Characteristics of life-cycle stages and reservoir control in the development of extensional faults in the Dongying Sag
-
摘要: 断层从无到有的形成过程具有隐性、显性等多个演化阶段,而断层由隐性阶段的胚胎期到显性阶段末期的老年期等各个成长阶段的判别难度很大。针对这一问题,以渤海湾盆地东营凹陷为研究对象,应用物理模拟、数值模拟等方法重现控盆边界断层−陈南断层胚胎期到老年期的全生命阶段演化过程及各阶段的固有特征;在此基础上,定性、定量判识东营凹陷主要断层的相对年龄(Relative Age,RA)以及各年龄阶段的断层活动方式,建立其控藏模式。研究结果表明:东营凹陷张扭性断层可以划分为胚胎期(0<RA≤1,微裂缝或诱导裂缝带)、幼年期(1<RA≤2,断层核形成、裂面断续相连)、青年期(2<RA≤3,板状主断面贯通、清晰断距)、壮年期(3<RA≤4,断层核两侧破碎带形成、板状−铲式断面)、老年期(4<RA≤5,坡坪式断面、派生构造复杂)和消亡期(5<RA≤6,断层停止活动或者发生反转)6个阶段;断层的活动方式与断层年龄的持续时间和活动强度有着密切的关系,稳定、持续、高强度的断层活动方式有利于断层向老年期发展。断层控藏作用研究表明:胚胎期、幼年期断层主要控制油气圈闭,青年期断层主要控制砂体和储层分布,壮年期、老年期断层控制着烃源岩的总体展布范围以及油气的运移、聚集和逸散等过程。结合优势控藏要素、油气富集程度和油气聚集规模等因素进行断层控藏能力评价,陈南断层控藏能力等级为“强”。从断层生命发育演化阶段重新认识断层的控藏能力,将有力地推动和提升断层控藏的理论研究与成熟探区的勘探水平。Abstract:
Objective Faults are among the most prevalent geological structures in oil and gas basins. Because of their significant connection to oil and gas resources, they have consistently attracted the attention of experts and scholars in the field, making them a hot research topic. Although previous researchers delved tirelessly into the correlation between faults, oil, and gas, new theoretical breakthroughs have been steadily emerging and have been used to promote advancements in oil and gas exploration. Nonetheless, there continues to be a dearth of thorough investigations into the underlying links between faults and the formation and distribution of oil and gas reservoirs, as well as methods for comprehensively and quantitatively defining the connections between faults and oil and gas. Methods The formation of a fault from inception encompasses multiple stages of development, including implicit and explicit stages, and differentiating the diverse growth stages of a fault, ranging from the initial embryonic stage to the terminal stage, poses a significant challenge. To address this issue, the Dongying Sag in the Bohai Bay Basin was selected as the focal point of this study. By employing physical and numerical simulation techniques, the researchers sought to replicate the entire life cycle evolution of the Chennan Fault, a basin-controlling boundary fault, from its embryonic stage to its terminal stage while elucidating the distinct characteristics of each stage. Building upon this foundation, the relative ages of the primary faults in the Dongying Depression and the various modes of fault activity at different stages were qualitatively and quantitatively determined, leading to the establishment of a reservoir-control model. Results The research findings indicate that normal faults tend to grow in six distinct stages: the embryonic stage (0 < RA (relative age) ≤ 1), characterized by microfractures or induced fracture zones; juvenile stage (1 < RA ≤ 2), with an intermittent connection of fault geometry; mature stage (2 < RA ≤ 3), marked by the connection of plate-like fault geometry and clear fault throw; declining stage (3 < RA ≤ 4), in which induced fracture zones form on both sides of the fault core, resulting in a shovel-like fault geometry; terminal stage (4 < RA ≤ 5), ramp-flat fault geometry, which has complex derived structures; and death stage (5 < RA ≤ 6), in which fault movement stops or undergoes inversion. The activity pattern of a fault is intricately linked to the duration and intensity of its age. Stable continuous, and high-intensity fault activity promotes the evolution of faults into their terminal stage. Research on reservoir control traps indicates that faults can create reservoirs at all stages of their development. However, as faults age, their ability to control reservoir formation strengthens. The types of traps influenced by faults transition from individual, isolated structures to a variety of arrangements. Moreover, the diversity of oil and gas reservoirs evolves from singular to multifaceted, and the size of these reservoirs expands from small to large. The embryonic and juvenile stage faults primarily influence closure; the mature stage faults predominantly impact sand and reservoir; and the declining stage and terminal stage faults primarily govern the overall distribution range of source rocks, as well as the migration, accumulation, and dissipation of oil and gas. Conclusion The reservoir control potential of the Chennan Fault was assessed by considering factors such as reservoir control advantages, the degree of oil and gas enrichment, and the scale of oil and gas accumulation. The reservoir control capacity of the Chennan Fault was classified as “strong.” Reevaluation of the fault’s reservoir control potential from the perspective of its developmental and evolutionary stages significantly enhances and elevates theoretical research on fault reservoir control and also advances exploration efforts in established mature areas. [Significance] Identifying the formation age and evolutionary patterns of extensional faults has immense theoretical and practical importance for comprehending alterations in the fault’s reservoir control capabilities. Moreover, it offers crucial guidance for oil and gas exploration, particularly for enhancing the reserves in existing exploration areas. -
江汉一洞庭盆地是中南地区规模最大的第四纪盆地,以中部的华容隆起为界分为江汉盆地(北)和洞庭盆地(南)两部分。对洞庭盆地第四纪地质的调查由来已久①②③④,在第四纪沉积[1]、环境特征与演化过程[2~9]、构造活动特征[10~17]等方面取得大量成果认识。不过上述工作一般是关于第四纪洞庭盆地的整体性与概略性研究,很少涉及其内部不同构造单元的细节特征,因而也未充分揭示出洞庭盆地构造活动与沉积作用的横向差异。此外,受工作程度与认识角度的限制,对有关洞庭盆地第四纪地质问题,尤其是对构造性质与构造活动特征的认识尚存在一定分歧。如在第四纪洞庭盆地的构造属性方面,景存义[2]认为现今洞庭湖盆为断陷作用所致;杨达源[4]认为洞庭湖盆地第四纪为坳陷盆地;梁杏等[14]、皮建高等[6]认为早、中更新世为盆地的断陷阶段,晚更新世以来进入坳陷阶段。再如在近代洞庭湖演变成因方面,有人认为构造沉降是控制近代洞庭湖演变的关键因素[14~16],有人则认为泥沙淤积才是控制近代洞庭湖演变的主要因素[12]。总之,洞庭盆地第四纪地质尚待进一步深入研究。
① 周国棋,刘月朗.洞庭湖及外围地区的第四纪地层与新构造运动,1978.
② 陈发禅.洞庭湖第四纪地质,1981.
③ 张国梁,等.湖南省洞庭盆地第四纪地质研究报告,1990.
④ 湖南省地质研究所.洞庭湖区地质构造及湖泊形成演化历史,1998.
笔者近年来在该地区进行的1:25万区域地质调查表明,洞庭盆地及周缘地区第四纪构造活动与沉积作用存在较明显的横向差异和空间迁移①。因此,对不同构造单元或不同地区的第四纪地质特征进行详细解剖,不仅是细化调查区域的现实需要,同时也有助于更全面、更客观地认识洞庭盆地第四纪地质特征及构造活动规律。本文即对盆地东部沅江凹陷东缘鹿角地区的第四纪构造活动与沉积作用进行探讨,为洞庭盆地第四纪地质研究补充新的资料。
① 湖南省地质调查院,1:25万常德市幅区域地质调查报告,1:25万岳阳市幅区域地质调查报告,2009.
1. 区域地质背景
1.1 第四纪洞庭盆地构造格局
第四纪洞庭盆地西、南、东三面分别为武陵隆起、雪峰隆起和幕阜山隆起,北与江汉盆地相邻,其间为华容次级隆起。洞庭盆地内部由若干次级构造单元组成,自北西往南东有澧县凹陷、临澧凹陷、太阳山隆起、安乡凹陷、赤山隆起、沅江凹陷等(图 1)。
图 1 第四纪洞庭盆地构造格局1.前第四纪地层出露区;2.第四纪地层出露区;3.第四纪正断裂,齿向示下降盘;4.构造单元分界线;5.构造单元代号。构造单元名称:U1-武陵隆起;U2-雪峰隆起;U3-幕阜山隆起;4-澧县凹陷;U5-临澧凹陷;U6-太阳山隆起;U7-安乡凹陷;U8-赤山隆起;U9-沅江凹陷;U10-华容隆起;U11-江汉盆地。方框示图 2范围Figure 1. Tectonic framework map of Quaternary Dongting Basin1.2 区域第四纪地层划分
第四纪洞庭盆地及周缘不同地区或不同构造单元地壳沉降或抬升的历史与幅度不同,导致第四纪地层厚度、层序、出露情况等存在显著的横向变化。为此,首先就区域第四纪地层划分情况作简单说明,以便解读文中有关第四纪地层的环境与构造意义。
第四纪期间洞庭盆地各次级凹陷的构造活动总体为沉降,而周缘隆起区总体为抬升,这一构造活动差异使凹陷内部和周缘抬升区的第四纪沉积作用及地层发育状况具显著差异。据此,以前人资料②③④为基础,结合本次调查成果,分别建立了凹陷区(或覆盖区)和抬升区(或露头区)第四纪地层系统①。露头区第四纪地层主要分布于洞庭盆地周缘丘岗、山地,多有天然或人工第四系露头剖面,并常见前第四纪基岩或基座出露;地层厚度一般不大,各时代沉积常组成基座或镶嵌阶地;成因类型以冲积为主,次为残坡积,局部山麓或沟谷发育洪积。覆盖区第四纪地层主要分布于现代湖冲积平原及部分盆缘低缓丘岗区,一般无露头剖面和基岩出露;不同时代地层自下而上叠置,地层厚度较大。露头区与覆盖区第四纪地层的划分对比情况如表 1所示,其中露头区的白水江组、马王堆组、白沙井组、新开铺组和汨罗组区域上分别对应于一、二、三、四和五级阶地(实际上常发育不全)。顺便指出,表 1中地层单位仅涉及分布广泛,沉积厚度相对较大,时代意义明确且能较好反映构造、环境和气候演化的冲、湖积物,未包括残坡积等其它类型(分布于露头区)。
表 1 洞庭盆地及周缘第四纪地层划分对比表Table 1. Subdivision and correlation of the Quaternary strata in Dongting basin and its adjacent areas② 周国棋,刘月朗.洞庭湖及外围地区的第四纪地层与新构造运动,1978.
③ 陈发禅.洞庭湖第四纪地质,1981.
④ 张国梁,等.湖南省洞庭盆地第四纪地质研究报告,1990.
2. 地质地貌概况
研究区地处沅江凹陷东缘北部,构造上自西向东跨沅江凹陷和幕阜山隆起(图 1,图 2)。
图 2 鹿角地区综合地质地貌图1.前第四纪基岩;2.控盆控凹正断裂,齿向示下降盘;3.地质体界线;4.第四纪构造单元分界;5.第四纪沉积等厚线及厚度值;6.河流;7.湖泊水面;8.高程点与高程值/山峰与高程;9.山脊线;10.第四纪地质剖面位置,A-B对应图 3,C-D对应图 5。Qhal-全新世冲积;Qhlal-全新世湖冲积;Qp3bs-晚更新世白水江组;Qp2mw-中更新世马王堆组;Qp2b-中更新世白沙井组;Qp2d-中更新世洞庭湖组;Qp1m-早更新世汨罗组;F1-洪湖一湘阴断裂;F2-荣家湾断裂Figure 2. Geological-geomorphologic sketch map of Lujiao area西部为东洞庭湖水域及全新世冲湖积平原。东部中带为新墙河冲积平原。新墙河冲积平原以北为前第四纪基岩(冷家溪群和南华系一寒武系)出露的丘陵区,海拔高程一般80 ~ 350m,总体自东向西倾斜。山岭主要呈NNW~NW走向,与构造线基本一致。区内发育放射状水系,向西直接入洞庭湖,向南入新墙河(图 2)。新墙河冲积平原以南主要分布早更新世汨罗组以及中更新世洞庭湖组和白沙井组,具丘岗地貌,海拔高程一般50 ~ 90m,总体自东向西缓倾。主要水系呈NWW向,次级水系呈羽状发育。
自西向东发育2条第四纪断裂,即NNE向洪湖一湘阴断裂和近SN向的荣家湾断裂(图 2),其控制了沅江凹陷东缘的断陷活动。
3. 鹿角地区第四纪构造一沉积特征
3.1 控凹正断裂与构造--沉积分带
第四纪洪湖一湘阴断裂和荣家湾断裂的发育与展布主要表现在第四纪沉积物厚度和底板高程的横向变化。根据钻孔资料编绘的第四系等厚线显示,断裂两侧沉积厚度存在突变,且西侧大于东侧(图 2),第四系底板在断裂两侧相应出现显著落差。其中NNE向洪湖一湘阴断裂为一条延长规模很大的区域性第四纪断裂,控制了江汉一洞庭盆地的南东边界[10~11, 13~14]。前人工作未注意到SN向荣家湾断裂的发育,但研究区内该断裂两侧沉积厚度的突变甚至比洪湖一湘阴断裂更为明显,尤其以断裂北段突出。在岳阳县城以北,断裂西侧沉积厚100m以上,但东侧即为前第四纪基岩组成的丘陵山地(图 2)。
以洪湖一湘阴断裂和荣家湾断裂为界,研究区可分为3个第四纪沉积厚度与地层层序存在差异的构造一沉积分带(图 3),以下分别称之为西带(洪湖一湘阴断裂以西)、中带(洪湖一湘阴断裂与荣家湾断裂之间)和东带(荣家湾断裂以东)。具体沉积特征见后述。
图 3 阳罗一黄沙街第四纪地质剖面(剖面位置见图 2中A—B剖面线)1.粘土;2.淤泥;3.网纹红土;4.砂层;5.含砾砂层;6.砂砾层;7.砾石层;8.基座;9.地层单位界线/相变界线;10.钻孔位置及编号。Qhal全新世冲积;Qhlal-全新世湖冲积;Qp3bs-晚更新世白水江组;Qp2mw-中更新世马王堆组;Qp2b-中更新世白沙井组;Qp2d-中更新世洞庭湖组;Qp1m-早更新世汨罗组;F1-洪湖一湘阴断裂;F2-荣家湾断裂Figure 3. Yangluo-Huangshajie Quaternary geological section (location is shown with A-B line in fig.2)3.2 西带第四纪沉积特征
在洪湖一湘阴断裂以西,第四纪沉积层序较全,厚度较大。一般自下而上发育早更新世华田组、汨罗组,中更新世洞庭湖组,晚更新世坡头组和全新世冲湖积层。第四系厚度一般120~230m,且总体自北而南厚度变大。值得指出的是,在北部君山公园有元古宙基岩出露地表,而公园周边则发育厚达130g以上的第四系(图 2),显示君山为一新近纪的风化剥蚀残留古山丘。
该带第四纪沉积岩性特征存在较大横向变化,其中地层层序与岩性组成以沅江县小波镇ZK166孔(图 2中A点西侧)较具代表性。该孔第四系总厚达233.5g,从早至晚地层与岩性组成如下:华田组厚84.0g,自下而上依次为灰白色砂砾石层夹薄层粘土(厚20.1g)、浅黄色粘土层(厚19.4m)、灰白色砂砾层(厚31.0m)、浅黄色粘土层(厚13.0m)。汨罗组厚63.6m,自下而上依次为灰白色砂砾层(厚4.9m)、黄绿一浅灰绿色粘土层(厚7.4m)、灰白色含砾砂层(厚11.1m)、黄绿一浅灰绿色粘土层(厚11.6m)、灰白色砂砾层(厚13.1m)、黄绿一浅灰色粘土层(厚15.5m)。汨罗组总体结构致密,多呈半成岩状,以此特征区别于下伏华田组和上覆洞庭湖组。洞庭湖组厚62.5m,自下而上依次为灰白色砂砾层(厚13.3mm)、黄绿色一浅灰色粘土层(厚19.5m)、灰白色砂砾层(厚29.7m)。坡头组为蓝灰色淤泥层,厚20.5m。全新统为褐黄色粘土,厚3.0m。
从上述岩性特征来看,早更新世华田组和汨罗组由主要为河流相与湖泊相沉积组成,总体反映出过流性湖泊环境,河流相以砾石层、砂层为主,湖相以杂色粘土为主。中更新世洞庭湖组主体为河流相砂、砾沉积,中部发育湖相粘土。晚更新世坡头组及全新统为湖相或漫滩相细粒沉积。
3.3 中带第四纪沉积特征
洪湖一湘阴断裂与荣家湾断裂之间的中带自下而上主要发育汨罗组和洞庭湖组,相对西带第四系厚度较小,缺失早更新世早期华田组(图 3),晚更新世一全新世沉积也少有发育。其岩性组成横向上存在一定变化,以岳阳县大明乡ZK235孔层序较全并具代表性。该孔第四系总厚132.84m,由汨罗组和洞庭湖组组成。汨罗组厚102.84m自下而上依次为灰绿色夹褐黄色粘土(厚25.83m)、灰黄色砂砾层(厚2.0m)、灰绿夹黄褐色粘土(厚37.91m)、浅蓝色夹黄绿色粗砂(厚9.64m)、浅蓝色含砾粘土(厚1.8m)、灰白色夹褐黄色含砾粗砂层(厚25.66m)。洞庭湖组厚30.0m,自下而上依次为灰黄色砂砾层(厚2.68m)、砂层(厚18.92m)、网纹红土(厚8.4m)。
该带洞庭湖组顶部普遍上覆一套粘土层,近地表均因湿热化而成网纹红土。如荣家湾一带见人工开挖剖面(Q42观察点),网纹红土厚14m以上(图 4),自下而上可分为3层:第1层为暗紫红色网纹红土,厚>2m,未见底;网纹为白色,部分浅黄色,蠕虫状,以水平为主。第2层为紫红色网纹红土,厚约8m网纹呈蠕虫状,白一浅黄色,大多呈竖直状或近竖直状。第3层为暗紫红色网纹红土,厚约4m网纹形态紊乱。上述1层、2层、3层之间呈过渡关系,无截然界线。1、2、3层的水平网纹、竖直网纹及紊乱网纹可能分别与地下水的水平运动、垂直下渗及地表水的运动有关[18]。近年来的年代地层学研究在网纹红土的形成时代上认识已渐趋统一[19~22],可以确定中国南方最新一期的网纹红土形成于中更新世中期[23]。因此,大致确定洞庭湖组顶部的粘土层沉积时代为中更新世中期。本次在荣家湾网纹红土剖面中获156 ~ 148Ka的光释光(OSL)年龄(国土资源部青岛海洋地质实验检测中心分层岩性详见正文说明,osl光释光测年测试)(图 4),对应于中更新世晚期,可能受取样等因素影响而年龄值偏小。
值得指出的是,中带汨罗组厚度较西带厚(图 3),可能与近荣家湾断裂地带的强断陷有关。
3.4 东带第四纪沉积及分布特征
在荣家湾断裂以东至前第四纪基岩出露区之间地带(东带)地表主要出露汨罗组和洞庭湖组,北部新墙河两侧发育马王堆组、白沙井组及全新世冲积层(图 2)。汨罗组和洞庭湖组为该带第四纪主体堆积,其厚度显著小于中带沉积(图 3)主要由砂层、砂砾石层组成,洞庭湖组顶部发育粘土(网纹红土)。
受构造活动影响,该带第四纪沉积分布及相关地貌特征较复杂,以下结合晏家山一黄秀林场第四纪地质综合剖面(图 5)给予阐述。
新墙河两邻侧为全新世河流冲积层,地貌上组成0级阶地(T0),地表高程约28m左右。表层为洪泛沉积的粉砂质粘土,往下为砂砾石层。新墙河全新世河流冲积层北面主要为前第四纪基岩组成的山丘(上发育厚度不大的残坡积浮土),局部见冲积砾石层发育。周家冲Q38观察点见一级基座阶地(T1)发育,阶地顶面高程约38m(可能受到后期剥蚀),基座面高程约34m,分别高出0级阶地10m、6m。一级阶地北面山丘均为前第四纪基岩,未见更高级阶地堆积。一级阶地堆积物厚约4m,为灰黄一红黄色砾石层;砾石含量90%以上;砾石成分主要为石英砂岩、岩屑石英砂岩等,可能来源于北面山地的南华纪富禄组;磨圆差,棱角一次棱角状;砾石略具定向,优势产状约为10°∠20°左右,反映自北而南的水流方向。据其特征,应为新墙河北面一级支流的河口冲洪积物。据阶地高程及堆积物特征,可大致确定其为晚更新世白水江组。
新墙河全新世河流冲积层南面与二级阶地(T2)相接,于傅家垸、蔡家岭、邓家加油站等地均见堆积物露头剖面。其中以傅家垸Q44点露头最为清晰完整,人工开挖良好露头剖面清楚揭示出基座阶地之特征(图 6)。基座顶面高程约51m,基座面高程约45m。基座出露高约14m,由白垩纪一古近纪紫红色砾岩所组成。基座上覆第四纪砾石层和砂层,总厚约6.2m,自下而上可分为3层:1层为紫红色砾石层,厚约1.7m。砾石含量约90H,余为砂质基质。砾石成分主要为脉石英和硅质岩,约占70%;次为砂岩,少量板岩。砾径1~10cm为主,个别达20cm; 磨圆较差,次棱角状为主。砾石略具定向,优势产状为70°~90°∠25°左右,反映出自东向西的水流方向。2层为紫红色含砾粗砂层一砂质细砾石层,厚约1.7m。砂粒碎屑成分复杂,主要有石英和长石。所含较大砾石之砾径多为0.5 ~5cm。3层为黄红色砂层,厚约2.8m。总体自下而上变细,即由粗砂→中砂→细砂和粉砂。从沉积物特征来看,显然为新墙河之冲积。据阶地高程及沉积物特征,确定为中更新世马王堆组。
自二级阶地堆积往南,基本为中更新世洞庭湖组覆盖(图 2), 地表多为网纹红土和残坡积浮土所掩。地貌上组成低缓丘岗区,小山丘及其间的沟谷极为发育,丘顶高程一般60 ~ 70m, 部分达90m;总体西面低,东面高。再往南至黄沙林场一带始见早更新世汨罗组发育。从地质路线调查情况来看,地表汨罗组主要为河流相砾石层、砂层,局部见漫滩或湖相(粉砂质)粘土沉积。
剖面线上Q48点于水渠边见汨罗组和洞庭湖组良好剖面露头(图 7)。汨罗组下部(第1层)为黄红色一红色细砂砾层,厚2m以上,未见底。上部(第2层)为红褐色含砾粗砂,厚2m左右,具网纹化。洞庭湖组位于汨罗组含砾粗砂层之上,自下而上分为2层:下部(第3层)为灰黄一黄红色砾石层,厚0.5 ~ 1.2m。露头剖面上该层与汨罗组(第2层)界线自东往西变低,反映前者与后者之间的侵蚀切割关系(图 7)。上部(第4层)为红色网纹红土,厚4m以上。其与第3层间分界总体截然,局部由于近界面红土中含砾石而呈渐变关系。网纹红土层内部夹有砾石透镜体。下部网纹总体近水平状,往上变为近垂直状或杂乱状。
上述洞庭湖组与汨罗组之间的接触关系(图 7)反映出汨罗组沉积之后发生过一次构造抬升与侵蚀。
值得指出的是,晏家山一黄秀林场剖面上洞庭湖组与汨罗组之间的界面自南向北倾斜(图 4),反映出中更新世晚期构造反转抬升的同时存在掀斜或拱坳变形。
4. 构造一沉积演
以上对沅江凹陷东缘鹿角地区第四纪断裂、地层展布及地貌特征等进行了较详细解剖,据此分析总结该地区第四纪构造一沉积演化过程如下:
早更新世早期,西侧的NNE向洪湖一湘阴正断裂活动,断裂西盘断陷沉降,在过流性湖泊环境下沉积了华田组砂砾层(河流相)及粘土(湖相)等。断裂东盘抬升并遭受剥蚀。
早更新世晚期,东侧的荣家湾断裂活动,该断裂以西地区强烈断陷沉降,形成汨罗组河流相砂砾层、砂层及湖相粘土层。在荣家湾断裂以东、新墙河以北地区构造抬升,继续遭受风化剥蚀。在新墙河以南的黄秀林场一黄沙街地区亦存在构造沉降,只是沉降幅度相对荣家湾断裂以西而言较小,形成厚度较薄的以河流相为主的汨罗组沉积。黄秀林场一黄沙街沉降沉积区以东则相对抬升而遭受风化剥蚀。
早更新世末期,荣家湾断裂以东的黄秀林场一黄沙街地区(先期沉积区)产生构造反转抬升,露出水面并遭受侵蚀。同期荣家湾断裂以西地区可能未明显抬升。
中更新世早期和中期,黄秀林场一黄沙街地区与西侧的沅江凹陷主体一起构造沉降,形成洞庭湖组下部砂砾层与上部粘土。洪湖一湘阴断裂在此期间有过明显的活动,断裂西盘洞庭湖组因相对断陷沉降而具有更大的厚度。值得指出的是,中更新世中期晚阶段存在区域性盆地扩张和湖平面上升,得以形成区域性的洞庭湖组顶部粘土层。
中更新世晚期研究区构造反转抬升,先期沉积接受风化剥蚀,洞庭湖组顶部的表层粘土因湿热化而形成网纹红土。大约以洪湖一湘阴断裂为界,西部地区因大型河流(可能为古湘江)的侧向侵蚀而缺失洞庭湖组顶部粘土层。与此同时,中东部新墙河初步成型。在此抬升期间曾有过相对稳定的间歇期,于新墙河古河道形成具二元结构的中更新世晚期马王堆组冲积层。马王堆组因构造抬升遭受切割而形成基座阶地(二级阶地)。
晚更新世开始地壳重趋稳定。西部主凹陷区可能略有沉降,并形成坡头组泥质沉积。东部新墙河及其支流形成白水江组冲积层,之后地壳再次抬升,河流切割形成由白水江组构成的一级基座阶地。
值得指出的是,在上述中更新世晚期开始的构造抬升的同时,黄秀林场一黄沙街地区产生了自东向西、自南向北的构造掀斜,致使洞庭湖组与汨罗组之间的界面产生倾斜(图 3, 图 5)。
全新世构造总体稳定,西部洞庭湖区形成湖冲积;东部主要经受剥蚀,新墙河及其它规模更小的河流形成冲积层。
5. 问题讨论
5.1 关于第四纪构造升降
笔者近年来对洞庭盆地及周缘地区第四纪构造活动与沉积作用的研究表明,洞庭盆地断陷沉降区在早更新世一中更新世中期一般为连续沉降,中更新世晚期盆地及周缘地区有过整体抬升,如澧县凹陷、安乡凹陷及沅江凹陷大部地区均是如此①。在这一构造活动的整体框架下,局部地区在早更新世末期尚产生过构造反转抬升。如本文研究表明沅江凹陷东缘的黄秀林场一黄沙街地区在早更新世末期有过明显的构造抬升,造成中更新世洞庭湖组与早更新世汨罗组之间的侵蚀接触。此外,华容隆起南部及南东边缘的广兴洲地区在早更新世末期也有过构造抬升,造成全新世冲湖积层直接与汨罗组接触①。以上反映出洞庭盆地第四纪构造升降活动存在较复杂的横向差异。
① 湖南省地质调查院,1:25万常德市幅区域地质调查报告,1:25万岳阳市幅区域地质调查报告,2009.
5.2 对第四纪洞庭盆地构造性质的约束
区域上,第四纪洞庭盆地构造性质经历了早期断陷到晚期坳陷的演变①。第四纪早期即早更新世一中更新世中期洞庭盆地具有断陷性质,主要表现在以下两方面:一是盆地及内部次级凹陷明显受边界断裂控制,早更新世一中更新世中期的地层厚度受控于断裂;二是控盆控凹断裂有EW向、SN向、NNE向、NW向等多组方向,暗示存在深部地幔上隆等导致的多向伸展构造背景。第四纪晚期即中更新世晚期一全新世洞庭盆地具坳陷性质,主要体现在以下几方面:一是先期控盆控凹正断裂不再控制晚更新世一全新世沉积厚度;二是中更新晚期洞庭盆地整体构造反转抬升;三是在常德黄土山、澧县凹陷北部等地发育褶皱和构造掀斜等很可能与挤压作用有关的构造变形。
显然,本文所述沅江凹陷东缘的构造一沉积演化过程,与区域洞庭盆地构造性质的演变相吻合,即对洞庭盆地第四纪构造性质演化提供了约束,具体如:①总体上,洪湖一湘阴断裂和荣家湾断裂在早更新世一中更新世中期具正向活动,导致断裂西盘相对断陷沉降。②中更新世晚期产生整体抬升,晚更新世一全新世期间西部主凹陷地带构造稳定或略有沉降,而东部盆缘地区(黄秀林场一黄沙街地区)则抬升;黄秀林场一黄沙街地区第四纪晚期构造抬升的同时具自西向东即自盆缘向盆内的构造掀斜。
6. 结论
第四纪沅江凹陷东缘鹿角地区具有较为复杂的构造活动和沉积作用。早更新世早期洪湖一湘阴断裂和荣家湾断裂相继活动,断裂以西地区断陷沉降并沉积,以东地区则构造抬升而遭受风化剥蚀。早更新世末期凹陷区东部构造反转抬升并遭受侵蚀。中更新世早期和中期凹陷区断陷沉降并接受沉积。中更新世晚期研究区整体抬升而遭受剥蚀。晚更新世西部主凹陷区在稳定或弱沉降并形成泥质沉积,东部间歇性抬升。在上述中更新世晚期开始的构造抬升的同时,研究区东部产生了自东向西、自南向北的构造掀斜。全新世构造总体稳定,西部洞庭湖区形成湖冲积。区域上,第四纪洞庭盆地构造性质经历了早期断陷到晚期坳陷的转变。
-
图 1 渤海湾盆地构造简图及研究区位置
N—Q—新近系—第四系;Es1—Ed—沙河街组一段—东营组;Es3—Es2—沙河街组三段—沙河街组二段;Ek—Es4—孔店组—沙河街组四段;Mz—中生界;Anz—前震旦系 a—渤海湾盆地区域图;b—东营凹陷区域图;c—东营凹陷剖面图
Figure 1. Simple tectonic map of Bohai Bay Basin and the location of the study region
(a) Map of the Bohai Bay Basin; (b) Map of the Dongying Sag; (c) Cross section of the Dongying Sag
表 1 正断层年龄阶段判别标准
Table 1. Criteria for determining the age stage of normal faults
赋值 1 2 3 4 5 6 断层演化阶段 胚胎期 幼年期 青年期 壮年期 老年期 消亡期 RA(相对年龄) (0,1] (1,2] (2,3] (3,4] (4,5] (5,6] 断距/切割深度 0 0~6 6~9 9~12 >12 反转 切割深度/长度 0~0.4 0~0.8 0~1.2 1.2~1.6 >1.6 断面形态 无 板状 轻微铲状,倾角>60° 铲状,倾角<60° 铲状/坡坪状,倾角<45° 派生构造 无 无 派生破裂 派生破裂或极少断层 复杂派生构造 断层带结构 裂缝 破裂/贯通 滑动破碎带 滑动破碎带+诱导裂缝带 滑动破碎带+诱导裂缝带+断层泥 表 2 东营凹陷主要断层年龄阶段判别结果
Table 2. Results of age stage determination of major faults in the Dongying Sag
断层名称 走向 断层长度/
km新生代
断距/m切割深度/
km切割深度/
断距赋值 长度/切割深度 赋值 断面形态 赋值 断层描述 赋值 相对年龄(RA)/阶段 石村断层 北西向 90 1280.73 6000 4.68 2 1.50 4 轻微铲状 3 较为复杂 4 3.25 壮年期 陈南断层东段 北西向 50 反转 坡坪式 6 复杂 6 6.00 消亡期 林北断层 北东东向 30 640 6000 9.37 4 0.50 2 轻微铲状 3 少数破裂 2 2.75 青年期 林南断层西段 北东东向 60 702 3590 5.11 2 1.67 5 轻微铲状 3 少数破裂 2 3.00 青年期 林南断层东段 北东东向 60 735 3590 4.88 2 1.67 5 铲状 4 破裂 3 3.50 壮年期 高青断层西段 近东西向 70 1206 5000 坡坪状 5 复杂 5 5.00 消亡期 高青断层东段 近东西向 70 1238 5000 铲状 5 复杂 5 5.00 消亡期 滨南断层 近东西向 35 2091 7500 5.59 3 1.47 4 坡坪状 5 复杂 5 4.25 老年期 陈南断层西段 近东西向 80 3319 7500 2.26 1 1.07 3 坡坪状 5 派生复杂 5 3.50 老年期 任风断层 近东西向 100 3590 2.79 5 板状 2 复杂 5 3.00 青年期 无南断层西段 近东西向 75 916 3590 2.86 1 12.00 5 坡坪状 5 复杂 5 4.00 老年期 无南断层东段 近东西向 75 948 3590 3.26 2 12.00 5 坡坪状 5 复杂 5 4.25 老年期 垦东断层南段 近东西向 50 514 3600 7.00 3 1.39 4 裂缝 3 无 1 2.75 青年期 垦东断层北段 近东西向 50 断续相连 2 无 2 2.00 幼年期 王家岗断层带 近东西向 60 裂缝 1 无 1 1.00 胚胎期 胜永断层 近东西向 60 854 7500 8.78 4 0.80 2 轻微铲状 3 较为复杂 4 3.25 壮年期 中央断层 近东西向 80 516 6000 11.63 4 1.33 4 铲状 2 较为复杂 4 3.50 壮年期 八面河断层 近东西向 60 0 4600 6.27 3 1.30 4 断续相连 2 较为复杂 2 2.25 幼年期 博兴断层 近东西向 40 1174 6000 5.11 2 0.67 2 板状 2 无 1 1.75 青年期 孤东断层 近东西向 50 无 1 无 1.00 胚胎期 表 3 东营凹陷断层控藏要素分类与控藏能力评价
Table 3. Classification of fault reservoir-forming elements and evaluation of reservoir-controlling capabilities in the Dongying Sag
控藏能力 强 中 弱 烃源岩 影响大,主控 影响一般 影响较小 储层 影响大,控扇为主 影响一般、控砂为主 影响较小 输导体系 影响 影响大,主控 影响一般 影响较小 活动方式 双峰、三峰式、增速式、匀速式 稳定式、单峰式 衰减式 圈闭 类型多,规模大 类型少,规模小 影响较小 -
[1] ALAM A, AHMAD S, BHAT M S, et al., 2016. Response to the commentary by Shah, A. A. (2015) and further evidence supporting the dextral strike–slip pull-apart evolution of the Kashmir basin along the central Kashmir fault (CKF)[J]. Geomorphology, 253: 558-563. doi: 10.1016/j.geomorph.2015.06.017 [2] BURK K, DEWEY J F, 1974. Two plates in Africa during the Cretaceous?[J]. Nature, 249(5455): 313-316. doi: 10.1038/249313a0 [3] CARTWRIGHT J A, MANSFIELD C S, TRUDGIL B D, 1996. Fault growth by segment linkage[M]//BUCHANAN P C, NIEUWLAND D A. Modem developments in structural interpretations, Vol. 99. Geological Society, London, Special Publications: 163-177. [4] CHEN D X, ZHANG F Q, CHEN H L, et al., 2015. Structural architecture and tectonic evolution of the Fangzheng sedimentary basin (NE China), and implications for the kinematics of the Tan-Lu fault zone[J]. Journal of Asian Earth Sciences, 106: 34-48. doi: 10.1016/j.jseaes.2015.02.028 [5] CHEN G, JIANG Y P, ZHOU J X, et al., 2008. The paleo-drop method was used to study the intensity of fault activity in the Shacheng area[J]. Small Hydrocarbon Reservoirs, 13(2): 7-10. (in Chinese with English abstract [6] CHILDS C, HOLDSWORTH R E, JACKSON C A L, et al., 2017. Introduction to the geometry and growth of normal faults[J]. Geological Society, London, Special Publications, 439(1): 1-9. doi: 10.1144/SP439.24 [7] CHOI J H, YANG S J, HAN S R, et al., 2015. Fault zone evolution during Cenozoic tectonic inversion in SE Korea[J]. Journal of Asian Earth Sciences, 98: 167-177. doi: 10.1016/j.jseaes.2014.11.009 [8] COWIE P A, GUPTA S, DAWERS N H, 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model[J]. Basin Research, 12(3-4): 241-261. doi: 10.1111/j.1365-2117.2000.00126.x [9] DAVIS G H, 1983. Shear-zone model for the origin of metamorphic core complexes[J]. Geology, 11(6): 342-347. doi: 10.1130/0091-7613(1983)11<342:SMFTOO>2.0.CO;2 [10] DENG L J, WU K Y, JIAO H Y, et al., 2022. Paleogene fault system in the Xianhe Mining Area, Dongying Sag, Bohai bay basin and its evolution[J]. Journal of Geomechanics, 28(3): 480-491. (in Chinese with English abstract [11] DU H F, SUN X, WANG C W, et al., 2023. Study on mud logging interpretation and evaluation method of geological and engineering sweet spots for shale oil in Dongying sag[J]. Mineral Exploration, 14(3): 480-490. (in Chinese with English abstract [12] FINCH E, HARDY S, GAWTHORPE R, 2003. Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks[J]. Journal of Structural Geology, 25(4): 515-528. doi: 10.1016/S0191-8141(02)00053-6 [13] FINCH E, HARDY S, GAWTHORPE R, 2004. Discrete‐element modelling of extensional fault‐propagation folding above rigid basement fault blocks[J]. Basin Research, 16(4): 467-488. doi: 10.1111/j.1365-2117.2004.00241.x [14] FU X F, XU P, WEI C Z, et al., 2012. Internal structure of normal fault zone and hydrocarbon migration and conservation[J]. Earth Science Frontiers, 19(6): 200-212. (in Chinese with English abstract [15] FU X F, SUN B, WANG H X, et al., 2015. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research[J]. Journal of China University of Mining & Technology, 44(2): 271-281. (in Chinese with English abstract [16] FU X F, SONG X Q, WANG H X, et al., 2021. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: a case study of the Qikou Sag in the Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 48(4): 677-686. (in Chinese with English abstract [17] HOFFMAN P, DEWEY J F, BURKE K. 1974. Aulacogens and their genetic relation to geosynclines, with a Proterozoic example from Great Slave Lake, Canada[J]. [18] JENSEN E, CEMBRANO J, FAULKNER D, et al., 2011. Development of a self-similar strike-slip duplex system in the Atacama Fault system, Chile[J]. Journal of Structural Geology, 33(11): 1611-1626. doi: 10.1016/j.jsg.2011.09.002 [19] JIANG S, 2019. The distinguishing of fault age stage and its controling on hydrocarbon accumulation in Jiyang depression[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract [20] JIANG Y L, LIU P, SONG G Q, et al., 2015. Late cenozoic faulting activities and their influence upon hydrocarbon accumulations in the Neogene in Bohai Bay basin[J]. Oil & Gas Geology, 36(4): 525-533. (in Chinese with English abstract [21] LIU F J, 2011. Study on reservoir features and oil pool forming regularity of paleogene in the south slope of Dongying depression[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [22] LUO Q, 1999. An outline of theory of fracture-controlling hydrocarbon[J]. Petroleum Explorationist, 4(3): 8-14. (in Chinese with English abstract [23] LUO Q, 2007. The fault controlling hydrocarbon theory and its significance[C]//Proceedings of the symposium on geological elements of oil and gas accumulation in China Yangtze and peripheral margins. Zhongxiang: 15-29. (in Chinese with English abstract [24] LUO Q, 2010. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 37(3): 316-324. (in Chinese with English abstract doi: 10.1016/S1876-3804(10)60035-3 [25] MA H, 2005. The characters and control of tectonics on sequence stratigraphy of the lower tertiary in Jiyang basin[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract [26] MA S Z, 2007. The study of paleogene tectonic-sedimentary evolution and hydrocarbon reservoir formation model in Huimin sag[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [27] MARQUES F O, MATEUS A, TASSINARI C, 2002. The Late-Variscan fault network in central–northern Portugal (NW Iberia): a re-evaluation[J]. Tectonophysics, 359(3-4): 255-270. doi: 10.1016/S0040-1951(02)00514-0 [28] PEACOCK D C P, SANDERSON D J, 1991. Displacements, segment linkage and relay ramps in normal fault zones[J]. Journal of Structural Geology, 13(6): 721-733. doi: 10.1016/0191-8141(91)90033-F [29] PEACOCK D C P, SANDERSON D J, 1994. Geometry and development of relay ramps in normal fault systems[J]. AAPG Bulletin, 78(2): 147-165. [30] PEACOCK D C P, NIXON C W, ROTEVATN A, et al., 2017. Interacting faults[J]. Journal of Structural Geology, 97: 1-22. doi: 10.1016/j.jsg.2017.02.008 [31] QU T, HUANG Z L, WANG R, et al.,2021. Development characteristics and controlling factors of coal-measure source rocks in the global Tethys region[J]. Coal geology & exploration,49(5):114-131. (in Chinese with English abstract [32] REILLY C, NICOL A, WALSH J J, et al., 2015. Evolution of faulting and plate boundary deformation in the Southern Taranaki Basin, New Zealand[J]. Tectonophysics, 651-652: 1-18. doi: 10.1016/j.tecto.2015.02.009 [33] ROTEVATN A, JACKSON C A L, TVEDT A B M, et al., 2019. How do normal faults grow?[J]. Journal of Structural Geology, 125: 174-184. doi: 10.1016/j.jsg.2018.08.005 [34] RUBINAT C M, 2012. Basement fault influence on the Bicorb-Quesa salt wall kinematics, insights from magnetotelluric and paleomagnetic techniques on salt tectonics[J]. [35] SIBSON R H, 1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191-213. doi: 10.1144/gsjgs.133.3.0191 [36] SONG G Z, WANG H, GAN H J, et al., 2013. Slope-break and its control on sequence, sedimentation and hydrocarbon accumulation of upper Es4 in Zhengnan area, Dongying sag[J]. Journal of Central South University (Science and Technology), 44(8): 3415-3424. (in Chinese with English abstract [37] SONG Y D, 2010. Study on structural characteristics and the favorable exploration zones of the middle-northern area in Raoyang sag[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract [38] SU Z F, 2006. Regional sequence stratigraphic correlation and predication of favorable lithologic & stratigraphic traps zones for palaeogene in Jiyang depression[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract [39] SU Z F, XUE Y M, DENG H W, et al., 2008. Construction styles, distribution features and genetic dynamics of the paleogene sequence boundaries in Jiyang depression[J]. Acta Geoscientica Sinica, 29(4): 459-468. (in Chinese with English abstract [40] TONG M H, NIE J Y, MENG L J, et al., 2009. The law of basement pre-existing fabric controlling fault formation and evolution in rift basin[J]. Earth Science Frontiers, 16(4): 97-104. (in Chinese with English abstract [41] WANG W F, ZHOU W W, ZHOU J, et al., 2014. Formation mechanism and distribution of buried fault zones in the Jinhu sag[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1395-1405. (in Chinese with English abstract [42] WANG W F, ZHOU W W, SHAN X J, et al., 2015. Characteristics of hidden fault zone and its significance in geology in sedimentary basin[J]. Journal of Central South University (Science and Technology), 46(6): 2236-2243. (in Chinese with English abstract [43] WANG W F, ZHOU W W, XU S L, 2017. Formation and evolution of concealed fault zone in sedimentary basins and its significance in hydrocarbon accumulation[J]. Earth Science, 42(4): 613-624. (in Chinese with English abstract [44] WU Z P, CHEN W, XUE Y, et al., 2010. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica, 84(4): 570-578. (in Chinese with English abstract [45] XU C G, DU X F, PANG X J, et al., 2022. The source-sink system and its control on large-area lithologic reservoirs of the lower Minghuazhen Formation in the southern Bohai Sea[J]. Journal of Geomechanics, 28(5): 728-742. (in Chinese with English abstract [46] XUE Y A, LI H Y, XU P, et al., 2021a. Recognition of oil and gas accumulation of Mesozoic covered buried hills in Bohai sea area and the discovery of BZ 13-2 oilfield[J]. China Offshore Oil and Gas, 33(1): 13-22. (in Chinese with English abstract [47] XUE Y A, LV D Y, HU Z W, et al., 2021b. Tectonic development of subtle faults and exploration in mature areas in Bohai Sea, East China[J]. Petroleum Exploration and Development, 48(2): 233-246. (in Chinese with English abstract [48] YANG Y Y, 2008. Growth and development: the whole process of human development[M]. Beijing: People's Medical Publishing House. (in Chinese) [49] ZHANG D M, WANG P, ZANG D G, et al., 2023. Pre-Stack Reservoir Prediction of Tight Sandstone of the Fifth Member of Xujiahe Formation in the Wubaochang Area of Northeastern Sichuan[J]. Geology and Exploration, 59(6): 1356-1365. (in Chinese with English abstract [50] ZHAO Y J, 2007. The research of basin structure and filling characteristics of palaeogene in Dongying depression[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract [51] ZHOU J L, 2008. Migration and accumulation of oil-gas in Shengtuo areas of Dongying depression, Bohai Bay basin[J]. Natural Gas Geoscience, 19(5): 587-592. (in Chinese with English abstract [52] ZHOU W W, DONG Y P, XIAO C A, et al., 2023. Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag[J]. Earth Science, 48(07): 2718-2732. (in Chinese with English abstract [53] ZHOU W W, WANG W F, AN B, et al., 2014. Identification of potential fault zones and its geological significance in Bohai Bay basin[J]. Earth Science—Journal of China University of Geosciences, 39(11): 1527-1538. (in Chinese with English abstract [54] ZHOU W W, 2015. Characteristic of concealed fault zone and its significance in hydrocarbon accumulation in Bohai Bay basin[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract [55] ZHOU W W, Zhao C Q, Chang H. Effect of intensity of sedimentary cover deformation on hydrocarbon accumulation in Dongying Sag, Bohai Bay Basin, China[J]. Scientific Reports, 2024, 14(1): 677. [56] 陈刚,蒋弋平,周建新,等,2008. 用古落差法研究沙埝地区断层活动强度[J]. 小型油气藏,13(2):7-10. [57] 邓路佳,吴孔友,焦红岩,等,2022. 渤海湾盆地东营凹陷现河矿区古近系断裂体系及形成演化[J]. 地质力学学报,28(3):480-491. doi: 10.12090/j.issn.1006-6616.2021139 [58] 杜焕福,孙鑫,王春伟,等,2023. 东营凹陷页岩油双甜点录井解释评价方法研究[J]. 矿产勘查,14(3):480-490. [59] 付晓飞,许鹏,魏长柱,等,2012. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘,19(6):200-212. [60] 付晓飞,孙兵,王海学,等,2015. 断层分段生长定量表征及在油气成藏研究中的应用[J]. 中国矿业大学学报,44(2):271-281. [61] 付晓飞,宋宪强,王海学,等,2021. 裂陷盆地断层圈闭含油气有效性综合评价:以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发,48(4):677-686. doi: 10.11698/PED.2021.04.01 [62] 姜帅,2019. 济阳坳陷断裂年龄阶段判别及控藏作用研究[D]. 青岛:中国石油大学(华东). [63] 蒋有录,刘培,宋国奇,等,2015. 渤海湾盆地新生代晚期断层活动与新近系油气富集关系[J]. 石油与天然气地质,36(4):525-533. doi: 10.11743/ogg20150401 [64] 罗群,1999. “断裂控烃理论”概要[J]. 勘探家,4(3):8-14. [65] 罗群,2007. 断裂控烃理论的提出及其意义[C]//中扬子及周缘油气成藏地质要素学术研讨会论文集. 钟祥:湖北省石油学会地质专业委员会:15-29. [66] 罗群,2010. 断裂控烃理论的概念、原理、模式与意义[J]. 石油勘探与开发,37(3):316-324. [67] 马晖,2005. 济阳坳陷下第三系构造特征及其对层序的控制作用[D]. 广州:中国科学院广州地球化学研究所. [68] 屈童, 黄志龙, 王瑞, 等,2021. 全球特提斯域煤系烃源岩发育特征及其控制因素[J]. 煤田地质与勘探,49(5):114-131 [69] 宋广增,王华,甘华军,等,2013. 东营凹陷郑南地区沙四上亚段坡折带对层序、沉积与油气成藏控制[J]. 中南大学学报(自然科学版),44(8):3415-3424. [70] 苏宗富,2006. 济阳坳陷古近系区域层序地层对比与岩性—地层圈闭有利区带预测[D]. 北京:中国地质大学(北京). [71] 苏宗富,薛艳梅,邓宏文,等,2008. 济阳坳陷古近系层序界面构建样式、分布特征及其成因动力学分析[J]. 地球学报,29(4):459-468. doi: 10.3321/j.issn:1006-3021.2008.04.008 [72] 童亨茂,聂金英,孟令箭,等,2009. 基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J]. 地学前缘,16(4):97-104. doi: 10.3321/j.issn:1005-2321.2009.04.010 [73] 王伟锋,周维维,周杰,等,2014. 金湖凹陷隐性断裂带形成机制及分布[J]. 吉林大学学报(地球科学版),44(5):1395-1405. [74] 王伟锋,周维维,单新建,等,2015. 沉积盆地隐性断裂带特征及其地质意义[J]. 中南大学学报(自然科学版),46(6):2236-2243. doi: 10.11817/j.issn.1672-7207.2015.06.035 [75] 王伟锋,周维维,徐守礼,2017. 沉积盆地断裂趋势带形成演化及其控藏作用[J]. 地球科学,42(4):613-624. [76] 吴智平,陈伟,薛雁,等,2010. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报,84(4):570-578. [77] 徐长贵,杜晓峰,庞小军,等,2022. 渤海南部明化镇组下段源-汇体系及其对大面积岩性油气藏的控制作用[J]. 地质力学学报,28(5):728-742. doi: 10.12090/j.issn.1006-6616.20222813 [78] 薛永安,李慧勇,许鹏,等,2021a. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现[J]. 中国海上油气,33(1):13-22. [79] 薛永安,吕丁友,胡志伟,等,2021b. 渤海海域隐性断层构造发育特征与成熟区勘探实践[J]. 石油勘探与开发,48(2):233-246. [80] 杨云衣,2008. 生长与发育:人类发展全过程[M]. 北京:人民卫生出版社. [81] 张德明,王鹏,臧殿光,等,2023. 川东北五宝场地区须五段致密砂岩叠前储层预测[J]. 地质与勘探,59(6):1356-1365. doi: 10.12134/j.dzykt.2023.06.020 [82] 赵延江,2007. 东营凹陷古近系盆地结构与充填特征研究[D]. 广州:中国科学院广州地球化学研究所. [83] 周建林,2008. 渤海湾盆地东营凹陷胜坨地区油气运聚与成藏研究[J]. 天然气地球科学,19(5):587-592. doi: 10.11764/j.issn.1672-1926.2008.05.587 [84] 周维维,董有浦,肖安成,等,2023. 东营凹陷基底断裂走滑活动对油气成藏的影响[J]. 地球科学,48(7):2718-2732. [85] 周维维,王伟锋,安邦,等,2014. 渤海湾盆地隐性断裂带识别及其地质意义[J]. 地球科学—中国地质大学学报,39(11):1627-1638. [86] 周维维,2015. 渤海湾盆地断裂趋势带特征及控油作用[D]. 青岛:中国石油大学(华东). -