒山北麓断裂; F42—蔚广盆地南缘断裂; F43—口泉断裂; F44—六棱山北麓断裂; F45—阳高-天镇断裂; F46—怀安盆地北缘断裂; F47—张家口断裂; F48—岱海-黄旗海盆地边缘断裂带; F49—集宁盆地北缘断裂; F50—供济堂-商都断裂。图中虚线框标出其他图的范围(图 2a图 4a图 5a)

    Figure  1.  Seismotectonic map of the Ordos active block and its surrounding areas (Faults and earthquakes modified from Zheng et al., 2020, 2022)

    Names of main faults: F1-Langshan frontal fault; F2-Seertengshan frontal fault; F3-Wulashan frontal fault; F4-Daqingshan frontal fault; F5-Helinge fault; F6-Northern margin fault of Ordos; F7-Western piedmont fault of Zhuozishan; F8-Zhengyiguan fault; F9-Bayanwula frontal fault; F10-Western piedmont fault of Helanshan; F11-Eastern piedmont fault of Helanshan; F12-Huanghe fault; F13-Sanguankou-Niushoushan fault; F14-Eastern piedmont fault of Luoshan; F15-Yantoushan fault; F16-Xiangshan-Tianjingshan fault; F17-Haiyuan fault; F18-Eastern piedmont fault of Liupanshan; F19-Guguan-Guozhen fault; F20-Qishan-Mazhao fault; F21- Northern margin fault of Western Qinling Mountains; F22-Northern margin fault of Qinling Mountains; F23-Weihe fault; F24-Fufeng- Sanyuan fault; F25-Kouzhen-Guanshan fault; F26-Weinan fault; F27-Huashan frontal fault; F28-Northern piedmont fault of Zhongtiaoshan; F29-Hancheng fault; F30-Luoyunshan frontal fault; F31-Shuangquan-Linyi fault; F32-Northern margin fault of Emei Platform; F33-Huoshan frontal fault; F34-Taigu fault; F35-Jiaocheng fault; F36-Northern piedmont fault of Xizhoushan; F37-Yunzhongshan frontal fault; F38-Northern piedmont fault of Wutaishan; F39-Taibai-Weishan fault; F40-Southern piedmont fault of Hengshan; F41-Northern piedmont fault of Hengshan; F42-Southern margin fault of Weiguang Basin; F43-Kouquan fault; F44-Northern piedmont fault of Liulengshan; F45-Yanggao-Tianzhen fault; F46-Northern margin fault of Huai′an Basin; F47-Zhangjiakou fault; F48-Margin fault belt of Daihai-Huangqihai Basin; F49-Northern margin fault of Jining Basin; F50-Gongjitang-Shangdu fault. Dashed boxes in the figure outline the scope of other figures (Figures 2a, 4a, and 5a)

    图  2  鄂尔多斯活动地块北缘断裂展布与断裂活动特征

    红色箭头指示断裂经过的位置;T2—T5指示不同期的洪积台地
    F51—磴口-本井断裂; F52—五原-杭锦后旗断裂; F53—乌拉山北缘断裂; F1—F8名称与图 1相同
    a—鄂尔多斯活动地块北缘地貌特征及断裂分布(据邓起东等,1999修改);b—狼山山前断裂基岩断层面; c—沿色尔腾山山前断裂的多级洪积地貌断错; d—乌拉山山前断裂基岩断面及断错地貌特征; e—大青山山前洪积台面地断错

    Figure  2.  Distribution of faults and fault activity characteristics on the northern margin of the Ordos active block

    (a) Geomorphological characteristics and distribution of faults on the northern margin of the Ordos active block (modified from Deng et al., 1999); The fault names in the figure are F1-F8, which are the same as in Fig. 1. Other fault names are as follows: F51-Dengkou-Benjing fault; F52-Wuyuan-Hangjinhouqi fault; F53-Northern margin fault of Wulashan; (b) Bedrock fault plane of the Langshan frontal fault; (c) Multi-stage alluvial geomorphic faulting along the Sertengshan frontal fault; (d) Bedrock fault plane and fault topography of the Wulashan frontal fault; (e)Offset of the alluvial platform of the Daqingshan.
    The red arrows indicate the location of the faults; T2-T5 indicate the alluvial terrace in different periods

    图  3  鄂尔多斯活动地块西北缘正谊关断裂运动特征

    a—断裂沿线不同级冲沟左旋断错(蓝色线标出了水系及流向,红色单侧箭头指示的运动方向,白色数字表示冲沟的左旋位错值); b—冲沟及阶地左旋位错(蓝色线标出了水系及流向,白线虚线标出了阶地边界,红色单侧箭头指示的运动方向,数字表示冲沟或阶地边缘左旋位错值); c—冲沟位错和地貌陡坎(红色箭头标出断裂及陡坎延伸位置,蓝色线标出了水系及流向,数字表示冲沟或阶地边缘左旋位错值); d—断层剖面,显示明显有逆冲特征(箭头标示断层陡坎位置,T2为冲阶沟阶地面)

    Figure  3.  Movement characteristics of the Zhengyiguan fault on the northwestern margin of the Ordos active block

    (a) Sinistral dislocations of gullies of different level along the fault, with blue lines indicating the water system and flow direction, red single-sided arrows indicating the direction of movement, and white numbers indicating the the value of sinistral dislocations; (b) Sinistral dislocations of gullies and terraces, with blue lines indicating the water system and flow direction, white dashed lines indicating the boundaries of the terraces, red single-sided arrows indicating the direction of movement, and numbers indicating the sinistral dislocation values of the gullies or terrace edges; (c) Gully dislocations and fault scarp, with red arrows indicating the extension positions of the fault and scarp, blue lines indicating the water system and flow direction, and numbers indicating the sinistral dislocation values of the gullies or terrace edges; (d) Fault profile showing obvious thrust characteristics, with arrows indicating the location of fault scarp, and T2 represents the gully terrace

    图  4  鄂尔多斯活动地块东缘山西地堑系断层与盆地展布

    红色箭头指示断层位置;单侧红箭头指示断层运动方向
    F54—岱海盆地北缘断裂; F55—阳原盆地北缘断裂; F56—怀安盆地南缘断裂; F57—怀仁断裂; F58—离石断裂; F59—中条山南麓断裂; F60—铁炉子断裂;F27—F50名称同图 1
    a—山西地堑系断裂与盆地展布; b—口泉断裂南段黄土台塬断层貌; c—恒山北麓断裂北东段断层剖面(Q3表示晚更新世沉积,Q4表示全新世沉积);d—峨眉台地北缘断裂断错地貌特征(T1~T3为冲沟阶地); e—中条山北麓断裂盐池一带断错地貌特征

    Figure  4.  Distribution of faults and basins in the Shanxi graben system on the eastern margin of the Ordos active block

    (a) Distribution of faults and basins in the Shanxi graben system (The fault names of F27-F50 are the same as in Fig. 1; F54-Northern margin fault of Daihai Basin; F55-Northern margin fault of Yangyuan Basin; F56-Southern margin fault of Huai' an Basin; F57-Huairen fault; F58-Lishi fault; F59-Southern piedmont fault of Zhongtiaoshan; F60-Tieluzi fault); (b) The fault landforms on the southern segment of the Kouquan fault; (c) Fault profile of the northeastern of the Hengshan northern piedmont fault (Q3 represents Late Pleistocene deposits, Q4 represents Holocene deposits); (d)The geomorphological characteristics of the northern margin fault of the Emei platform (T1-T3 indicate the gully terraces); (e) The tectonic geomorphology of the Yanchi area along the northern piedmont fault of Zhongtiaoshan
    Red arrows indicate the fault locations; single-sided red arrows indicate the direction of fault movement

    图  5  集宁盆地北缘断裂的展布及地貌特征

    a—集宁盆地北缘卫星影像及断裂解译;b—胜利房子断层剖面(红色箭头指示断层面的位置;Q3指示晚更新世沉积;Q4指示全新世沉积);c—集宁机场北断层陡坎及高度(T3—T5指示不同期洪积台地面; 红色箭头指示断陡坎位置,数字表示所在位陡坎高度)

    Figure  5.  Fault distribution and geomorphic characteristics of the northern margin of the Jining basin

    (a) Satellite image features and interpretation of fault distribution on the northern edge of the Jining basin; (b) Fault profile at the Shenglifangzi village (Red arrows indicate the location of the fault plane, Q3 indicates Late Pleistocene sedimentation, and Q4 indicates Holocene sedimentation; (c) Fault scarp with height at the north of the Jining airport (T3-T5 indicate the surfaces of the alluvial platform in different periods, red arrows indicate the locations of fault scarps, and numbers indicate the heights of fault scarps)

    图  6  鄂尔多斯活动地块及周缘构造变形及强震孕震机制模式

    断层及盆地据国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988郑文俊等, 2020, 2022修改;地块运动及变形方向据Hao et al., 2021Luo et al,2021修改

    Figure  6.  Tectonic deformation and strong earthquake generation mechanism model of the Ordos active-tectonic block and its surrounding areas

    The distribution of faults and basins are modified from RGOSSB, 1988; Zheng et al, 2020; 2022. The movement and deformation direction of the active-tectonic block are modified from Hao et al., 2021 and Luo et al., 2021

  • BAO G D, CHEN H, HU J M, et al., 2019. Quaternary activity and segmentation of the yellow river fault of the eastern margin of Yinchuan graben[J]. Acta Geoscientica Sinica, 40(4): 614-628. (in Chinese with English abstract)
    CHAI C Z, LIAO Y H, ZHANG W X, et al., 2001. Late Quaternary paleoearthquakes and their rupture features along the Lingwu fault[J]. Seismology and Geology, 23(1): 15-23. (in Chinese with English abstract)
    CHEN L C, 2002. Paleoearthquakes, the law of strong earthquake recurrence and potential sites for the occuurrence of future strong earthquakes in the Hatao fault-depression zone[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    CHEN Y F, CHEN J H, GUO B, et al., 2022. Seismic structure and deformation features beneath the Yinchuan-Hetao graben, NW China[J]. Physics of the Earth and Planetary Interiors, 329-330: 106911.
    DENG Q D, YOU H C, 1985. Fault scarps research and earthquake risk estimation: Example in eastern Helanshan fault scarps[J]. Northwestern Seismological Journal, 7(1): 29-38. (in Chinese with English abstract)
    DENG Q D, LIAO Y H, 1996. Paleoseismology along the range-front fault of Helan Mountains, North Central China[J]. Journal of Geophysical Research: Solid Earth, 101(B3): 5873-5893. doi: 10.1029/95JB01814
    DENG Q D, CHENG S P, MIN W, et al., 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block[J]. Journal of Geomechanics, 5(3): 13-21. (in Chinese with English abstract)
    DENG Q D, ZHANG P Z, RAN Y K, et al., 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66-73. (in Chinese with English abstract)
    DONG S P, ZHANG P Z, ZHENG W J, et al., 2018. Paleoseismic observations along the Langshan range-front fault, Hetao Basin, China: Tectonic and seismic implications[J]. Tectonophysics, 730: 63-80. doi: 10.1016/j.tecto.2018.02.012
    DOU S Q, YU S E, LIU G X, et al., 1995. Geometric structure and activity of the Xizhoushan Mountain piedmont fault in Shanxi Province[M]//Insitute of Geology, SSB. Research on active fault (4). Beijing: Seismological Press: 104-115. (in Chinese with English abstract)
    DU J J, MA Y S, LI D P, 2017. Activity of main faults since the Late Pleistocene and related geohazard effects in southeast of Weihe Basin[J]. Acta Geoscientica Sinica, 38(S1): 55-58. (in Chinese with English abstract)
    FENG XJ, MA J, ZHOU Y, et al., 2020. Geomorphology and paleoseismology of the Weinan fault, Shaanxi, Central China, and the source of the 1556 Huaxian earthquake[J]. Journal of Geophysical Research: Solid Earth, 125(12): e2019JB017848. doi: 10.1029/2019JB017848
    GAO C, CAO J, LIU S F, et al., 2021. The current surface deformation characteristics of northern margin fault of Yangyuan Basin based on GPS and SBAS-InSAR[J]. Journal of Geodesy and Geodynamics, 41(12): 1288-1293. (in Chinese with English abstract)
    GONG W B, HU J M, WU S J, et al., 2017. Deformation characteristics, timing and significance of the Lang Shan sinistral strike-slip ductile shear zone in Inner Mongolia[J]. Earth Science Frontiers, 24(3): 263-275. (in Chinese with English abstract)
    GU G X, 1983. Catalogue of China earthquake(1831BC-1969AD)[M]. Beijing: Science Press. (in Chinese)
    HAO M, WANG Q L, ZHANG P Z, et al., 2021. "Frame wobbling" causing crustal deformation around the Ordos block[J]. Geophysical Research Letters, 48(1): e2020GL091008. doi: 10.1029/2020GL091008
    HE C Q, CHENG Y L, RAO G, et al., 2018. Geomorphological signatures of the evolution of active normal faults along the Langshan Mountains, North China[J]. Geodinamica Acta, 30(1): 163-182. doi: 10.1080/09853111.2018.1458935
    HU G R, LI Z H, YAN X B, et al., 2017. The study of Late Quaternary activity of Hancheng fault[J]. Seismology and Geology, 39(1): 206-217. (in Chinese with English abstract)
    HU Y X, WANG Q L, CUI D X, et al., 2008. Analysis on activity of Kouzhen-Guanshan fault in Jingyang Based on deformation profile data[J]. Journal of Catastrophology, 23(S1): 62-65. (in Chinese with English abstract)
    HU Y X, HAO M, SONG S W, et al., 2018. Present crustal motion in three-dimensional orientations and fault activities in Weihe Basin[J]. Journal of Geodesy and Geodynamics, 38(12): 1220-1226. (in Chinese with English abstract)
    Institute of Geology, State Seismological Bureau, Seismological Bureau of Ningxia Hui Automous Province, 1990. Haiyuan active fault[M]. Beijing: Seismological Press. (in Chinese with English abstract)
    JIANG W L, XIAO Z M, XIE X S, 2000. Segmentations of active normal dip-slip faults around Ordos block according to their surface ruptures in historical strong earthquakes[J]. Acta Seismologica Sinica, 22(5): 517-526. (in Chinese with English abstract)
    JIANG W L, GUO H, XIE X S, et al., 2017. Distribution map of Jiaocheng active fault zones in Shanxi (1 ∶ 50000)[M]. Beijing: Seismological Press. (in Chinese)
    LEI Q Y, CHAI C Z, ZHENG W J, et al., 2014. Activity and slip rate of the northern section of Yellow River fault revealed by drilling[J]. Seismology and Geology, 36(2): 464-477. (in Chinese with English abstract)
    LEI Q Y, ZHANG P Z, ZHENG W J, et al., 2016. Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau[J]. Science China Earth Sciences, 59(5): 1025-1040.
    LEI Q Y, ZHANG P Z, ZHENG W J, et al., 2017. Geological and geomorphic evidence for dextral strike slip of the Helan Shan west-piedmont fault and its tectonic implications[J]. Seismology and Geology, 39(6): 1297-1315. (in Chinese with English abstract)
    LEI Q Y, YU J X, ZHANG P Z, et al., 2022. Tectonic geomorphology and prehistoric earthquakes of the west Helanshan fault, west Ordos, and its implications for regional tectonics and seismic hazard[J]. Tectonophysics, 833: 229375.
    LEI Z S, YUAN D Y, GE W P, et al., 2007. Textual research on the Tianshui M7 earthquake in 734 ad and analysis of its causative structure[J]. Seismology and Geology, 29(1): 51-62. (in Chinese with English abstract)
    LI C Y, 2005. Quantitative studies on major active fault zones in northeastern Qinghai-Tibet Plateau[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    LI C Y, ZHANG P Z, YIN J H, et al., 2009. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau[J]. Tectonics, 28(5): TC5010.
    LI J B, RAN Y K, GUO W S, 2005. Research on the lacustrine strata of the tuoketuo mesa, Hetao Basin, China[J]. Quaternary Sciences, 25(5): 630-639. (in Chinese with English abstract)
    LI X N, ZHANG P Z, ZHENG W J, et al., 2018. Kinematics of Late Quaternary slip along the Qishan-Mazhao fault: Implications for tectonic deformation on the southwestern Ordos, China[J]. Tectonics, 37(9): 2983-3000.
    LI X N, FENG X J, LI X N, et al., 2019. Geological and geomorphological evidence for active faulting of the southern Liupanshan fault zone, NE Tibetan Plateau[J]. Geomorphology, 345: 106849.
    LI Y B, RAN Y K, CHEN L C, et al., 2015. The latest surface rupture events on the major active faults and great historical earthquakes in Hetao fault-depression zone[J]. Seismology and Geology, 37(1): 110-125. (in Chinese with English abstract)
    LI Y G, ZHENG W J, YANG J J, et al., 2022. Early Quaternary tectonic transformation of the Helan Shan: Constraints due to quantitative geomorphology[J]. Frontiers of Earth Science, 10: 825849.
    LI Z H, ZHANG S L, CHEN H, 2017. Experience of two moderate-strong earthquake prediction in southern Shanxi Province[J]. Recent Developments in World Seismology, 12(468): 1-5. (in Chinese with English abstract)
    LIAO Y H, CHAI C Z, ZHANG W X, et al., 2000. The active features and slip rate of Lingwu faults in Late Quaternary[J]. Earthquake Research in China, 16(2): 158-165. (in Chinese with English abstract)
    LIU B J, CHAI C Z, FENG S Y, et al., 2008. Seismic exploration method for buried fault and its up-breakpoint in Quaternary sediment area: An example of Yinchuan buried active fault[J]. Chinese Journal of Geophysics, 51(5): 1475-1483. (in Chinese with English abstract)
    LIU H G, JIA Q C, GONG F, 2022. Late Quaternary activity characteristics of tuoketuo section of the Ordos northern fault[J]. Technology for Earthquake Disaster Prevention, 17(2): 242-251. (in Chinese with English abstract)
    LIU J R, REN Z K, ZHANG H P, et al., 2022a. Slip rates along the Laohushan fault and spatial variation in slip rate along the Haiyuan fault zone[J]. Tectonics, 41(2): e2021TC006992.
    LIU X W, GAO Z M, SHAO Y X, et al., 2022b. Late Pleistocene slip rates on an active normal fault in the northwestern Ordos block, China[J]. Frontiers in Earth Science, 10: 916905.
    LUO Q X, LI C Y, LI X N, et al., 2021. Slip distribution and footwall topography of the Yanggao-Tianzhen fault (northern Shanxi graben): Implications for the along-strike variations in fault activity and regional deformation[J]. Tectonics, 40(11): e2020TC006593.
    LUO Q X, LI C Y, 2022. Evidence of recent activity along the Wulanhada-Gaowusu fault in Ulanqab, Inner Mongolia and its tectonic implications[J]. Quaternary Sciences, 42(4): 967-977. (in Chinese with English abstract)
    MA J, 2019. Surface rupture and its seismogenic faults of 1556 Huaxian M8¼ earthquake[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    MENG X L, YAN F Z, HOU T A, 1993. Main active fault characteristics of Shanxi fault depression zone[M]//MA Z J. Earthquake research and disaster reduction in Linfen, Shanxi. Beijing: Seismological Press: 31-39. (in Chinese)
    MI F S, HAN H Y, JIN J Q, et al., 1993. Nowadays active features of the Kouzhen-Guanshan faults[J]. Journal of Xi' an College of Geology, 15(2): 40-47. (in Chinese with English abstract)
    MIDDLETON T A, WALKER R T, ROOD D H, et al., 2016. The tectonics of the western Ordos Plateau, Ningxia, China: Slip rates on the Luoshan and East Helanshan Faults[J]. Tectonics, 35(11): 2754-2777.
    MIN W, CHAI C Z, WANG P, et al., 1992. Preliminary study on the Holocene active fault features at the eastern piedmont of the Luoshan Mountain[J]. Earthquake Research in China, 8(4): 49-54. (in Chinese with English abstract)
    MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426.
    NIE Z S, WU W M, MA B Q, 2010. Surface rupture of the A. D. 849 earthquake occurred to the east of Baotou City, China, and discussion on its parameters[J]. Acta Seismologica Sinica, 32(1): 94-107. (in Chinese with English abstract)
    PENG H, ZHANG D L, ZHENG W J, et al., 2022. Recurrence and clustering of large earthquakes along the northern boundary of Ordos block: Constraining paleoearthquakes by an improved multiple trench constraining method[J]. Lithosphere, 2022(1): 6823155.
    PENG H, ZHENG W J, DONG S P, et al., 2023. New paleoseismic events reveal decamillenial recurrence time for large earthquakes (M≥7) along the Yuguang graben fault in North China[J]. Tectonophysics, 869: 230135.
    QIN B C, FANG W X, ZHANG J G, et al., 2021. Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe Rift Valley[J]. Journal of Geomechanics, 27(6): 1035-1050. (in Chinese with English abstract)
    RAN Y K, ZHANG P Z, CHEN L C, 2003. Research on the completeness of paleoseismic activity history since Late Quaternary along the Daqingshan piedmont fault in Hetao depression zone, North China[J]. Earth Science Frontiers, 10(S1): 207-216. (in Chinese with English abstract)
    RAO G, LIN A M, YAN B, et al., 2014. Tectonic activity and structural features of active intracontinental normal faults in the Weihe graben, Central China[J]. Tectonophysics, 636: 270-285.
    RAO G, LIN A M, YAN B, 2015. Paleoseismic study on active normal faults in the southeastern Weihe graben, Central China[J]. Journal of Asian Earth Sciences, 114: 212-225.
    RAO G, CHEN P, HU J M, et al., 2016. Timing of Holocene paleo-earthquakes along the Langshan piedmont fault in the western Hetao graben, North China: Implications for seismic risk[J]. Tectonophysics, 677-678: 115-124.
    RAO G, HE C Q, CHENG Y L, et al., 2018. Active normal faulting along the Langshan piedmont fault, North China: Implications for slip partitioning in the western Hetao graben[J]. The Journal of Geology, 126(1): 99-118.
    Shaanxi Earthquake Administration, 1996. Active fault zone on the northern edge of Qinling Mountains[M]. Beijing: Seismological Press. (in Chinese)
    SHI W, DONG S W, HU J M, 2020. Neotectonics around the Ordos block, North China: A review and new insights[J]. Earth-Science Reviews, 200: 102969.
    SI S P, LI Y L, LÜ S H, et al., 2014. Holocene slip rate and paleoearthquake records of the Salt Lake segment of the northern Zhongtiaoshan fault, Shanxi Province[J]. Science China Earth Sciences, 57(9): 2079-2088.
    SONG F M, CAO Z Q, 1994. Preliminary research on the eastern piedmont fault of the Bayanwula Mountain[M]///Insitute of Geology, SSB. Research on Active fault, (3): 202-205. (in Chinese)
    SONG Y G, LAN M W, LIU H F, et al., 2021. Cenozoic stratigraphic correlation and the lower limit of Quaternary in Guanzhong Basin[J]. Bulletin of Geological Science and Technology, 40(2): 24-35. (in Chinese with English abstract)
    SUN C B, XIE X S, XU J H, 2013. Late Quaternary faulted landforms characteristics on the Tumen-Jiazhu village segment of the Luoyunshan piedmont fault[J]. Earthquake Research in China, 29(3): 347-357. (in Chinese with English abstract)
    SUN W, 2018. Late Quaternary activity of Liu-Leng Mountain north fault[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616.
    The Research Group on Active Fault System around Ordos Massif State Seismological Bureau, 1988. The active fault system around Ordos massif[M]. Beijing: Seismological Press. (in Chinese)
    TIAN Q J, WANG L, LI D W, et al., 2017. Distribution map of fault zone along the southern margin of Yuguang basin (1 ∶ 50000) [M]. Beijing: Seismological Press. (in Chinese)
    WANG W T, 2020. Airborne LiDAR and tectonic geomorphology research on fault movement characteristics: A case study of the Huangxianggou section of the northern margin of the western Qinling fault zone[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration. (in Chinese with English abstract)
    WU L J, ZHANG Y L, SHI J S, et al., 2019. Quaternary lithostratigraphic regionalization and sedimentary sequence of Hetao Basin[J]. Journal of Arid Land Resources and Environment, 33(10): 91-101. (in Chinese with English abstract)
    XIANG H F, GUO S M, ZHANG B L, et al., 1998. Active features of the eastern Liupanshan piedmont reverse fault zone since Late Quaternary[J]. Seismology and Geology, 20(4): 321-327. (in Chinese with English abstract)
    XIE F R, JING Z J, ZHANG S M, et al., 2017. Distribution map of Taigu fault(1 ∶ 50000)[M]. Beijing: Seismological Press. (in Chinese)
    XIE X S, JIANG W L, SUN C B, et al., 2008. Comparison study on Holocene paleoseismic activities among multi-trenches along the jiaocheng fault zone, shanxi[J]. Seismology and Geology, 30(2): 412-430. (in Chinese with English abstract)
    XING C Q, WANG Y B, 1991. Research on new activity and paleoearthquakes of Zhengyiguan fault belt[J]. Northwestern Seismological Journal, 13(4): 54-60. (in Chinese with English abstract)
    XU D S, HE Z T, MA B Q, et al., 2022. Vertical slip rates of normal faults constrained by both fault walls: A case study of the hetao fault system in Northern China[J]. Frontiers in Earth Science, 10: 816922.
    XU W, LIU X D, ZHANG S M, 2011. Research of recent Late Quaternary activity in the middle part of Kouquan fault[J]. Earthquake Research in China, 27(4): 386-395. (in Chinese with English abstract)
    XU W, YANG Y Y, YUAN Z D, et al., 2017. Late Quaternary faulted landforms and fault activity of the Huashan piedmont fault[J]. Seismology and Geology, 39(3): 587-604. (in Chinese with English abstract)
    XU W J, GAO M T, REN X M, et al., 2008. Study on seismic activity characteristics in the Ordos block[J]. Earthquake Research in China, 24(4): 388-398. (in Chinese with English abstract)
    XU X W, DENG Q D, YOU H C, 1986. Evidence on dextral dislocation of fault at the western foothills of Mt. Xizhoushan, Shanxi Province and its slip rate during the Holocene[J]. Seismology and Geology, 8(3): 44-46. (in Chinese with English abstract)
    XU X W, DENG Q D, DONG R S, et al., 1992. Study on strong earthquake activity and risk areas in the Shanxi graben system[J]. Seismology and Geology, 14(4): 305-316. (in Chinese with English abstract)
    XU Y R, 2013. A study on the Late Quaternary faulting of the Huoshan piedmont fault zone in the central Shanxi faulted basin belt[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    XU Y R, HE H L, DENG Q D, et al., 2018. The CE 1303 Hongdong earthquake and the Huoshan piedmont fault, Shanxi graben: Implications for magnitude limits of normal fault earthquakes[J]. Journal of Geophysical Research: Solid Earth, 123(4): 3098-3121.
    YAN X B, ZHOU Y S, LI Z H, et al., 2018. A study on the seismogenic structure of Linfen M7 3/4 earthquake in 1695[J]. Seismology and Geology, 40(4): 883-902. (in Chinese with English abstract)
    YANG C Y, LI X N, FENG X J, et al., 2021. The Late Quaternary and present-day activities of the Kouzhen-Guanshan fault on the northern boundary of Weihe graben basin, China[J]. Seismology and Geology, 43(3): 504-520. (in Chinese with English abstract)
    YANG Y Y, GAO Z W, XU W, 2012. Geomorphic expression and response of the activity along the middle section of Huashan front fault in the Late Quaternary period[J]. Technology for Earthquake Disaster Prevention, 7(4): 335-347. (in Chinese with English abstract)
    YIN G M, JIANG Y F, YU G, 2013. The study of the left-lateral displacement on the Xiangshan-Tianjingshan fault in Late Quaternary[J]. Seismology and Geology, 35(3): 472-479. (in Chinese with English abstract)
    YUAN D Y, LEI Z S, GE W P, et al., 2007. A new opinion about the west of Gangu M7.0 earthquake in 143 A. D. in Gansu Province[J]. Northwestern Seismological Journal, 29(1): 58-63. (in Chinese with English abstract)
    YUAN D Y, LEI Z S, WU Z, et al., 2017. Textual research of Longxi earthquake in 47 BC in Gansu Province and analysis of its causative structure[J]. Seismology and Geology, 39(4): 819-836. (in Chinese with English abstract)
    ZHANG H, HE Z T, MA B Q, et al., 2017. The vertical slip rate of the Sertengshan piedmont fault, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 143: 95-108.
    ZHANG P Z, DONG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24.
    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 43(10): 1607-1620. (in Chinese with English abstract)
    ZHANG S M, 2007. A study of Quaternary episodic block faulting in Xinding Basin[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    ZHANG W Q, JIAO D C, CHAI C Z, et al., 2015. Xianjingshan active fault[M]. Beijing: Seismological Press. (in Chinese)
    ZHANG Y P, ZHENG W J, YUAN D Y, et al., 2021. Geometrical imagery and kinematic dissipation of the Late Cenozoic active faults in the west Qinling belt: Implications for the growth of the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 159-177. (in Chinese with English abstract)
    ZHAO B, ZHANG C H, WANG D Z, et al., 2017. Contemporary kinematics of the Ordos block, North China and its adjacent rift systems constrained by dense GPS observations. Journal of Asian Earth Sciences, 135, 257-267.
    ZHAO S L, TAN X B, YU G H, et al., 2016. Late Quaternary activity of the fanshi segment of the northern piedmont fault of the Wutai Mountain[J]. Technology for Earthquake Disaster Prevention, 11(4): 722-735. (in Chinese with English abstract)
    ZHENG W J, ZHANG P Z, HE W G, et al., 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and Late Quaternary slip rates on faults[J]. Tectonophysics, 584: 267-280.
    ZHENG W J, YUAN D Y, ZHANG P Z, et al., 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan Plateau and their implications for understanding northeastward growth of the plateau[J]. Quaternary Sciences, 36(4): 775-788. (in Chinese with English abstract)
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract)
    ZHENG W J, WANG Q L, YUAN D Y, et al., 2020. The concept, review and new insights of the active-tectonic block hypothesis[J]. Seismology and Geology, 42(2): 245-270. (in Chinese with English abstract)
    ZHENG W J, ZHANG Z Q, HAO M, et al., 2022. Physical basis for prediction of continental strong earthquakes: Development and prospect of active tectonic block theory[J]. Chinese Science Bulletin, 67(13): 1352-1361. (in Chinese with English abstract)
    ZHENG W J, PENG H, LIU X W, et al., 2023. Strong earthquake activities around the Ordos active block in past 15000 years and its implications[J/OL]. Chinese Science Bulletin: 1-17(2013-12-29)[2024-01-04]. http://doi.org/10.1360/TB-2023-0767. (in Chinese with English abstract)
    ZHU R X, CHEN L, WU F Y, et al., 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 789-797.
    包国栋, 陈虹, 胡健民, 等, 2019. 银川盆地东缘黄河断裂第四纪活动与分段性研究[J]. 地球学报, 40(4): 614-628. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201904007.htm
    柴炽章, 廖玉华, 张文孝, 等, 2001. 灵武断裂晚第四纪古地震及其破裂特征[J]. 地震地质, 23(1): 15-23. doi: 10.3969/j.issn.0253-4967.2001.01.002
    陈立春, 2002. 河套断陷带的古地震、强震复发规律和未来可能强震地点[D]. 北京: 中国地震局地质研究所.
    邓起东, 尤惠川, 1985. 断层崖研究与地震危险性估计: 以贺兰山东麓断层崖为例[J]. 西北地震学报, 7(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198501004.htm
    邓起东, 程绍平, 闵伟, 等, 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报, 5(3): 13-21. doi: 10.3969/j.issn.1006-6616.1999.03.003
    邓起东, 张培震, 冉勇康, 等, 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1011.htm
    窦素芹, 于慎谔, 刘光勋, 等, 1995. 系舟山山前活动断裂带的几何结构及其活动性[M]//国家地震局地质研究所. 活动断裂研究(4). 北京: 地震出版社: 104-115.
    杜建军, 马寅生, 黎敦朋, 2017. 渭河盆地东南缘主要断裂晚更新世以来的活动性及灾害效应[J]. 地球学报, 38(S1): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB2017S1015.htm
    高晨, 曹筠, 刘书峰, 等, 2021. 基于GPS和SBAS-InSAR的阳原盆地北缘断裂现今地表形变特征[J]. 大地测量与地球动力学, 41(12): 1288-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202112016.htm
    公王斌, 胡健民, 吴素娟, 等, 2017. 内蒙古狼山左行走滑韧性剪切带变形特征、时间及意义[J]. 地学前缘, 24(3): 263-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703030.htm
    顾功叙, 1983. 中国地震目录(公元前1831—公元1969年)[M]. 北京: 科学出版社.
    国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社.
    国家地震局地质研究所, 宁夏回族自治区地震局, 1990. 海原活动断裂带[M]. 北京: 地震出版社.
    扈桂让, 李自红, 闫小兵, 等, 2017. 韩城断裂晚第四纪活动性研究[J]. 地震地质, 39(1): 206-217. doi: 10.3969/j.issn.0253-4967.2017.01.016
    胡亚轩, 王庆良, 崔笃信, 等, 2008. 根据断层形变剖面资料分析泾阳口镇-关山断裂活动状况[J]. 灾害学, 23(S1): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2008S1016.htm
    胡亚轩, 郝明, 宋尚武, 等, 2018. 渭河盆地现今三维地壳运动及断裂活动性研究[J]. 大地测量与地球动力学, 38(12): 1220-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201812002.htm
    江娃利, 肖振敏, 谢新生, 2000. 鄂尔多斯块体周边正倾滑活动断裂历史强震地表破裂分段[J]. 地震学报, 22(5): 517-526. doi: 10.3321/j.issn:0253-3782.2000.05.009
    江娃利, 郭慧, 谢新生, 等, 2017. 山西交城活动断裂带分布图(1 ∶ 50000)说明书[M]. 北京: 地震出版社.
    雷启云, 柴炽章, 郑文俊, 等, 2014. 钻探揭示的黄河断裂北段活动性和滑动速率[J]. 地震地质, 36(2): 464-477. doi: 10.3969/j.issn.0253-4967.2014.02.015
    雷启云, 张培震, 郑文俊, 等, 2016. 青藏高原东北缘三关口-牛首山断裂的右旋走滑与弧形构造带扩展[J]. 中国科学: 地球科学, 46(5): 691-705. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201605007.htm
    雷启云, 张培震, 郑文俊, 等, 2017. 贺兰山西麓断裂右旋走滑的地质地貌证据及其构造意义[J]. 地震地质, 39(6): 1297-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201706014.htm
    雷中生, 袁道阳, 葛伟鹏, 等, 2007.734年天水7级地震考证与发震构造分析[J]. 地震地质, 29(1): 51-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200701004.htm
    李传友, 2005. 青藏高原东北部几条主要断裂带的定量研究[D]. 北京: 中国地震局地质研究所.
    李建彪, 冉勇康, 郭文生, 2005. 河套盆地托克托台地湖相层研究[J]. 第四纪研究, 25(5): 630-639. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200505011.htm
    李彦宝, 冉勇康, 陈立春, 等, 2015. 河套断陷带主要活动断裂最新地表破裂事件与历史大地震[J]. 地震地质, 37(1): 110-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201501009.htm
    李自红, 张淑亮, 陈慧, 2017. 山西南部两次中等地震预测回顾与讨论[J]. 国际地震动态, 12(468): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201712001.htm
    廖玉华, 柴炽章, 张文孝, 等, 2000. 灵武断裂晚第四纪活动特征及位移速率[J]. 中国地震, 16(2): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200002007.htm
    刘保金, 柴炽章, 酆少英, 等, 2008. 第四纪沉积区断层及其上断点探测的地震方法技术: 以银川隐伏活动断层为例[J]. 地球物理学报, 51(5): 1475-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805022.htm
    刘华国, 贾启超, 龚飞, 2022. 鄂尔多斯北缘断裂托克托段晚第四纪活动特征[J]. 震灾防御技术, 17(2): 242-251. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202202005.htm
    罗全星, 李传友, 2022. 内蒙古乌兰哈达-高勿素断裂的新活动证据及构造意义初探[J]. 第四纪研究, 42(4): 967-977. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202204005.htm
    马冀, 2019.1556年华县M 8¼级地震地表破裂与发震构造[D]. 北京: 中国地震局地质研究所.
    孟宪梁, 闫风忠, 侯庭爱, 1993. 山西断陷带主要活动断裂特征[M]//马宗晋. 山西临汾地震研究与系统减灾. 北京: 地震出版社: 31-39.
    米丰收, 韩恒悦, 靳金泉, 等, 1993. 口镇—关山断裂的现今活动特征[J]. 西安地质学院学报, 15(2): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX199302007.htm
    闵伟, 柴炽章, 王萍, 等, 1992. 罗山东麓断裂全新世活动特征的初步研究[J]. 中国地震, 8(4): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199204006.htm
    聂宗笙, 吴卫民, 马保起, 2010. 公元849年内蒙古包头东地震地表破裂带及地震参数讨论[J]. 地震学报, 32(1): 94-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201001012.htm
    秦帮策, 方维萱, 张建国, 等, 2021. 汾河裂谷晋中盆地内第四纪沉积序列与沉积环境恢复[J]. 地质力学学报, 27(6): 1035-1050. doi: 10.12090/j.issn.1006-6616.2021.27.06.084
    冉勇康, 张培震, 陈立春, 2003. 河套断陷带大青山山前断裂晚第四纪古地震完整性研究[J]. 地学前缘, 10(S1): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1028.htm
    陕西省地震局, 1996. 秦岭北缘活动断裂带[M]. 北京: 地震出版社.
    司苏沛, 李有利, 吕胜华, 等, 2014. 山西中条山北麓断裂盐池段全新世古地震事件和滑动速率研究[J]. 中国科学: 地球科学, 44(9): 1958-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409008.htm
    宋方敏, 曹忠权, 1994. 巴彦乌拉山东麓断裂的初步研究[M]//国家地震局地质研究所. 活动断裂研究理论与应用(3). 202-205.
    宋友桂, 兰敏文, 刘慧芳, 等, 2021. 关中盆地新生界地层划分对比与第四纪下限[J]. 地质科技通报, 40(2): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202102004.htm
    孙昌斌, 谢新生, 许建红, 2013. 罗云山山前断裂中段土门-贾朱村晚第四纪断错地貌特征[J]. 中国地震, 29(3): 347-357. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201303006.htm
    孙稳, 2018. 六棱山北麓断裂晚第四纪活动性[D]. 北京: 中国地震局地质研究所.
    田勤俭, 王林, 李德文, 等, 2017. 蔚广盆地南缘断裂带分布图(1 ∶ 50000)说明书[M]. 北京: 地震出版社.
    王维桐, 2020. 机载LiDAR和构造地貌方法对断裂运动特征研究: 以西秦岭北缘断裂黄香沟段为例[D]. 兰州: 中国地震局兰州地震研究所.
    吴利杰, 张翼龙, 石建省, 等, 2019. 河套盆地第四纪岩石地层区划及沉积序列[J]. 干旱区资源与环境, 33(10): 91-101. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201910015.htm
    向宏发, 虢顺民, 张秉良, 等, 1998. 六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征[J]. 地震地质, 20(4): 321-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ804.004.htm
    谢富仁, 荆振杰, 张世民, 等, 2017. 太谷断裂带分布图(1 ∶ 50000)说明书[M]. 北京: 地震出版社.
    谢新生, 江娃利, 孙昌斌, 等, 2008. 山西交城断裂带多个大探槽全新世古地震活动对比研究[J]. 地震地质, 30(2): 412-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200802008.htm
    邢成起, 王彦宾, 1991. 正谊关断裂带的新活动与古地震研究[J]. 西北地震学报, 13(4): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ199104007.htm
    徐伟, 刘旭东, 张世民, 2011. 口泉断裂中段晚第四纪最新活动研究[J]. 中国地震, 27(4): 386-395. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201104007.htm
    徐伟, 杨源源, 袁兆德, 等, 2017. 华山山前断裂断错地貌及晚第四纪活动性[J]. 地震地质, 39(3): 587-604. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201703011.htm
    徐伟进, 高孟潭, 任雪梅, 等, 2008. 鄂尔多斯地块区内地震活动特征的初步研究[J]. 中国地震, 24(4): 388-398. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200804009.htm
    徐锡伟, 邓起东, 尤惠川, 1986. 山西系舟山西麓断裂右旋错动证据及全新世滑动速率[J]. 地震地质, 8(3): 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198603006.htm
    徐锡伟, 邓起东, 董瑞树, 等, 1992. 山西地堑系强震的活动规律和危险区段的研究[J]. 地震地质, 14(4): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199204003.htm
    徐岳仁, 2013. 山西霍山山前断裂带晚第四纪活动特征研究[D]. 北京: 中国地震局地质研究所.
    闫小兵, 周永胜, 李自红, 等, 2018.1695年临汾7 3/4级地震发震构造研究[J]. 地震地质, 40(4): 883-902. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201804013.htm
    杨晨艺, 李晓妮, 冯希杰, 等, 2021. 渭河盆地北缘口镇-关山断层的晚第四纪—现今的活动性[J]. 地震地质, 43(3): 504-520. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202103003.htm
    杨源源, 高战武, 徐伟, 2012. 华山山前断裂中段晚第四纪活动的地貌表现及响应[J]. 震灾防御技术, 7(4): 335-347. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201204003.htm
    尹功明, 江亚风, 俞岗, 等, 2013. 晚第四纪以来香山-天景山断裂左旋走滑量研究[J]. 地震地质, 35(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201303002.htm
    袁道阳, 雷中生, 葛伟鹏, 等, 2007. 对143年甘谷西7级地震史料的新见解[J]. 西北地震学报, 29(1): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200701011.htm
    袁道阳, 雷中生, 吴赵, 等, 2017. 公元前47年甘肃陇西地震考证与发震构造分析[J]. 地震地质, 39(4): 819-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201704015.htm
    张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407000.htm
    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm
    张世民, 2007. 忻定盆地第四纪断块活动分期研究[D]. 北京: 中国地震局地质研究所.
    张维歧, 焦德成, 柴炽章, 等, 2015. 天景山活动断裂带[M]. 北京: 地震出版社.
    张逸鹏, 郑文俊, 袁道阳, 等, 2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制[J]. 地质力学学报, 27(2): 159-177. doi: 10.12090/j.issn.1006-6616.2021.27.02.017
    赵仕亮, 谭锡斌, 于贵华, 等, 2016. 五台山北麓断裂繁峙段晚第四纪活动性研究[J]. 震灾防御技术, 11(4): 722-735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201604003.htm
    郑文俊, 袁道阳, 张培震, 等, 2016. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究, 36(4): 775-788. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201604001.htm
    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. doi: 10.12090/j.issn.1006-6616.2019.25.05.062
    郑文俊, 王庆良, 袁道阳, 等, 2020. 活动地块假说理论框架的提出、发展及未来需关注的科学问题[J]. 地震地质, 42(2): 245-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202002002.htm
    郑文俊, 张竹琪, 郝明, 等, 2022. 强震孕育发生的大陆活动地块理论未来发展与强震预测探索[J]. 科学通报, 67(13): 1352-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202213002.htm
    郑文俊, 彭慧, 刘兴旺, 等, 2023.鄂尔多斯活动地块边界带15000年以来强震活动与现今大地震空区[J/OL].科学通报: 1-17 (2023-12-29)[2024-01-04]. https://doi.org/10.1360/TB-2023-0767.
    朱日祥, 陈凌, 吴福元, 等, 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学: 地球科学, 41(5): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm
  • 加载中
图(6)
计量
  • 文章访问数:  510
  • HTML全文浏览量:  106
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-12-20
  • 录用日期:  2024-01-04
  • 预出版日期:  2024-01-05
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回