留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用

刘航源 陈伟涛 李远耀 徐战亚 李显巨

刘航源,陈伟涛,李远耀,等,2024. 基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用[J]. 地质力学学报,30(4):633−646 doi: 10.12090/j.issn.1006-6616.2023145
引用本文: 刘航源,陈伟涛,李远耀,等,2024. 基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用[J]. 地质力学学报,30(4):633−646 doi: 10.12090/j.issn.1006-6616.2023145
LIU H Y,CHEN W T,LI Y Y,et al.,2024. Application of integrated model based on EEMD-CNN-LSTM for landslide-displacement prediction[J]. Journal of Geomechanics,30(4):633−646 doi: 10.12090/j.issn.1006-6616.2023145
Citation: LIU H Y,CHEN W T,LI Y Y,et al.,2024. Application of integrated model based on EEMD-CNN-LSTM for landslide-displacement prediction[J]. Journal of Geomechanics,30(4):633−646 doi: 10.12090/j.issn.1006-6616.2023145

基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用

doi: 10.12090/j.issn.1006-6616.2023145
基金项目: 湖北省重点研发计划(2021BID009);地质探测与评估教育部重点实验室主任基金项目(GLAB2022ZR02)
详细信息
    作者简介:

    刘航源(2000—),男,在读硕士,主要从事地质环境智能解译方面的科研工作。Email:hangyuan.liu@cug.edu.cn

    通讯作者:

    陈伟涛(1980—),男,博士,教授,主要从事遥感地质解译及应用方面的科研与教学工作。Email:wtchen@cug.edu.cn

  • 中图分类号: P642.22;P232

Application of integrated model based on EEMD-CNN-LSTM for landslide-displacement prediction

Funds: This research is financially supported by the Hubei Province Key Research and Development Program (Grant No. 2021BID009) and the Director’s Fund for the Key Laboratory of Geological Survey and Evaluation of Ministry of Education (Grant No. GLAB2022ZR02).
  • 摘要: 滑坡位移预测是滑坡稳定性评价的重要环节。尽管基于深度学习范式的时间序列方法预测滑坡位移取得了一定的成果,但由于滑坡位移数据的非平稳性、周期性和趋势性变化特征,导致当前时间序列模型的滑坡位移的多变量预测容易过拟合。为解决这一问题,针对滑坡位移数据的波动性和由周期项与趋势项位移叠加组成的特性,提出一种基于孤立森林(Isolation Forest,IF)异常检测、集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM) 相结合的滑坡位移预测模型。选择三峡库区以降雨为影响因子的阶跃型白家包滑坡为研究对象,引入IF算法对滑坡原始位移数据进行异常检测,使用EEMD方法提取滑坡趋势项和周期项位移,通过CNN捕捉局部周期项和趋势模式,并基于LSTM模型预测总体位移。结果表明,EEMD-CNN-LSTM在预测降雨情况时滑坡总体位移的均方根误差(RMSE)、平均绝对误差(MAE)、评价绝对百分比误差(MAPE)和决定系数(R2)4种指标分别为0.4190、0.3139、0.2379和0.9997,前3种精度评价指标较现有模型分别提升32.3%、25.1%、7.3%。相较于传统的LSTM模型、随机森林方法和EEMD-LSTM方法,EEMD-CNN-LSTM模型在有、无降雨这一外部影响因素下具有显著优势,能够较大地降低过拟合,提高预测的准确性。

     

  • 图  1  CNN在EEMD-CNN-LSTM模型中的总体流程

    Figure  1.  Overall flow of CNN in EEMD-CNN-LSTM model

    图  2  LSTM网络结构

    注:ht-1—上一时刻的输出;ht—当前时刻的输出;ct-1—上一时刻状态;ct—当前状态;xt—当前输入;it—输入门;ft—遗忘门;ot—输出门

    Figure  2.  LSTM network architecture

    Note:ht-1−output of previous moment; ht−output of current moment; ct-1−previous-moment-status; ct−current status; xt−current input; it−input gate; ft−forget gate; ot−output gate.

    图  3  基于EEMD-CNN-LSTM模型的滑坡位移预测流程图

    Figure  3.  Flow chart of landslide-displacement prediction based on EEMD-CNN-LSTM model

    图  4  白家包滑坡及布设点位示意图

    Figure  4.  Schematic illustration of Baijiabao landslide and laying point

    图  5  白家包滑坡剖面图(剖面具体位置见图4)

    Figure  5.  Section view of the Baijiabao landslide

    图  6  数据预处理

    a—异常值检测;b—异常值剔除

    Figure  6.  Data preprocessing:

    (a) Outlier detection; (b) Outlier culling

    图  7  EMD与EEMD模型的分解结果对比

    a—EMD模型;b—EEMD模型

    Figure  7.  Comparison of decomposition results between EMD and EEMD:

    (a) EMD model; (b) EEMD model

    图  8  EEMD-CNN-LSTM模型对滑坡位移趋势项的预测结果

    a—降雨情况下;b—无降雨情况下

    Figure  8.  Prediction results of EEMD-CNN-LSTM model for displacement-trend terms of landslide:

    (a) With rainfall; (b) Without rainfall

    图  9  EEMD-CNN-LSTM模型对滑坡位移周期项的预测结果

    a—降雨情况下;b—无降雨情况下

    Figure  9.  Prediction results of EEMD-CNN-LSTM model for landslide-periodic displacement:

    (a) With rainfall; (b) Without rainfall

    图  10  EEMD-CNN-LSTM模型与EEMD-LSTM模型对滑坡位移趋势项预测结果对比

    a—EEMD-CNN-LSTM模型;b—EEMD-LSTM模型

    Figure  10.  Prediction results of EEMD-CNN-LSTM and EEMD-LSTM models for displacement-trend terms of landslide:

    (a) EEMD-CNN-LSTM model; (b) EEMD-LSTM model

    图  11  EEMD-CNN-LSTM模型与EEMD-LSTM模型对滑坡位移周期项预测结果对比

    a—EEMD-CNN-LSTM模型;b—EEMD-LSTM模型

    Figure  11.  Prediction results of EEMD-CNN-LSTM and EEMD-LSTM models for landslide periodic displacement

    (a) EEMD-CNN-LSTM model; (b) EEMD-LSTM model

    图  12  EEMD-CNN-LSTM模型对白家包滑坡位移预测结果

    Figure  12.  Landslide-displacement prediction results of EEMD-LSTM model

    图  13  EEMD-CNN-LSTM模型、EEMD-LSTM模型和LSTM模型以及随机森林模型对滑坡位移预测结果与真实值的对比(ZD1监测点)

    a—有降雨情况下;b—无降雨情况下

    Figure  13.  Prediction results of EEMD-CNN-LSTM, EEMD-LSTM, LSTM, and random-forest models for ZD1

    (a) With rainfall; (b) Without rainfall

    图  14  EEMD-CNN-LSTM模型、EEMD-LSTM模型、LSTM模型和随机森林模型对滑坡位移预测结果与真实值的对比(ZD2监测点)

    a—有降雨情况下;b—无降雨情况下

    Figure  14.  Prediction results of EEMD-CNN-LSTM, EEMD-LSTM, LSTM, and random-forest models for ZD2

    (a) With rainfall; (b) Without rainfall

    表  1  ZD2监测点EEMD-CNN-LSTM模型、EEMD-LSTM模型、LSTM模型和随机森林模型对滑坡位移预测结果的性能评价

    Table  1.   Performance evaluation of ZD2 prediction results for EEMD-CNN-LSTM, EEMD-LSTM, LSTM, and random-forest models (with/without rainfall)

    模型类型RMSE/mmMAE/mmMAPE/%R2
    EEMD-CNN-LSTM0.4302/0.41900.2908/0.31390.2431/0.23790.9996/0.9997
    EEMD-LSTM0.6249/0.61870.4259/0.41930.2642/0.25670.9983/0.9983
    LSTM1.9925/3.41021.3365/2.72970.7888/1.57780.9812/0.9449
    随机森林0.8391/1.03290.6365/0.73160.5078/0.57620.9890/0.9885
    注:“/”前为降雨下的结果;“/”后为无降雨下的结果
    下载: 导出CSV
  • [1] AN D, SONG K, YI Z, et al., 2021. A prediction model for reservoir landslide step-like displacements using combined EEMD and RFR method[J]. Mountain Research, 39(1): 143-150. (in Chinese with English abstract
    [2] BINIYAZ A, AZMOON B, SUN Y, et al., 2022. Long short-term memory based subsurface drainage control for rainfall-induced landslide prevention[J]. Geosciences, 12(2): 64. doi: 10.3390/geosciences12020064
    [3] FENG Y, ZENG H N, TU P F, 2023. A time series decomposition method for landslide displacement based on sliding detection algorithm[J]. Journal of Changjiang River Scientific Research Institute, 41(3): 126-133, 147. (in Chinese with English abstract
    [4] FU W T, HU D M, WANG S H, et al. , 2020. Landslide displacement prediction based on EEMD-GM-ELM model[C]//Proceedings of the 11th China satellite navigation annual conference: S01 satellite navigation industry application. Beijing: Academic Exchange Center of China Satellite Navigation System Management Office: 89-93. (in Chinese with English abstract
    [5] HAN S, LIU M J, WU J B, et al., 2022. Risk assessment of slope disasters induced by typhoon-rainfall in the southeast coastal area, China: A case study of the Shiyang north slope[J]. Journal of Geomechanics, 28(4): 583-595. (in Chinese with English abstract
    [6] HARIRI S, KIND M C, BRUNNER R J, 2021. Extended isolation forest[J]. IEEE Transactions on Knowledge and Data Engineering, 33(4): 1479-1489. doi: 10.1109/TKDE.2019.2947676
    [7] JIANG H W, LI Y Y, ZHOU C, et al., 2020. Landslide displacement prediction combining LSTM and SVR algorithms: a case study of Shengjibao landslide from the three gorges reservoir area[J]. Applied Sciences, 10(21): 7830. doi: 10.3390/app10217830
    [8] KANG E S, ZHAO Z X, MENG H D, 2022. Displacement prediction of dump slope based on EEMD-HW-PSO-ELM coupling model[J]. Gold Science and Technology, 30(4): 594-602. (in Chinese with English abstract
    [9] KATTENBORN T, LEITLOFF J, SCHIEFER F, et al., 2021. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 173: 24-49. doi: 10.1016/j.isprsjprs.2020.12.010
    [10] KRKAČ M, ŠPOLJARIĆ D, BERNAT S, et al., 2017. Method for prediction of landslide movements based on random forests[J]. Landslides, 14(3): 947-960. doi: 10.1007/s10346-016-0761-z
    [11] Aggarwal A, Alshehri M, Kumar M, et al., 2020. Landslide data analysis using various time-series forecasting models[J]. Computers & Electrical Engineering, 88: 106858.
    [12] LEI Y G, LIN J, HE Z J, et al., 2013. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 35(1-2): 108-126. doi: 10.1016/j.ymssp.2012.09.015
    [13] LI H J, XU Q, HE Y S, et al., 2018. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models[J]. Landslides, 15(10): 2047-2059. doi: 10.1007/s10346-018-1020-2
    [14] LI L J, YAO X, ZHOU Z K, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir[J]. Journal of Geomechanics, 28(2): 281-293. (in Chinese with English abstract
    [15] LIAN C, ZENG Z G, YAO W, et al., 2013. Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine[J]. Natural Hazards, 66(2): 759-771. doi: 10.1007/s11069-012-0517-6
    [16] LIU F T, TING K M, ZHOU Z H, 2008. Isolation forest[C]//2008 Eighth IEEE international conference on data mining. Pisa: IEEE: 413-422.
    [17] MA Y, YU B, HE Y X, et al., 2023. Rainfall Threshold and Development Characteristics of Shallow Landslides Induced by Rainfall: A Case Study of the "June 10th, 2019" Disaster in the Dajishan Area, Quannan County, Jiangxi Province[J]. Geology and Exploration, 59(5): 1065-1073. (in Chinese with English abstract
    [18] NAN X C, LIU J F, ZHANG Y X, et al., 2023. Dynamic prediction of landslide displacement based on multi-source time series[J]. Pearl River, 44(4): 54-62. (in Chinese with English abstract
    [19] PAK U, KIM C, RYU U, et al. , 2018. A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction[J]. Air Quality, Atmosphere & Health, 11(8): 883-895.
    [20] PENG L, NIU R Q, 2011. Analysis on deformation characteristics and influential factors of Baijiabao landslide in the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 22(4): 1-7. (in Chinese with English abstract
    [21] QU J L, WANG X F, GAO F, et al., 2014. Noise assisted signal decomposition method based on complex empirical mode decomposition[J]. Acta Physica Sinica, 63(11): 110201. (in Chinese with English abstract doi: 10.7498/aps.63.110201
    [22] SHANG M, XIONG D B, ZHANG H Q, et al., 2022. Landslide displacement prediction model based on time series and mixed kernel function SA-SVR[J]. Journal of Engineering Geology, 30(2): 575-588. (in Chinese with English abstract
    [23] SHI X L, HAN X D, YANG X Y, et al., 2023. Factors inducing the Xigouwan landslide in the Three Gorges Reservoir area and the influence of antecedent precipitation[J]. Journal of Geomechanics, 29(2): 253-263. (in Chinese with English abstract
    [24] SINGH P, KEYVANLOU M, SADHU A, 2021. An improved time-varying empirical mode decomposition for structural condition assessment using limited sensors[J]. Engineering Structures, 232: 111882. doi: 10.1016/j.engstruct.2021.111882
    [25] SUN D L, CHEN D L, MI C L, et al., 2023. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model[J]. Journal of Geomechanics, 29(2): 202-219. (in Chinese with English abstract
    [26] SUN N K, WANG Y, JI Z C, 2022. Anomaly detection method of electrical power consumption based on deep autoencoder[J]. Journal of System Simulation, 34(12): 2557-2565. (in Chinese with English abstract
    [27] WANG C H, ZHAO Y J, GUO W, et al., 2022. Displacement prediction model of landslide based on ensemble empirical mode decomposition and support vector regression[J]. Acta Geodaetica et Cartographica Sinica, 51(10): 2196-2204. (in Chinese with English abstract
    [28] WANG Y K, TANG H M, HUANG J S, et al., 2022. A comparative study of different machine learning methods for reservoir landslide displacement prediction[J]. Engineering Geology, 298: 106544. doi: 10.1016/j.enggeo.2022.106544
    [29] WU J N, 2021. Research on landslide geological disaster prediction method based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China. (in Chinese with English abstract
    [30] WU Z H, HUANG N E, 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [31] XU S L, NIU R Q, 2018. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges Area, China[J]. Computers & Geosciences, 111: 87-96.
    [32] XU Z H, YANG X, SUN Q C, et al. , 2022. Step-type landslide deformation prediction based on multivariable self-optimizing dynamic neural network[J]. Metal Mine(3): 74-82. (in Chinese with English abstract
    [33] YAN S J, TANG H M, XIANG W, 2007. Effect of rainfall on the stability of landslides[J]. Hydrogeology & Engineering Geology, 34(2): 33-36. (in Chinese with English abstract
    [34] YANG B B, YIN K L, DU J, 2018. A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 37(10): 2334-2343. (in Chinese with English abstract
    [35] YANG B B, YIN K L, LACASSE S, et al., 2019. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 16(4): 677-694. doi: 10.1007/s10346-018-01127-x
    [36] YAO W M, LI C D, ZUO Q J, et al., 2019. Spatiotemporal deformation characteristics and triggering factors of Baijiabao landslide in three gorges reservoir region, China[J]. Geomorphology, 343: 34-47. doi: 10.1016/j.geomorph.2019.06.024
    [37] YUAN W, SUN R F, ZHONG H Y, et al., 2023. Research on comprehensive deformation prediction and monitoring and early warning methods for step-type like landslide[J]. Journal of Hydraulic Engineering, 54(4): 461-473. (in Chinese with English abstract
    [38] ZHOU C, YIN K L, CAO Y, et al., 2018. A novel method for landslide displacement prediction by integrating advanced computational intelligence algorithms[J]. Scientific Reports, 8(1): 7287. doi: 10.1038/s41598-018-25567-6
    [39] 安冬,宋琨,仪政,等,2021. 一种基于EEMD-RFR的水库滑坡台阶状位移预测模型[J]. 山地学报,39(1):143-150.
    [40] 冯谕,曾怀恩,涂鹏飞,2023. 一种滑动检测算法下的滑坡位移时序分解方法[J]. 长江科学院院报,41(3):126-133,147.
    [41] 付文涛,胡丁梅,王守华,等,2020. 基于EEMD-GM-ELM模型的滑坡位移预测[C]//第十一届中国卫星导航年会论文集:S01卫星导航行业应用. 北京:中国卫星导航系统管理办公室学术交流中心:89-93.
    [42] 韩帅,刘明军,伍剑波,等,2022. 东南沿海台风暴雨型单体斜坡灾害风险评价:以泰顺仕阳北坡为例[J]. 地质力学学报,28(4):583-595. doi: 10.12090/j.issn.1006-6616.2021168
    [43] 康恩胜,赵泽熙,孟海东,2022. 基于EEMD-HW-PSO-ELM耦合模型的排土场边坡位移预测模型[J]. 黄金科学技术,30(4):594-602.
    [44] 李凌婧,姚鑫,周振凯,等,2022. Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价:以溪洛渡水库为例[J]. 地质力学学报,28(2):281-293.
    [45] 马 煜,余 斌,何元勋,等,2023. 降雨激发浅层滑坡发育特征与阈值研究:以江西省全南县大吉山“2019.6. 10”灾害为例[J]. 地质与勘探,59(5):1065-1073. doi: 10.12134/j.dzykt.2023.05.012
    [46] 南骁聪,刘俊峰,张永选,等,2023. 基于多源时间序列的滑坡位移动态预测[J]. 人民珠江,44(4):54-62.
    [47] 彭令,牛瑞卿,2011. 三峡库区白家包滑坡变形特征与影响因素分析[J]. 中国地质灾害与防治学报,22(4):1-7. doi: 10.3969/j.issn.1003-8035.2011.04.001
    [48] 曲建岭,王小飞,高峰,等,2014. 基于复数据经验模态分解的噪声辅助信号分解方法[J]. 物理学报,63(11):110201. doi: 10.7498/aps.63.110201
    [49] 尚敏,熊德兵,张惠强,等,2022. 基于时间序列与混合核函数SA-SVR的滑坡位移预测模型研究[J]. 工程地质学报,30(2):575-588.
    [50] 史学磊,韩旭东,杨秀元,等,2023. 三峡库区溪沟湾滑坡的诱发因素及前期降雨影响[J]. 地质力学学报,29(2):253-263. doi: 10.12090/j.issn.1006-6616.2022049
    [51] 孙德亮,陈丹璐,密长林,等,2023. 基于随机森林-特征递归消除模型的可解释性缓丘岭谷地貌滑坡易发性评价[J]. 地质力学学报,29(2):202-219. doi: 10.12090/j.issn.1006-6616.2022128
    [52] 孙宁可,王艳,纪志成,2022. 基于深度自编码器的电力能耗异常检测方法[J]. 系统仿真学报,34(12):2557-2565.
    [53] 王晨辉,赵贻玖,郭伟,等,2022. 滑坡位移EEMD-SVR预测模型[J]. 测绘学报,51(10):2196-2204. doi: 10.11947/j.AGCS.2022.20220291
    [54] 吴俊男,2021. 基于深度学习的滑坡地质灾害预测方法研究[D]. 成都:电子科技大学.
    [55] 徐志华,杨旭,孙钱程,等,2022. 基于多变量自优化动态神经网络的“阶跃型”滑坡变形预测[J]. 金属矿山(3):74-82.
    [56] 严绍军,唐辉明,项伟,2007. 降雨对滑坡稳定性影响过程分析[J]. 水文地质工程地质,34(2):33-36. doi: 10.3969/j.issn.1000-3665.2007.02.008
    [57] 杨背背,殷坤龙,杜娟,2018. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报,37(10):2334-2343.
    [58] 袁维,孙瑞峰,钟辉亚,等,2023. 阶跃型滑坡综合变形预测及监测预警方法研究[J]. 水利学报,54(4):461-473.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  60
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2024-01-07
  • 录用日期:  2024-01-09
  • 预出版日期:  2024-01-19
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回