Theoretical innovation and applications of ore-field tectonic lithofacies mapping
-
摘要: 开展成矿蚀变−构造岩相解析建相和建模预测研究已成为矿田构造与找矿预测的创新方向之一。文章对国内外8类重要的成矿蚀变−构造岩相模型和形成机制进行论述总结,南美洲智利科皮亚波地区IOCG型矿田受到主岛弧带−弧相关盆地及岩浆叠加−盆地变形样式的复合控制,而中国云南东川沉积岩型铜矿床(SSC型)+IOCG型铁铜矿田受陆缘裂谷盆地、盆地变形构造样式和岩浆叠加侵入构造系统的复合控制。中国内蒙古甲−查浅成低温热液型银铅锌矿田受火山洼地、火山穹隆构造、火山岩岩相类型和火山热液隐爆角砾岩的复合控制,而深成岩浆弧控制了蒙古国南戈壁斑岩型金铜钼−浅成低温热液金银矿田;中国秦岭热水沉积型(SEDEX)银铜铅锌−菱铁矿−重晶石矿田受到陆缘拉分盆地内三级热水沉积盆地、同生断裂带和热水沉积岩相的控制。大陆造山带内不同层次的脆韧性剪切带,控制了金矿田和金钼多金属矿田定位。在新疆塔西盆−山−原镶嵌区盆地系统内,侏罗系煤系烃矿源岩是金属矿田和天然气气田的成矿成藏物质供给源区;乌拉根砂砾岩型天青石−铅锌矿田受到山前挤压—伸展转换盆地、气成热流柱构造和山前冲断褶皱带的复合控制;萨热克铜多金属矿田赋存于旱地扇杂砾岩,受到对冲式厚皮型逆冲推覆断裂带和幔源热流柱带的复合控制。其中在矿集区−矿田尺度上,电气石热流柱构造、岩浆气囊构造、复合岩溶构造岩相等是成矿蚀变−构造岩相的3种新类型;在归纳前期对矿田构造岩相、矿田构造古地理单元和典型矿田构造岩相形成机制研究基础上,文章提出了矿田成矿蚀变−构造岩相类型的新划分方法和划分原则方案,并划分确定了12种变形构造岩相类型。研究成果为矿田构造研究和找矿预测提供了新理论和新方法支撑。Abstract:
Objective In the matter of material architecture, the diagenetic-metallogenic system may be classified into lithofacies of root-feeders (metallogenic material feeders), lithofacies of structural channel (migration of diagenetic-metallogenic material), lithofacies of closed-reservoir space (unloading-enriching room of diagenetic-metallogenic material), and lithofacies of surrounding rock alteration (water–fluid–rock system of diagenetic-metallogenic material). Ore-field tectonic lithofacies mapping and detailed analysis of the formation mechanism of different types of tectonic lithofacies aid in identifying and delineating in-situ diagenetic-metallogenic systems at the scale of ore clusters and ore fields. These approaches also reveal the formation mechanisms of resources, energy, and minerals, marking it as an innovative direction in ore-field structure and prospecting prediction. In order to promote and deepen the research and understanding of tectonic lithofacies and prospecting prediction in ore fields, this article focused on the lithofacies establishment and modeling predictions on the mineralization-alteration-tectonics-lithofacies, discussing and exploring eight important types of mineralization-alteration-tectonics-lithofacies models and their formation mechanisms domestically and internationally. Methods The article carried out ore field tectonic lithofacies mapping and detailed analysis of the formation mechanism of different types of tectonic lithofacies in order to recognize and delineate in situ diagenetic-metallogenic systems at the scale of ore clusters and ore fields. Results Eight models and formation mechanisms for the mineralization-alteration-tectonics-lithofacies at the scale of ore-field tectonic lithofacies were discussed in this study. The IOCG-type ore field in the Copiapo area of Chile is controlled by the main arc belt, arc-related basins, magmatic superimposing and basin–deformation style. However, the SSC-type Cu deposit and the IOCG-type ore field in the Dongchuan area of Yunnan in southwestern China are located at the marginal rift basin with different styles of basin deformation and reworked by the magmatic superimposing tectonic system. The Jia–Cha epithermal Au-Ag-Pb-Zn ore-field in Inner Mongolia of northern China is dominated by volcanic lake-basin, volcanic dome structure, facies-type of volcanic rocks, and volcanic hydrothermal crypto-explosive breccias, whereas porphyry Cu-Mo-Au and epithermal Au-Cu ore-fields in the South Gebi area of Mongolia are formed in the Devonian–Carboniferous plutonic magmatic arc. The Sedex-type Ag-Cu-Pb-Zn-Ba-Fe ore-field in the Qinling orogeny of central China is shaped by the three-order sub-basin, syngenesis fault, and facies of hydrothermal sedimentary rock in the marginal pull-apart basin. However, gold and Au-Mo-polymetallic ore fields are dominated by different scales of the brittle-ductile shear zones in the orogenic belt. Migrations of the ore-reservoir-forming matters for metallic ore field and gas field are derived from the Jurassic coal-measure hydrocarbon-metal-bearing source rocks in the western Tarim of basin-mountain-plateau mosaic structure in western China. The Wulagen glutenite-type celesite-Pb-Zn ore field located at the piedmont compression to extension conversion basin is coupled by the pneumatogenic plume and superimposed by the piedmont thrust-fold belt. The Sareke glutenite-type Cu-polymetallic ore-field hosted at irony glutenite of the dry-fan facies in the tail-end lake basin is reworked by the hedging-style, base-type thrust fold belt and superimposed by mantle-derived hydrothermal plume. Conclusion Eight models and formation mechanisms for the mineralization-alteration-tectonics-lithofacies at the scale of ore field tectonic lithofacies were discussed in this study based on a review of ore-field tectonics. The tourmaline-rich plume tectonics, magmatic gasbag structure, and compound karsting tectonic lithofacies are three new types of mineralization-alteration-tectonics-lithofacies. Ore-field tectonic paleogeographic unit and formation mechanism of important ore-field tectonic lithofacies, new classification methods and principles of the mineralization-alteration-tectonics-lithofacies and 12 different types of deformational tectonic lithofacies were established in this essay. Significance All achievements in this study have established a new foundation for tectonic lithofacies mapping and ore prediction. -
石林是贵州喀斯特地貌景观的重要组成部分,主要集中分布于黔西南的兴义、贞丰、晴隆,黔中的黄果树、贵阳、修文和瓮安,黔西北的赫章,以及黔东的思南等县(市),它既是一种珍贵的地质遗产,也是十分重要的风景资源和高品位旅游资源。李兴中等[1]研究指出,在众多贵州石林中,成林规模较大、具有旅游开发价值的石林主要有兴义泥凼、兴义万峰湖、贞丰竹林堡、晴隆老万场、黄果树天星桥、修文大石和思南长坝7个景区。
贞丰竹林堡石林位于贞丰县城北北西方向12 km,是三岔河省级风景名胜区的重要组成部分。地理坐标为东经105°37′12″—105°39′42″;北纬25°28′29″—25°29′19″,面积超过2 km2。贞丰县城岷谷镇至牛场镇的公路从石林景区通过,交通方便。竹林堡石林是贵州省目前唯一坐落于早三叠世奥伦期相变带上白云岩溶蚀峰林中并具经济开发价值的石林。石林被峰林环抱,在同一景区既可以观赏石林,又可以观赏峰林,这正是竹林堡石林独具一格的特色所在。
1. 地质背景及成景条件
石林景区的大地构造位置位于华南板块内的扬子陆块,区域构造属于贞丰北西向背斜的北东翼,岩层产状较缓。1:50000区调资料表明,竹林堡附近发育一个由3条断层组成的断裂带,断层走向为北东25°—30°。竹林堡石林形成于断夹块中,并跨越下三叠统永宁镇组与安顺组岩相变化带(见图 1)。景区附近出露地层自下而上为夜郎组,安顺组和永宁镇组。
图 1 贞丰竹林堡石林地质略图(据文献[1]修改)1—下三叠统安顺组;2—下三叠统永宁镇组;3—下三叠统夜郎组;4—断层;5—地层界线;6—地层相变线;7—喀斯特石林及范围;8—喀斯特峰林;9—喀斯特丘陵;10—溶蚀盆地;11—溶蚀洼地;12—断层喀斯特谷;13—喀斯特大泉;14—河流及流向;15—伏流入口;16—水库;17—山峰海拔高程(m);18—公路;19—村寨;20—石林景观分区Figure 1. Geological sketch of Zhulinpu stone forest in Zhenfeng area夜郎组(T1y)可分为3个岩性段,下段以紫灰、灰绿、灰红色粉砂岩为主,夹泥质灰岩;中段为灰色中厚层状鲕粒灰岩夹紫红色中厚层状粉砂岩、黏土岩;上段主要为紫红色黏土岩与粉砂岩,夹中薄层泥质灰岩,习称“九级滩段”。出露厚度约300 m。
戎岩村子南侧见到夜郎组上段与其上覆安顺组为整合接触。接触带可分为4个岩性层(见图 2),自上而下岩性为:① 浅灰红色块状砂屑白云岩夹薄层状泥晶白云岩(安顺组下段),前者见水平层理及低角度斜层理,单层厚一般为60~80 cm,局部大于100 cm,与下伏黏土岩呈整合接触,接触带有溶洞分布;② 黄褐色黏土岩夹粉砂质黏土岩,厚18 m;③ 灰色薄层到薄板状泥质灰岩,单层厚度5~15 cm,水平层理发育,总厚15 m;④ 土黄色薄至中厚层状粉砂质黏土岩,形成负地形,厚度大于20 m。
安顺组(T1a)主要为中厚层到块状细晶白云岩,以中部所夹的杂色中薄层白云质泥岩、泥质粉砂岩为第二段标志,将本组分为3个岩性段。出露厚度300~350 m。
永宁镇组(T1yn)以中厚层状灰岩为主,中部夹泥质白云岩及泥岩,上中部夹白云岩,顶部为中薄层白云岩和泥质白云岩。出露厚度约300 m。
安顺组与永宁镇组呈相变关系,相变线位于者相至竹林堡一带,二者指状穿插特征明显。相变线西侧为永宁组灰岩,东侧为安顺组白云岩。
成景岩石为浅灰、灰色中厚层至块状泥晶—细晶白云岩与薄层纹层状白云岩互层,形成由厚到薄的韵律结构,夹溶塌角砾状白云岩。厚层块状白云岩中时见交错层理,薄层白云岩中发育鸟眼构造和帐篷构造,常见滑移折叠层。安顺组的沉积环境属于台地边缘相,沉积物形成于海岸带附近,岩石经历多次暴露、溶蚀作用,在暴露过程中帐篷构造常常发生坍塌,从而为喀斯特石林的发育创造了良好的岩石条件。
2. 石林景观特征
陈安泽等2009年对我国的石林进行了系统研究,在其《中国喀斯特石林景观研究》论著[2]中,根据石林地区石柱的高度、宽度、高宽比、面积以及海拔高度等分类模式对石林进行了划分(见表 1)。按陈氏分类,竹林堡石林属于中山—较高—中石林范畴。
表 1 石林分类[2]Table 1. Classification of stone forest按石柱高度分类 按石林面积分类 按石林海拔高度分类 低石林 石柱高一般5~10 m,个别超过10 m 小石林 0.001~1 km2 极高山、高原石林 海拔高度>3500 m 较高石林 石柱高一般10~20 m 中石林 1~10 km2 高山、高原石林 海拔高度1500~3000 m 高石林 石柱高一般15~25 m,其中有25%以上在20~30 m 大石林 10~100 km2 中山石林 500~1500 m 特高石林 石柱高一般在20 m,其中有20%以上超过30 m 特大石林 >100 km2 低山、丘陵石林 100~500 m 根据石林的景观特征差异及分布地域集中性,可将竹林堡石林景区分为2个亚区,即石林北区和石林南区,其间为溶蚀盆地所隔(见图 1)。
2.1 石林北区
区内石林分布于尖坡、纳寨、罗卜寨至竹林堡等地,海拔高度1120~1220 m,面积约1.6 km2。石林发育于溶丘洼地斜坡上,成景岩石为安顺组厚层块状至薄层状白云岩,岩层倾角较缓,一般为8°—15°(见图 3)。
石林由石柱单体或组合构成,单体的形态主要为柱状和剑状(见图 4a),石柱高一般为10~20 m,少数大于20 m,犹如一棵棵笔直挺立的树干立地而起。石柱的间隔常大于30 m,石柱间红土和可耕地时有发育。石柱参差林立,层次十分丰富,石柱表面坑、洼、孔、洞十分发育(见图 4b),垂向溶痕和溶沟不甚明显。此外,层理、帐篷构造、滑移褶皱亦是其主要的特征。石柱上常生长着小树,树根由石缝中长出,酷似天然大盆景(见图 4c)。
石柱组合形态主要有城堡状、屏风状和不规则状等。城堡状石林主要由多棵尚未裂开的石柱组合而成,城堡之间有溶沟和溶蚀廊道,人可通行畅游。屏风状石林散布于柱状石林之间,屏风高一般10~20 m,长度大于宽度,厚度一般为数米。由于岩层的结构构造、节理发育程度差异,在溶蚀风化作用下,衍生出各式各样的象形图案,有的酷似一只前行的骆驼(见图 4d),有的则像一只绵羊(见图 4e),屏风千姿百态。
2.2 石林南区
区内石林分布于纳岩、岜浩、戎岩、顶肖等地,面积约0.6 km2,由于该区更靠近安顺组与永宁镇组的相变线以及安顺组的底板(夜郎组),因此石林主要为城堡状(见图 4f)和屏风状,而柱状石林不甚发育。石林高度及其表面特征等与石林北区基本一致。
3. 美学价值探讨
石林之所以成为喀斯特地貌中最有吸引力的部分[4],主要是由于它的美学价值所在。竹林堡石林之美,正如秦刚[3]所赞:“千岩竞秀,万笋丛丛,有景有物,景物交融,如浪如涛,如黛如烟,似人行者,类鸟兽者,比比皆是,满目琳琅,遍地玑珠,令人目不暇接,抚掌称绝,仿佛置身于蓬莱仙境……”。通过初步研究,概括起来,竹林堡石林的美学特征主要体现在以下3个方面。
① 表观形态美。竹林堡石林的形态美包括两方面,一是石柱的表面形态美,在单个石柱的表面有很多节理纹和刀砍纹,坑、洼、孔、洞随处可见,展示着“瘦、漏、透、皱”之美。竹林堡石林可以说是一个天然的奇石馆;另一方面,屏风石林不仅呈现出“骆驼和羊”、“唐僧取经”、“父子情深”(见图 5)等多种象形图案,而且在一些屏风上还可清楚地看到如“帐篷构造”、“层带状结构”、“岩层挠曲”(见图 6)、“溶塌角砾支撑结构”等沉积岩的结构构造,这些沉积构造对指示成林岩石的古地理环境和石林的发育过程均有重要的科学意义。
② 空间结构美。石林景观因素或景观要素中最重要的就是石林和地形。景观的空间结构是各种景观因素在特定立地条件下按照一定规律组合,从而在地域空间表现出的景观差异,这种差异之间的相互关系就是景观空间结构。谢凝高等[5]研究认为,从地貌学的角度看,石林的宏观空间结构主要包括石林洼地、石林岩丘、石林谷地、石林岭脊、石林坡地和石林盆地等。经实地考察,这几类石林地貌在竹林堡石林均可见到。而且从石林南区向石林北区,地貌形态从以石林洼地为主逐渐变成以石林盆地为主,各种地貌形态错落有序,层次分明。这可能与石林区地表和地下水的溶蚀动力条件变化有关,因为石林南区更靠近安顺组的底板夜郎组,该组作为隔水层,在两岩组的接触带上落水洞较发育,排泄条件较好,从而更容易形成以石林洼地为主的地貌形态,石柱高大挺立。
③ 景观组合美。很多到过贵州旅游的人都知道贞丰有座神奇的双乳峰,但却很少有人知道就在这座双乳峰下还有一片神秘清幽的石林。实际上双乳峰和石林都在同一景区,而更为奇特的是,本次调查中,从纳岩村向东看,可以看到两座双乳峰(见图 6),而不只是一座。此外,在纳岩至岜浩公路边,可以直接观察到永宁镇组的中薄层石灰岩相变成安顺组中厚到薄层的白云岩,指状穿插特征明显。从地学旅游和智慧旅游的角度看,这是极为有意义的自然科学景观;从实践来看,具有较高科学价值的自然景观,同时往往也是一种自然美的景观。
4. 结论
竹林堡石林是贵州省目前唯一位于早三叠世奥伦期相变带上白云岩中有经济开发价值的石林,属三岔河省级风景名胜区的重要组成部分。
竹林堡石林坐落于喀斯峰林中,具有表观形态美、空间结构美、景观组合美等美学特征,可观赏性强,是不可多得的喀期特地质遗迹旅游资源,应加强保护与研究,进一步提高其科学内涵。
“新双乳峰”为本次调研工作的新发现,是竹林堡石林不可分割的有机整体。虽然其物质组成与原双乳峰同为安顺组白云岩,但其特征和意义仍有待深入研究。
致谢: 在野外调研资料收集和论文撰写过程中,得到贵州理工学院程国繁老师的大力支持与悉心指导,在此表示诚挚感谢! -
图 1 汤丹铜矿床(SSC型)4号构造岩相学实测纵剖面
1—震旦系陡山沱组;2—中元古界东川群落雪组二段;3—中元古界东川群落雪组一段; 4—中元古界东川群因民组三段;5—古元古界汤丹岩群平顶山组;6—铁质板岩;7—白云岩; 8—泥粉砂质板岩;9—碱性铁质辉绿辉长岩枝(墙);10—铜矿体(SSC型铜矿床);11—低品位铜矿体; 12—推测铜矿体;13—地质界线; 14—推测地质界线;15—断层;16—推测断层; 17—地质产状;18—中段标高和海拔高度
Figure 1. Measured No.4 longitudinal profiles of tectonic lithofacies in the Tangdan copper deposits (SSC-type)
1−Sinian Doushantuo Formation; 2−the Second of member at Luoxue Formation of Mesoproterozoic Dongchuan Group; 3−the first member at Luoxue Formation of Mesoproterozoic Dongchuan Group; 4−the three member at Yinming Formation of Mesoproterozoic Dongchuan Group; 5−Pingdingshan Formation of Palaeoproterozoic Tangdan Rock Group; 6−irony slate; 7−dolomite; 8−argillaceous-silty slate; 9−alkaline Fe-rich diabase-gabbro apophyse or dike; 10−copper orebody(SSC-type copper deposit);11−copper orebody with low-grades; 12−presumed copper orebody;13−geological line; 14−presumable geological line;15−faults; 16−presumed faults; 17−geological occurrence; 18−adit level and above the sea level
图 2 白锡腊−中老龙IOCG型和SSC型铜矿床实测构造岩相学纵剖面
1—中元古界东川群落雪组二段;2—中元古界东川群落雪组一段;3—中元古界东川群因民组三段;4—碱性铁质辉绿辉长岩枝;5—热液角砾岩相;6—铜矿体(SSC型铜矿床);7—低品位铜矿体;8—铁铜矿体(IOCG型铁铜矿床);9—地质界线;10. —推测地质界线;11—断层;12—穿脉垂直投影面;13—坑内钻孔及编号;14—中段标高和海拔高度;15—地质产状
Figure 2. Measured longitudinal profiles of tectonic lithofacies for IOCG-type and SSC-type copper deposits from Baixila to Zhonglaolong
1−the second of member of the Luoxue Formation of the Mesoproterozoic Dongchuan Group; 2−the first member of the Luoxue Formation of the Mesoproterozoic Dongchuan Group; 3−the third member of the Yinming Formation of the Mesoproterozoic Dongchuan Group; 4−alkaline Fe-rich diabase-gabbro apophyse; 5−hydrothermal breccia facies; 6−copper orebody (SSC-type copper deposit); 7−low-grade copper orebody; 8−Fe-Cu orebody (IOCG-type deposit); 9−geological boundary; 10−inferred geological boundary; 11−fault; 12−transverse drift (vertical projection); 13−adit-in drillhole and its number; 14−adit elevation and altitude
图 3 甲查银多金属矿田火山机构与矿田构造岩相图
a—甲乌拉−查干银多金属矿田构造岩相图;b—e、h—j为甲乌拉银多金属矿床;f—g为查干银多金属矿床;b—540 m中段铅锌硫化物充填交代脉与边部菱沸石−铁绿泥石相;c—580 m中段石膏−蒙脱石−钾伊利石相;d—580 m中段伊蒙混层−伊利石相;e—475 m中段细脉状和微脉状闪锌矿方铅矿硫化物充填在伊利石热液角砾岩相中。 f—怡圣园西端18号矿体300 m中段216勘探线主巷道掌子面富银菱锰矿铁锰碳酸盐热液角砾岩相;g—怡圣园西端18号矿体300 m中段216勘探线主巷道掌子面富银菱锰矿铁锰碳酸盐热液角砾岩相;h—200 m中段5′—7′线含闪锌矿方铅矿马牙状石英脉;i—伟晶状方铅矿结晶核相;j—200 m中段5′—7′线2号矿体巨晶状方铅矿结晶核相的外缘中心相(具有海绵陨铁结构的铁闪锌矿−磁黄铁矿−黄铜矿矿石,磁化率151~114×10−3SI)
Figure 3. Mapping of volcanic edifice and ore-field tectonic lithofacies in the Jia–Cha Ag-polymetallic orefield
(a) Tectonic lithofacies map of the Jiawula–Chagan Ag-polymetallic orefield; Fig.3b to 3e and 3h to 3i are photos from the Jiawula Ag-polymetallic deposit and Fig.3f to 3g are photos from the Chagan Ag-polymetallic deposit; (b) Chabasite-daphnite facies along both sides of the filling−replacement veins of Pb-Zn-sulfides at 540 m level; (c) Gypsum-semctite-K-illite facies at 580 m level; (d) Facies of illite-smectite formation and illite at 580 m level; (e) Fine-veined and microveined sphalerite-galena sulfides veins filling in lithofacies of illite hydrothermal breccia at 475 m level; (f) Fe-Mn-carbonate hydrothermal breccia lithofacies of Ag-rich rhodochrosite from No.18 orebody in the 216 exploration line at the tunnel face of 300 m level; (g) Fe-Mn-carbonate hydrothermal breccia lithofacies of Ag-rich rhodochrosite from No.18 orebody in the 216 exploration line at the tunnel face of 300 m level; (h) Sphalerite-galena sulfides quartz veins in horse-teeth-shape in the 5′–7′ exploration line at 200 m level; (i) Crystalline nuclear lithofacies of pegmatitic galena in the 5′–7′ exploration line at 200 m level; (j) Marmatite-pyrrhotite-chalcopyrite ores in sideronitic texture around crystalline nuclear lithofacies of pegmatitic galena in the 5′–7′ exploration line at 200 m level; magnetic susceptibility is from 151×10−3 to 114×10−3SI
-
[1] CAO P, REN Y S, HOU Z S, et al. , 2018. Ore-forming fluid characteristics and mineralization age of the Jiawula Pb-Zn (Ag) Deposit in Manzhouli area[J]. Gold, 39(9): 5-12. (in Chinese with English abstract) [2] CHEN H Y, ZHANG S T, CHU G B, et al. , 2019. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 35(12): 3629-3643. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.12.04 [3] CHEN X H, CHEN Z L, YANG N, 2009. Study on regional mineralizations and ore-field structures: building of mineralizing tectonic systems[J]. Journal of Geomechanics, 15(1): 1-19. (in Chinese with English abstract) [4] CHEN Z L, CHEN B L, 2012. Thinking, steps and practice of research on orefield structure in geomechanics[J]. Chinese Journal of Nature, 34(4): 208-215. (in Chinese with English abstract) [5] CLOUTIS E A, 1989. Spectral reflectance properties of hydrocarbons: remote-sensing implications[J]. Science, 245(4914): 165-168. doi: 10.1126/science.245.4914.165 [6] COOKE D R, WILSON A J, DAVIES A G S, 2004. Characteristics and genesis of porphyry copper-gold deposits[R]. Hobart: University of Tasmania: 17-34. [7] DAI M, YAN G S, LIU C, et al. , 2016. The zircon U-Pb geochronology and the geochemistry of magmatic rocks and their constraints on the mineralization of Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Earth Science Frontiers, 23(5): 266-280. (in Chinese with English abstract) [8] FANG W X, LIU Y L, ZHANG S L, et al. , 2009. Three types of continental geodynamics and metallogenic models for IOCG (Iron-oxide copper gold deposits) from the global view[J]. Journal of Northwest University (Natural Science Edition), 39(3): 404-413. (in Chinese with English abstract) [9] FANG W X, 2012. R&D on new mapping technology of geochemical lithofacies in prediction and exploration for Iron-Oxide Copper Gold deposits (IOCG)[J]. Advances in Earth Science, 27(10): 1178-1184. (in Chinese with English abstract) [10] FANG W X, LIU X Y, LIU Y L, et al. , 2012. Trial applications of lithofacies mapping in the Baixila Fe-Cu Ore district, Dongchuan, Yunnan, and their achievements of prospecting predication[J]. Acta Mineralogica Sinica, 32(1): 101-114. (in Chinese with English abstract) doi: 10.5846/stxb201011021569 [11] FANG W X, DU Y L, LI J X, et al. , 2018. Large scale structural petrography mapping technology and prospecting prediction[M]. Beijing: Geology Press: 1-394. (in Chinese) [12] FANG W X, 2019. Magmatic intrusive tectonic system I: tectonic lithofacies mapping and ore-predication[J]. Geotectonica et Metallogenia, 43(3): 473-506. (in Chinese with English abstract) [13] FANG W X, 2020. Classification and types of diagenetic lithofacies systems in the Sedimentary Basin[J]. Geological Bulletin of China, 39(11): 1692-1714. (in Chinese with English abstract) [14] FANG W X, GUO Y Q, JIA R X, et al. , 2021. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan[J]. Journal of Geomechanics, 27(4): 557-584. (in Chinese with English abstract) [15] FANG W X, 2022a. On research methodology for deformation history of tectonic lithofacies in sedimentary basin and their application[J]. Journal of Geomechanics, 28(1): 1-21. (in Chinese with English abstract) [16] FANG W X, 2022b. On tectonic lithofacies of hypogene paleokarst unconformable tectonic systems and metallic mineralization[J]. Acta Geologica Sinica, 96(7): 2585-2610. (in Chinese with English abstract) [17] FANG W X, 2023. Hydrothermal sedimentary lithofacies and their tectono-palaeogeography[J]. Journal of Palaeogeography (Chinese Edition), 25(3): 525-553. (in Chinese with English abstract) [18] HAN R S, WANG F, HU Y Z, et al. , 2014. Metallogenic tectonic dynamics and chronology constrains on the Huize-type (HZT) germanium-rich silver-zinc-lead deposits[J]. Geotectonica et Metallogenia, 38(4): 758-771. (in Chinese with English abstract) [19] HOU Z Q, COOK N J, 2009. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue [J]. Ore Geology Reviews, 36(1-3): 2-24HOU Z Q, YANG Z M, LU Y J, et al. , 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones [J]. Geology, 43(3): 247-250. doi: 10.1130/G36362.1 [20] HOU Z Q, CHEN J, ZHAI M G, 2020. Current status and frontiers of research on critical mineral resources [J]. Chinese Science Bulletin, 65(33): 3651-3652. (in Chinese with English abstract) doi: 10.1360/TB-2020-1417 [21] HU R Z, WEN H J, YE L, et al. , 2020. Metallogeny of critical metals in the Southwestern Yangtze Block [J]. Chinese Science Bulletin, 65(33): 3700-3714. (in Chinese with English abstract) doi: 10.1360/TB-2020-0274 [22] HUANG J H, CHEN H Y, HAN J S, et al. , 2018. Alteration zonation and short wavelength infrared (SWIR) characteristics of the Honghai VMS Cu-Zn deposit, Eastern Tianshan, NW China [J]. Ore Geology Reviews, 100: 263-279. doi: 10.1016/j.oregeorev.2017.02.037 [23] LI J X, FANG W X, LIU J J, 2011. Types and characteristics of regional tectonics and ore-field structures of iron oxide-copper-gold deposits in Chile [J]. Geology and Exploration, 47(2): 323-332. (in Chinese with English abstract) [24] LI T C, FANG W X, WANG L, et al. , 2022. Application of integrated geophysical method in prospecting: a case study of the magnetite-type IOCG deposits in the Moon Mountain exploration area, Copiapo, Chile [J]. Journal of Geomechanics, 28(1): 22-35. (in Chinese with English abstract) [25] LI T G, WU G, LIU J, et al. , 2014. Rb-Sr isochron age of the Jiawula Pb-Zn-Ag deposit in the Manzhouli area and its geological significance[J]. Acta Petrologica Sinica, 30(1): 257-270. (in Chinese with English abstract) [26] LI SZ, LIU LJ, SUO YH, et al. , 2023. Carbon Tectonics: A new paradigm for Earth system science [J]. China Science Bullet, 68(4): 309 –338. doi: 10.1360/TB-2022-0741 [27] LIU F, WANG L, HAN R S, et al. , 2017. Ore-field structural system and its ore-controlling processes of the Beiya porphyry gold polymetallic deposit in northwestern Yunnan, China[J]. Earth Science Frontiers, 24(6): 208-224. (in Chinese with English abstract) [28] LOWELL J D, GUILBERT J M, 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 65(4): 373-408. doi: 10.2113/gsecongeo.65.4.373 [29] LÜ G X, ZHANG B L, HU B Q, et al. , 2020. Classification and application effect of structural deformation lithofacies in the orefield [J]. Geological Bulletin of China, 39(11): 1669-1680. (in Chinese with English abstract) [30] LÜ Q T, MENG G X, YAN J Y, et al. , 2019. Multi-scale exploration of mineral system: concept and progress: a case study in the middle and lower reaches of the Yangtze River Metallogenic Belt[J]. Geology in China, 46(4): 673-689. (in Chinese with English abstract) [31] LÜ Z C, CHEN H, MI K F, et al. , 2022. The theory and method of ore prospecting prediction for exploration area: case studies of the Lala copper deposit in Sichuan, Muhu-Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia[J]. Journal of Geomechanics, 28(5): 842-865. (in Chinese with English abstract) [32] MAO J W, WU S H, SONG S W, et al. , 2020. The world-class Jiangnan tungsten belt: geological characteristics, metallogeny, and ore deposit model [J]. Chinese Science Bulletin, 65(33): 3746-3762. (in Chinese with English abstract) doi: 10.1360/TB-2020-0370 [33] NIU S D, LI S R, GUO J, 2020. 40Ar-39Ar ages of the sericite in the Jiawula Pb-Zn-Ag deposit, Inner Mongolia and their geological significance[J]. Geology and Exploration, 56(1): 59-67. (in Chinese with English abstract) [34] SILLITOE R H, 2005. Supergene oxidized and enriched porphyry copper and related deposits [M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton: Society of Economic Geologists: 723-768. [35] SILLITOE R H, 2010. Porphyry copper systems [J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3 [36] XIAO W J, SONG D F, ZHANG J E, et al. , 2022. Anatomy of the structure and evolution of subduction zones and research prospects [J]. Earth Science, 47(9): 3073-3106. (in Chinese with English abstract) [37] XIU L C, ZHENG Z Z, YU Z K, et al. , 2007. Mineral analysis technology application with near infrared spectroscopy in identifying alteration mineral [J]. Acta Geologica Sinica, 81(11): 1584-1590. (in Chinese with English abstract) [38] YANG M, SUN J G, WANG Z Y, et al. , 2017. Petrogenesis and geological significance of the alkali-rich granite porphyry in the Jiawula Cu-Ag-Pb-Zn deposit in the Western slope of the great Xing’an range: zircon U-Pb dating and geochemical characteristics [J]. Journal of Jilin University (Earth Science Edition), 47(2): 477-496. (in Chinese with English abstract) [39] YANG S F, JIA C Z, CHEN H L, et al. , 2022. Core theories of sedimentary basin structure and the related key research techniques: frontiers and development directions [J]. Earth Science Frontiers, 29(6): 10-23. (in Chinese with English abstract) [40] YANG X K, LIU W, FAN Y, et al. , 2015. Type classification and Qinghai example analysis of orefield structure and magma-thermodynamic structure [J]. Journal of Earth sciences and Environment, 37(1): 24-36. (in Chinese with English abstract) [41] ZHAI Y S, 2007. Earth system, metallogenic system to exploration system [J]. Earth Science Frontiers, 14(1): 172-181. (in Chinese with English abstract) [42] ZHANG B L, LYU G X, YU J G, et al. , 2021. Geophysical data interpretation of the tectonic deformation lithofacies belts in the ore field: application in ore prospecting [J]. Journal of Geomechanics, 27(4): 542-556. (in Chinese with English abstract) [43] ZHANG S M, WANG G H, ZHAO S B, et al. , 2022. The Main magmstic-thermodynamic Structures and their controls on ore formation in Beishan, Inner Mongolia [J]. Geotectonica et Metallogenia, 46(4): 691-709. (in Chinese with English abstract) [44] ZHENG Y, 2022. Large-scaled structure-alteration-mineralization mapping of the hydrothermal deposits: basic principle and precautions[J]. Earth Science, 47(10): 3603-3615. (in Chinese with English abstract) [45] ZHOU Y Z, CHEN S, ZHANG Q, et al. , 2018. Advances and prospects of big data and mathematical geoscience [J]. Acta Petrologica Sinica, 34(2): 255-263. (in Chinese with English abstract) [46] ZOU C C, WANG C S, PENG C, et al. , 2023. Development of the Chinese continental scientific deep drilling: perspectives and suggestions[J]. Geoscience, 37(1): 1-14. (in Chinese with English abstract) [47] 曹鹏, 任云生, 侯召硕, 等, 2018. 满洲里地区甲乌拉铅锌(银)矿床成矿流体特征及成矿时代[J]. 黄金, 39(9): 5-12. doi: 10.11792/hj20180902 [48] 陈华勇, 张世涛, 初高彬, 等, 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 35(12): 3629-3643. doi: 10.18654/1000-0569/2019.12.04 [49] 陈宣华, 陈正乐, 杨农, 2009. 区域成矿与矿田构造研究: 构建成矿构造体系[J]. 地质力学学报, 15(1): 1-19. doi: 10.3969/j.issn.1006-6616.2009.01.001 [50] 陈正乐, 陈柏林, 2012. 地质力学矿田构造研究思路、步骤与实践[J]. 自然杂志, 34(4): 208-215. [51] 戴蒙, 严光生, 刘翠, 等, 2016. 内蒙古甲乌拉铅锌银矿区岩浆岩年代学、地球化学特征及其对成矿的约束[J]. 地学前缘, 23(5): 266-280. [52] 方维萱, 柳玉龙, 张守林, 等, 2009. 全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J]. 西北大学学报(自然科学版), 39(3): 404-413. [53] 方维萱, 2012. 论铁氧化物铜金型(IOCG)矿床地球化学岩相学填图新技术研发[J]. 地球科学进展, 27(10): 1178-1184. [54] 方维萱, 杨新雨, 柳玉龙, 等, 2012. 岩相学填图技术在云南东川白锡腊铁铜矿段深部应用试验与找矿预测[J]. 矿物学报, 32(1): 101-114. [55] 方维萱, 杜玉龙, 李建旭, 等, 2018. 大比例尺构造岩相学填图技术与找矿预测[M]. 北京: 地质出版社: 1-394. [56] 方维萱, 2019. 岩浆侵入构造系统Ⅰ: 构造岩相学填图技术研发与找矿预测效果[J]. 大地构造与成矿学, 43(3): 473-506. [57] 方维萱, 2020. 论沉积盆地内成岩相系划分及类型[J]. 地质通报, 39(11): 1692-1714. doi: 10.12097/j.issn.1671-2552.2020.11.003 [58] 方维萱, 郭玉乾, 贾润幸, 等, 2021. 论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系[J]. 地质力学学报, 27(4): 557-584. [59] 方维萱, 2022a. 论沉积盆地构造岩相变形史研究方法及应用[J]. 地质力学学报, 28(1): 1-21. [60] 方维萱, 2022b. 深成古岩溶不整合构造系统构造岩相学与金属成矿[J]. 地质学报, 96(7): 2585-2610. [61] 方维萱, 2023. 论热水沉积岩相及其构造古地理[J]. 古地理学报, 25(3): 525-553. doi: 10.7605/gdlxb.2023.03.035 [62] 韩润生, 王峰, 胡煜昭, 等, 2014. 会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J]. 大地构造与成矿学, 38(4): 758-771. doi: 10.3969/j.issn.1001-1552.2014.04.003 [63] 侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 65(33): 3651–3652. [64] 胡瑞忠, 温汉捷, 叶霖, 等, 2020. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 65(33): 3700-3714. [65] 李建旭, 方维萱, 刘家军, 2011. 智利铁氧化物-铜-金矿床区域定位构造-矿田构造类型与特征[J]. 地质与勘探, 47(2): 323-332. [66] 李天成, 方维萱, 王磊, 等, 2022. 综合地球物理方法找矿应用: 以智利科皮亚波地区月亮山磁铁矿型IOCG矿床为例[J]. 地质力学学报, 28(1): 22-35. doi: 10.12090/j.issn.1006-6616.20222802 [67] 李铁刚, 武广, 刘军, 等, 2014. 大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义[J]. 岩石学报, 30(1): 257-270. [68] 李三忠, 刘丽军, 索艳慧, 等, 2023. 碳构造: 一个地球系统科学新范式[J]. 科学通报, 68(4): 309 –338. [69] 刘飞, 王雷, 韩润生, 等, 2017. 滇西北北衙斑岩型金多金属矿田构造体系及其控矿作用[J]. 地学前缘, 24(6): 208-224. [70] 吕古贤, 张宝林, 胡宝群, 等, 2020. 矿田构造变形岩相分类与应用效果[J]. 地质通报, 39(11): 1669-1680. doi: 10.12097/j.issn.1671-2552.2020.11.001 [71] 吕庆田, 孟贵祥, 严加永, 等, 2019. 成矿系统的多尺度探测: 概念与进展: 以长江中下游成矿带为例[J]. 中国地质, 46(4): 673-689. doi: 10.12029/gc20190401 [72] 吕志成, 陈辉, 宓奎峰, 等, 2022. 勘查区找矿预测理论与方法及其应用案例[J]. 地质力学学报, 28(5): 842-865. doi: 10.12090/j.issn.1006-6616.20222816 [73] 毛景文, 吴胜华, 宋世伟, 等, 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型[J]. 科学通报, 65(33): 3746-3762. [74] 牛斯达, 李胜荣, 郭健, 2020. 内蒙古甲乌拉铅锌银矿绢云母40Ar-39Ar年龄及其地质意义[J]. 地质与勘探, 56(1): 59-67. doi: 10.12134/j.dzykt.2020.01.006 [75] 肖文交, 宋东方, 张继恩, 等, 2022. 俯冲带结构演变解剖与研究展望[J]. 地球科学, 47(9): 3073-3106. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209001 [76] 修连存, 郑志忠, 俞正奎, 等, 2007. 近红外光谱分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 81(11): 1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013 [77] 杨梅, 孙景贵, 王忠禹, 等, 2017. 大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义: 锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 47(2): 477-496. [78] 杨树锋, 贾承造, 陈汉林, 等, 2022. 沉积盆地构造核心理论和关键技术方法: 前沿与发展方向[J]. 地学前缘, 29(6): 10-23. [79] 杨兴科, 刘渭, 范阅, 等, 2015. 矿田构造与岩浆-热力构造的类型划分及青海实例分析[J]. 地球科学与环境学报, 37(1): 24-36. doi: 10.3969/j.issn.1672-6561.2015.01.003 [80] 翟裕生, 2007. 地球系统、成矿系统到勘查系统[J]. 地学前缘, 14(1): 172-181. doi: 10.3321/j.issn:1005-2321.2007.01.017 [81] 张宝林, 吕古贤, 余建国, 等, 2021. 矿田构造变形岩相带的地球物理资料解译与找矿应用[J]. 地质力学学报, 27(4): 542-556. doi: 10.12090/j.issn.1006-6616.2021.27.04.047 [82] 张善明, 王根厚, 赵士宝, 等, 2022. 北山内蒙地区主要岩浆‒热力构造类型及控矿作用分析[J]. 大地构造与成矿学, 46(4): 691-709. [83] 郑义, 2022. 热液矿床超大比例尺构造-蚀变-矿化填图: 基本原理与注意事项[J]. 地球科学, 47(10): 3603-3615. [84] 周永章, 陈烁, 张旗, 等, 2018. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 34(2): 255-263. [85] 邹长春, 王成善, 彭诚, 等, 2023. 中国大陆科学深钻发展的若干思考与建议[J]. 现代地质, 37(1): 1-14. -