留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东营凹陷张性断层发育的生命演化阶段特征及其控藏作用

籍庆佳 周维维 韩润生 胡阳

籍庆佳,周维维,韩润生,等,2024. 东营凹陷张性断层发育的生命演化阶段特征及其控藏作用[J]. 地质力学学报,30(4):595−608 doi: 10.12090/j.issn.1006-6616.2023147
引用本文: 籍庆佳,周维维,韩润生,等,2024. 东营凹陷张性断层发育的生命演化阶段特征及其控藏作用[J]. 地质力学学报,30(4):595−608 doi: 10.12090/j.issn.1006-6616.2023147
JI Q J,ZHOU W W,HAN R S,et al.,2024. Characteristics of life-cycle stages and reservoir control in the development of extensional faults in the Dongying Sag[J]. Journal of Geomechanics,30(4):595−608 doi: 10.12090/j.issn.1006-6616.2023147
Citation: JI Q J,ZHOU W W,HAN R S,et al.,2024. Characteristics of life-cycle stages and reservoir control in the development of extensional faults in the Dongying Sag[J]. Journal of Geomechanics,30(4):595−608 doi: 10.12090/j.issn.1006-6616.2023147

东营凹陷张性断层发育的生命演化阶段特征及其控藏作用

doi: 10.12090/j.issn.1006-6616.2023147
基金项目: 国家自然科学基金项目(41572060,42172086,41802089);云岭学者资助项目(2014);云南省重大科技专项计划项目(202202AG050014);云南省科技厅地方本科高校基础研究联合专项面上项目(2019FH001-062);云南省教育厅科学研究基金项目(2020J0644)资助;云南省青年基金项目(202201AU070091)
详细信息
    作者简介:

    籍庆佳(2000—),女,在读硕士,地质工程专业。Email:2574695643@qq.com

    通讯作者:

    周维维(1986—),男,讲师,从事构造−成矿成藏研究。Email:605316200@qq.com

  • 中图分类号: P542;P618.13

Characteristics of life-cycle stages and reservoir control in the development of extensional faults in the Dongying Sag

Funds: This research is financially supported by the National Natural Science Foundation of China (Grants NO. 41572060, 42172086, and 41802089), Yunling Scholars Funding Project (2014), Yunnan Major Science and Technology Special Project (Grant NO. 202202AG050014), Yunnan Provincial Science and Technology Department Local Undergraduate College Basic Research Joint Special Project (Grant NO. 2019FH001-062), Yunnan Provincial Education Department Scientific Research Fund Project (Grant NO. 2020J0644), and Yunnan Youth Fund Project (Grant NO. 202201AU070091).
  • 摘要: 断层从无到有的形成过程具有隐性、显性等多个演化阶段,而断层由隐性阶段的胚胎期到显性阶段末期的老年期等各个成长阶段的判别难度很大。针对这一问题,以渤海湾盆地东营凹陷为研究对象,应用物理模拟、数值模拟等方法重现控盆边界断层−陈南断层胚胎期到老年期的全生命阶段演化过程及各阶段的固有特征;在此基础上,定性、定量判识东营凹陷主要断层的相对年龄(Relative Age,RA)以及各年龄阶段的断层活动方式,建立其控藏模式。研究结果表明:东营凹陷张扭性断层可以划分为胚胎期(0<RA≤1,微裂缝或诱导裂缝带)、幼年期(1<RA≤2,断层核形成、裂面断续相连)、青年期(2<RA≤3,板状主断面贯通、清晰断距)、壮年期(3<RA≤4,断层核两侧破碎带形成、板状−铲式断面)、老年期(4<RA≤5,坡坪式断面、派生构造复杂)和消亡期(5<RA≤6,断层停止活动或者发生反转)6个阶段;断层的活动方式与断层年龄的持续时间和活动强度有着密切的关系,稳定、持续、高强度的断层活动方式有利于断层向老年期发展。断层控藏作用研究表明:胚胎期、幼年期断层主要控制油气圈闭,青年期断层主要控制砂体和储层分布,壮年期、老年期断层控制着烃源岩的总体展布范围以及油气的运移、聚集和逸散等过程。结合优势控藏要素、油气富集程度和油气聚集规模等因素进行断层控藏能力评价,陈南断层控藏能力等级为“强”。从断层生命发育演化阶段重新认识断层的控藏能力,将有力地推动和提升断层控藏的理论研究与成熟探区的勘探水平。

     

  • 图  1  渤海湾盆地构造简图及研究区位置

    N—Q—新近系—第四系;${\mathrm{E}}s_{1} $—Ed—沙河街组一段—东营组;${\mathrm{E}}s_{3} $—${\mathrm{E}}s_{2} $—沙河街组三段—沙河街组二段;Ek—${\mathrm{E}}s_{4} $—孔店组—沙河街组四段;Mz—中生界;Anz—前震旦系 a—渤海湾盆地区域图;b—东营凹陷区域图;c—东营凹陷剖面图

    Figure  1.  Simple tectonic map of Bohai Bay Basin and the location of the study region

    (a) Map of the Bohai Bay Basin; (b) Map of the Dongying Sag; (c) Cross section of the Dongying Sag

    图  2  东营凹陷地层柱状图及实验材料选取

    Figure  2.  Stratigraphic column diagram of the Dongying Sag and the experimental material selection

    图  3  砂箱实验模型示意图

    a—水平均匀伸展模型;b—曲折基底伸展模型

    Figure  3.  Schematic diagram of sandbox experiment model

    (a) Horizontal uniform extension model; (b) Zigzag basement extension model

    图  4  陈南断层伸展模型的砂箱实验结果

    CNF—陈南断层a—水平均匀伸展模型;b—曲折基底伸展模型

    Figure  4.  Findings from sandbox experiments on the Chennan fault extension

    (a) Horizontal uniform stretch model; (b) Zigzag basement extension model Note: CNF is the Chennan fault.

    图  5  陈南断层伸展模型砂箱实验结果素描图

    CNF—陈南断层a—水平均匀伸展模型;b—曲折基底伸展模型

    Figure  5.  Sketch of the sandbox experinlental results of the Chennan fault extension model

    (a) Horizontal uniform stretching model; (b) Zigzag basement extension model Note: CNF is the Chennan fault.

    图  6  壮年期—老年期正断层生长模型

    Figure  6.  Normal fault growth model from the prime of life to old age

    图  7  伸展断层演化模式

    a—胚胎期;b—幼年期;c—青年期;d—壮年期;e—老年期

    Figure  7.  Evolution pattern of the extensional fault

    (a) Embryonic stage; (b) Juvenile stage; (c) Mature stage; (d) Declining stage; (e) Terminal stage

    图  8  不同年龄阶段伸展断层发育特征的地震剖面

    a—幼年期;b—青年期;c—壮年期;d—老年期

    Figure  8.  Seismic sections showing the characteristics of extensional fault development at various age stages of formation

    (a) Juvenile stage; (b) Mature stage; (c) Declining stage; (d) Terminal stage

    图  9  东营凹陷各年龄阶段断层的主要活动方式

    Figure  9.  Major fault activity patterns at varying age stages in the Dongying Sag

    图  10  东营凹陷各年龄阶段断层的控藏模式

    a—胚胎期阶段;b—幼年期阶段;c—青年期阶段;d—壮年期阶段;e—老年期阶段

    Figure  10.  Fault-controlled reservior pattern at different age stages of the Dongying Sag

    (a) Embryonic Stage; (b) Juvenile stage; (c) Mature stage; (d) Declining stage; (e) Terminal stage

    表  1  正断层年龄阶段判别标准

    Table  1.   Criteria for determining the age stage of normal faults

    赋值123456
    断层演化阶段胚胎期幼年期青年期壮年期老年期消亡期
    RA(相对年龄)(0,1](1,2](2,3](3,4](4,5](5,6]
    断距/切割深度00~66~99~12>12反转
    切割深度/长度0~0.40~0.80~1.21.2~1.6>1.6
    断面形态板状轻微铲状,倾角>60°铲状,倾角<60°铲状/坡坪状,倾角<45°
    派生构造派生破裂派生破裂或极少断层复杂派生构造
    断层带结构裂缝破裂/贯通滑动破碎带滑动破碎带+诱导裂缝带滑动破碎带+诱导裂缝带+断层泥
    下载: 导出CSV

    表  2  东营凹陷主要断层年龄阶段判别结果

    Table  2.   Results of age stage determination of major faults in the Dongying Sag

    断层名称走向断层长度/
    km
    新生代
    断距/m
    切割深度/
    km
    切割深度/
    断距
    赋值长度/切割深度
    赋值断面形态赋值断层描述赋值相对年龄(RA)/阶段
    石村断层北西向901280.7360004.6821.504轻微铲状3较为复杂43.25壮年期
    陈南断层东段北西向50反转坡坪式6复杂66.00消亡期
    林北断层北东东向3064060009.3740.502轻微铲状3少数破裂22.75青年期
    林南断层西段北东东向6070235905.1121.675轻微铲状3少数破裂23.00青年期
    林南断层东段北东东向6073535904.8821.675铲状4破裂33.50壮年期
    高青断层西段近东西向7012065000坡坪状5复杂55.00消亡期
    高青断层东段近东西向7012385000铲状5复杂55.00消亡期
    滨南断层近东西向35209175005.5931.474坡坪状5复杂54.25老年期
    陈南断层西段近东西向80331975002.2611.073坡坪状5派生复杂53.50老年期
    任风断层近东西向10035902.795板状2复杂53.00青年期
    无南断层西段近东西向7591635902.86112.005坡坪状5复杂54.00老年期
    无南断层东段近东西向7594835903.26212.005坡坪状5复杂54.25老年期
    垦东断层南段近东西向5051436007.0031.394裂缝312.75青年期
    垦东断层北段近东西向50断续相连222.00幼年期
    王家岗断层带近东西向60裂缝111.00胚胎期
    胜永断层近东西向6085475008.7840.802轻微铲状3较为复杂43.25壮年期
    中央断层近东西向80516600011.6341.334铲状2较为复杂43.50壮年期
    八面河断层近东西向60046006.2731.304断续相连2较为复杂22.25幼年期
    博兴断层近东西向40117460005.1120.672板状211.75青年期
    孤东断层近东西向5011.00胚胎期
    下载: 导出CSV

    表  3  东营凹陷断层控藏要素分类与控藏能力评价

    Table  3.   Classification of fault reservoir-forming elements and evaluation of reservoir-controlling capabilities in the Dongying Sag

    控藏能力
    烃源岩影响大,主控影响一般影响较小
    储层影响大,控扇为主影响一般、控砂为主影响较小
    输导体系影响影响大,主控影响一般影响较小
    活动方式双峰、三峰式、增速式、匀速式稳定式、单峰式衰减式
    圈闭类型多,规模大类型少,规模小影响较小
    下载: 导出CSV
  • [1] ALAM A, AHMAD S, BHAT M S, et al., 2016. Response to the commentary by Shah, A. A. (2015) and further evidence supporting the dextral strike–slip pull-apart evolution of the Kashmir basin along the central Kashmir fault (CKF)[J]. Geomorphology, 253: 558-563. doi: 10.1016/j.geomorph.2015.06.017
    [2] BURK K, DEWEY J F, 1974. Two plates in Africa during the Cretaceous?[J]. Nature, 249(5455): 313-316. doi: 10.1038/249313a0
    [3] CARTWRIGHT J A, MANSFIELD C S, TRUDGIL B D, 1996. Fault growth by segment linkage[M]//BUCHANAN P C, NIEUWLAND D A. Modem developments in structural interpretations, Vol. 99. Geological Society, London, Special Publications: 163-177.
    [4] CHEN D X, ZHANG F Q, CHEN H L, et al., 2015. Structural architecture and tectonic evolution of the Fangzheng sedimentary basin (NE China), and implications for the kinematics of the Tan-Lu fault zone[J]. Journal of Asian Earth Sciences, 106: 34-48. doi: 10.1016/j.jseaes.2015.02.028
    [5] CHEN G, JIANG Y P, ZHOU J X, et al., 2008. The paleo-drop method was used to study the intensity of fault activity in the Shacheng area[J]. Small Hydrocarbon Reservoirs, 13(2): 7-10. (in Chinese with English abstract
    [6] CHILDS C, HOLDSWORTH R E, JACKSON C A L, et al., 2017. Introduction to the geometry and growth of normal faults[J]. Geological Society, London, Special Publications, 439(1): 1-9. doi: 10.1144/SP439.24
    [7] CHOI J H, YANG S J, HAN S R, et al., 2015. Fault zone evolution during Cenozoic tectonic inversion in SE Korea[J]. Journal of Asian Earth Sciences, 98: 167-177. doi: 10.1016/j.jseaes.2014.11.009
    [8] COWIE P A, GUPTA S, DAWERS N H, 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model[J]. Basin Research, 12(3-4): 241-261. doi: 10.1111/j.1365-2117.2000.00126.x
    [9] DAVIS G H, 1983. Shear-zone model for the origin of metamorphic core complexes[J]. Geology, 11(6): 342-347. doi: 10.1130/0091-7613(1983)11<342:SMFTOO>2.0.CO;2
    [10] DENG L J, WU K Y, JIAO H Y, et al., 2022. Paleogene fault system in the Xianhe Mining Area, Dongying Sag, Bohai bay basin and its evolution[J]. Journal of Geomechanics, 28(3): 480-491. (in Chinese with English abstract
    [11] DU H F, SUN X, WANG C W, et al., 2023. Study on mud logging interpretation and evaluation method of geological and engineering sweet spots for shale oil in Dongying sag[J]. Mineral Exploration, 14(3): 480-490. (in Chinese with English abstract
    [12] FINCH E, HARDY S, GAWTHORPE R, 2003. Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks[J]. Journal of Structural Geology, 25(4): 515-528. doi: 10.1016/S0191-8141(02)00053-6
    [13] FINCH E, HARDY S, GAWTHORPE R, 2004. Discrete‐element modelling of extensional fault‐propagation folding above rigid basement fault blocks[J]. Basin Research, 16(4): 467-488. doi: 10.1111/j.1365-2117.2004.00241.x
    [14] FU X F, XU P, WEI C Z, et al., 2012. Internal structure of normal fault zone and hydrocarbon migration and conservation[J]. Earth Science Frontiers, 19(6): 200-212. (in Chinese with English abstract
    [15] FU X F, SUN B, WANG H X, et al., 2015. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research[J]. Journal of China University of Mining & Technology, 44(2): 271-281. (in Chinese with English abstract
    [16] FU X F, SONG X Q, WANG H X, et al., 2021. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: a case study of the Qikou Sag in the Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 48(4): 677-686. (in Chinese with English abstract
    [17] HOFFMAN P, DEWEY J F, BURKE K. 1974. Aulacogens and their genetic relation to geosynclines, with a Proterozoic example from Great Slave Lake, Canada[J].
    [18] JENSEN E, CEMBRANO J, FAULKNER D, et al., 2011. Development of a self-similar strike-slip duplex system in the Atacama Fault system, Chile[J]. Journal of Structural Geology, 33(11): 1611-1626. doi: 10.1016/j.jsg.2011.09.002
    [19] JIANG S, 2019. The distinguishing of fault age stage and its controling on hydrocarbon accumulation in Jiyang depression[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract
    [20] JIANG Y L, LIU P, SONG G Q, et al., 2015. Late cenozoic faulting activities and their influence upon hydrocarbon accumulations in the Neogene in Bohai Bay basin[J]. Oil & Gas Geology, 36(4): 525-533. (in Chinese with English abstract
    [21] LIU F J, 2011. Study on reservoir features and oil pool forming regularity of paleogene in the south slope of Dongying depression[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [22] LUO Q, 1999. An outline of theory of fracture-controlling hydrocarbon[J]. Petroleum Explorationist, 4(3): 8-14. (in Chinese with English abstract
    [23] LUO Q, 2007. The fault controlling hydrocarbon theory and its significance[C]//Proceedings of the symposium on geological elements of oil and gas accumulation in China Yangtze and peripheral margins. Zhongxiang: 15-29. (in Chinese with English abstract
    [24] LUO Q, 2010. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 37(3): 316-324. (in Chinese with English abstract doi: 10.1016/S1876-3804(10)60035-3
    [25] MA H, 2005. The characters and control of tectonics on sequence stratigraphy of the lower tertiary in Jiyang basin[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract
    [26] MA S Z, 2007. The study of paleogene tectonic-sedimentary evolution and hydrocarbon reservoir formation model in Huimin sag[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [27] MARQUES F O, MATEUS A, TASSINARI C, 2002. The Late-Variscan fault network in central–northern Portugal (NW Iberia): a re-evaluation[J]. Tectonophysics, 359(3-4): 255-270. doi: 10.1016/S0040-1951(02)00514-0
    [28] PEACOCK D C P, SANDERSON D J, 1991. Displacements, segment linkage and relay ramps in normal fault zones[J]. Journal of Structural Geology, 13(6): 721-733. doi: 10.1016/0191-8141(91)90033-F
    [29] PEACOCK D C P, SANDERSON D J, 1994. Geometry and development of relay ramps in normal fault systems[J]. AAPG Bulletin, 78(2): 147-165.
    [30] PEACOCK D C P, NIXON C W, ROTEVATN A, et al., 2017. Interacting faults[J]. Journal of Structural Geology, 97: 1-22. doi: 10.1016/j.jsg.2017.02.008
    [31] QU T, HUANG Z L, WANG R, et al.,2021. Development characteristics and controlling factors of coal-measure source rocks in the global Tethys region[J]. Coal geology & exploration,49(5):114-131. (in Chinese with English abstract
    [32] REILLY C, NICOL A, WALSH J J, et al., 2015. Evolution of faulting and plate boundary deformation in the Southern Taranaki Basin, New Zealand[J]. Tectonophysics, 651-652: 1-18. doi: 10.1016/j.tecto.2015.02.009
    [33] ROTEVATN A, JACKSON C A L, TVEDT A B M, et al., 2019. How do normal faults grow?[J]. Journal of Structural Geology, 125: 174-184. doi: 10.1016/j.jsg.2018.08.005
    [34] RUBINAT C M, 2012. Basement fault influence on the Bicorb-Quesa salt wall kinematics, insights from magnetotelluric and paleomagnetic techniques on salt tectonics[J].
    [35] SIBSON R H, 1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191-213. doi: 10.1144/gsjgs.133.3.0191
    [36] SONG G Z, WANG H, GAN H J, et al., 2013. Slope-break and its control on sequence, sedimentation and hydrocarbon accumulation of upper Es4 in Zhengnan area, Dongying sag[J]. Journal of Central South University (Science and Technology), 44(8): 3415-3424. (in Chinese with English abstract
    [37] SONG Y D, 2010. Study on structural characteristics and the favorable exploration zones of the middle-northern area in Raoyang sag[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract
    [38] SU Z F, 2006. Regional sequence stratigraphic correlation and predication of favorable lithologic & stratigraphic traps zones for palaeogene in Jiyang depression[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [39] SU Z F, XUE Y M, DENG H W, et al., 2008. Construction styles, distribution features and genetic dynamics of the paleogene sequence boundaries in Jiyang depression[J]. Acta Geoscientica Sinica, 29(4): 459-468. (in Chinese with English abstract
    [40] TONG M H, NIE J Y, MENG L J, et al., 2009. The law of basement pre-existing fabric controlling fault formation and evolution in rift basin[J]. Earth Science Frontiers, 16(4): 97-104. (in Chinese with English abstract
    [41] WANG W F, ZHOU W W, ZHOU J, et al., 2014. Formation mechanism and distribution of buried fault zones in the Jinhu sag[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1395-1405. (in Chinese with English abstract
    [42] WANG W F, ZHOU W W, SHAN X J, et al., 2015. Characteristics of hidden fault zone and its significance in geology in sedimentary basin[J]. Journal of Central South University (Science and Technology), 46(6): 2236-2243. (in Chinese with English abstract
    [43] WANG W F, ZHOU W W, XU S L, 2017. Formation and evolution of concealed fault zone in sedimentary basins and its significance in hydrocarbon accumulation[J]. Earth Science, 42(4): 613-624. (in Chinese with English abstract
    [44] WU Z P, CHEN W, XUE Y, et al., 2010. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica, 84(4): 570-578. (in Chinese with English abstract
    [45] XU C G, DU X F, PANG X J, et al., 2022. The source-sink system and its control on large-area lithologic reservoirs of the lower Minghuazhen Formation in the southern Bohai Sea[J]. Journal of Geomechanics, 28(5): 728-742. (in Chinese with English abstract
    [46] XUE Y A, LI H Y, XU P, et al., 2021a. Recognition of oil and gas accumulation of Mesozoic covered buried hills in Bohai sea area and the discovery of BZ 13-2 oilfield[J]. China Offshore Oil and Gas, 33(1): 13-22. (in Chinese with English abstract
    [47] XUE Y A, LV D Y, HU Z W, et al., 2021b. Tectonic development of subtle faults and exploration in mature areas in Bohai Sea, East China[J]. Petroleum Exploration and Development, 48(2): 233-246. (in Chinese with English abstract
    [48] YANG Y Y, 2008. Growth and development: the whole process of human development[M]. Beijing: People's Medical Publishing House. (in Chinese)
    [49] ZHANG D M, WANG P, ZANG D G, et al., 2023. Pre-Stack Reservoir Prediction of Tight Sandstone of the Fifth Member of Xujiahe Formation in the Wubaochang Area of Northeastern Sichuan[J]. Geology and Exploration, 59(6): 1356-1365. (in Chinese with English abstract
    [50] ZHAO Y J, 2007. The research of basin structure and filling characteristics of palaeogene in Dongying depression[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract
    [51] ZHOU J L, 2008. Migration and accumulation of oil-gas in Shengtuo areas of Dongying depression, Bohai Bay basin[J]. Natural Gas Geoscience, 19(5): 587-592. (in Chinese with English abstract
    [52] ZHOU W W, DONG Y P, XIAO C A, et al., 2023. Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag[J]. Earth Science, 48(07): 2718-2732. (in Chinese with English abstract
    [53] ZHOU W W, WANG W F, AN B, et al., 2014. Identification of potential fault zones and its geological significance in Bohai Bay basin[J]. Earth Science—Journal of China University of Geosciences, 39(11): 1527-1538. (in Chinese with English abstract
    [54] ZHOU W W, 2015. Characteristic of concealed fault zone and its significance in hydrocarbon accumulation in Bohai Bay basin[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract
    [55] ZHOU W W, Zhao C Q, Chang H. Effect of intensity of sedimentary cover deformation on hydrocarbon accumulation in Dongying Sag, Bohai Bay Basin, China[J]. Scientific Reports, 2024, 14(1): 677.
    [56] 陈刚,蒋弋平,周建新,等,2008. 用古落差法研究沙埝地区断层活动强度[J]. 小型油气藏,13(2):7-10.
    [57] 邓路佳,吴孔友,焦红岩,等,2022. 渤海湾盆地东营凹陷现河矿区古近系断裂体系及形成演化[J]. 地质力学学报,28(3):480-491. doi: 10.12090/j.issn.1006-6616.2021139
    [58] 杜焕福,孙鑫,王春伟,等,2023. 东营凹陷页岩油双甜点录井解释评价方法研究[J]. 矿产勘查,14(3):480-490.
    [59] 付晓飞,许鹏,魏长柱,等,2012. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘,19(6):200-212.
    [60] 付晓飞,孙兵,王海学,等,2015. 断层分段生长定量表征及在油气成藏研究中的应用[J]. 中国矿业大学学报,44(2):271-281.
    [61] 付晓飞,宋宪强,王海学,等,2021. 裂陷盆地断层圈闭含油气有效性综合评价:以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发,48(4):677-686. doi: 10.11698/PED.2021.04.01
    [62] 姜帅,2019. 济阳坳陷断裂年龄阶段判别及控藏作用研究[D]. 青岛:中国石油大学(华东).
    [63] 蒋有录,刘培,宋国奇,等,2015. 渤海湾盆地新生代晚期断层活动与新近系油气富集关系[J]. 石油与天然气地质,36(4):525-533. doi: 10.11743/ogg20150401
    [64] 罗群,1999. “断裂控烃理论”概要[J]. 勘探家,4(3):8-14.
    [65] 罗群,2007. 断裂控烃理论的提出及其意义[C]//中扬子及周缘油气成藏地质要素学术研讨会论文集. 钟祥:湖北省石油学会地质专业委员会:15-29.
    [66] 罗群,2010. 断裂控烃理论的概念、原理、模式与意义[J]. 石油勘探与开发,37(3):316-324.
    [67] 马晖,2005. 济阳坳陷下第三系构造特征及其对层序的控制作用[D]. 广州:中国科学院广州地球化学研究所.
    [68] 屈童, 黄志龙, 王瑞, 等,2021. 全球特提斯域煤系烃源岩发育特征及其控制因素[J]. 煤田地质与勘探,49(5):114-131
    [69] 宋广增,王华,甘华军,等,2013. 东营凹陷郑南地区沙四上亚段坡折带对层序、沉积与油气成藏控制[J]. 中南大学学报(自然科学版),44(8):3415-3424.
    [70] 苏宗富,2006. 济阳坳陷古近系区域层序地层对比与岩性—地层圈闭有利区带预测[D]. 北京:中国地质大学(北京).
    [71] 苏宗富,薛艳梅,邓宏文,等,2008. 济阳坳陷古近系层序界面构建样式、分布特征及其成因动力学分析[J]. 地球学报,29(4):459-468. doi: 10.3321/j.issn:1006-3021.2008.04.008
    [72] 童亨茂,聂金英,孟令箭,等,2009. 基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J]. 地学前缘,16(4):97-104. doi: 10.3321/j.issn:1005-2321.2009.04.010
    [73] 王伟锋,周维维,周杰,等,2014. 金湖凹陷隐性断裂带形成机制及分布[J]. 吉林大学学报(地球科学版),44(5):1395-1405.
    [74] 王伟锋,周维维,单新建,等,2015. 沉积盆地隐性断裂带特征及其地质意义[J]. 中南大学学报(自然科学版),46(6):2236-2243. doi: 10.11817/j.issn.1672-7207.2015.06.035
    [75] 王伟锋,周维维,徐守礼,2017. 沉积盆地断裂趋势带形成演化及其控藏作用[J]. 地球科学,42(4):613-624.
    [76] 吴智平,陈伟,薛雁,等,2010. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报,84(4):570-578.
    [77] 徐长贵,杜晓峰,庞小军,等,2022. 渤海南部明化镇组下段源-汇体系及其对大面积岩性油气藏的控制作用[J]. 地质力学学报,28(5):728-742. doi: 10.12090/j.issn.1006-6616.20222813
    [78] 薛永安,李慧勇,许鹏,等,2021a. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现[J]. 中国海上油气,33(1):13-22.
    [79] 薛永安,吕丁友,胡志伟,等,2021b. 渤海海域隐性断层构造发育特征与成熟区勘探实践[J]. 石油勘探与开发,48(2):233-246.
    [80] 杨云衣,2008. 生长与发育:人类发展全过程[M]. 北京:人民卫生出版社.
    [81] 张德明,王鹏,臧殿光,等,2023. 川东北五宝场地区须五段致密砂岩叠前储层预测[J]. 地质与勘探,59(6):1356-1365. doi: 10.12134/j.dzykt.2023.06.020
    [82] 赵延江,2007. 东营凹陷古近系盆地结构与充填特征研究[D]. 广州:中国科学院广州地球化学研究所.
    [83] 周建林,2008. 渤海湾盆地东营凹陷胜坨地区油气运聚与成藏研究[J]. 天然气地球科学,19(5):587-592. doi: 10.11764/j.issn.1672-1926.2008.05.587
    [84] 周维维,董有浦,肖安成,等,2023. 东营凹陷基底断裂走滑活动对油气成藏的影响[J]. 地球科学,48(7):2718-2732.
    [85] 周维维,王伟锋,安邦,等,2014. 渤海湾盆地隐性断裂带识别及其地质意义[J]. 地球科学—中国地质大学学报,39(11):1627-1638.
    [86] 周维维,2015. 渤海湾盆地断裂趋势带特征及控油作用[D]. 青岛:中国石油大学(华东).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  16
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-12-15
  • 录用日期:  2024-01-08
  • 预出版日期:  2024-07-15
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回