Geochemistry of pyrite and its implications for exploration of the Jiuzhanggou gold deposit in western Henan
-
摘要: 黄铁矿是金矿床中重要的载金矿物,其地球化学特征不仅在矿床成因中具有重要的指示作用,也是重要的找矿信息。豫西九仗沟金矿床作为熊耳山金矿集区典型的构造蚀变岩型金矿床,是探讨黄铁矿对金矿床成因指示及找矿标志的理想矿床。通过开展九仗沟金矿床构造蚀变带调查,采集+260 m至−20 m垂深280 m的构造蚀变岩样品8件,对蚀变岩中黄铁矿进行矿物电子探针及激光剥蚀等离子体质谱分析,探讨不同蚀变带黄铁矿的元素含量特征及变化规律,以期获得黄铁矿对矿床成因及深部找矿的指示意义。研究结果表明,九仗沟金矿床+260 m中段至−20 m中段区间可划分为4个蚀变带,蚀变岩中黄铁矿均为成矿期黄铁矿,黄铁矿Fe、S元素含量显示其主要为硫亏型;微量元素聚类分析显示;Au与Cu、As、Sb、Zn、Ag、Te、Se、Pb为一组,属于中—低温元素组合;Co/Ni比值为1~10,Co-Ni-As图解显示黄铁矿为岩浆热液成因;黄铁矿中Au与Cu、As、Sb、Zn、Ag、Te、Pb呈正相关性,在第1—3蚀变带其含量同步逐渐降低,而在第4蚀变带则出现跳跃上升,第4蚀变带与第1—3蚀变带为不同期次热液成矿活动的产物。根据第1—3蚀变带的垂向延伸情况,推测第4蚀变带延深可达−60 m标高,深部至少还可以勘探一个中段(40 m),具有良好的找矿前景。黄铁矿中Au、Cu、As、Sb、Zn、Ag、Te、Se和Pb等元素含量及Au/As、Au/Ag、Co/Ni比值对垂向蚀变分带具有重要的指示作用,黄铁矿的微量元素标志是金矿床深部找矿靶区的重要信息。Abstract:
Objective Pyrite is a common auriferous mineral in gold deposits. Its mineral geochemistry not only plays a significant role in elucidating ore genesis, but also provides important information for the exploration of deposits. The Jiuzhanggou gold deposit in western Henan Province is a gold deposit typical of tectonically altered rocks in the Xiong'ershan gold ore cluster, and it is an ideal deposit to study the genetic indications and prospecting signs of pyrite in gold deposits. Methods In this study, the tectonically altered zones of the Jiuzhanggou gold deposit were investigated, and 8 samples of tectonically altered rocks were collected over a vertical depth of 280 m, from +260 m to −20 m. Electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite from the altered rocks were carried out, and the characteristics and variations of the element contents in pyrite of differently altered zones were obtained, revealing the indications of pyrite for ore genesis and prospection at greater depth. Results The interval between the +260 m and −20 m levels of the Jiuzhanggou gold deposit can be divided into four altered zones. Microscopic observation of the altered rocks shows that pyrite was formed during the metallogenic period. Given its Fe and S contents, most of the pyrite is sulfur-depleted. Cluster analysis shows that Au, Cu, As, Sb, Zn, Ag, Te, Se and Pb in pyrite belong to a group of hypothermal-mesothermal elements. Conclusion The Co/Ni ratio (1~10) and the Co-Ni-As diagram indicate a magmatic hydrothermal origin of pyrite. The Au in pyrite is positively correlated with Cu, As, Sb, Zn, Ag, Te, and Pb. The contents of these elements gradually decrease in the 1st~3rd altered zones, but increase in the 4th zone. It is speculated that the 1st~3rd altered zones are the product of the same hydrothermal mineralization activity, while the 4th altered zone is the product of another hydrothermal mineralization activity. According to the vertical extent of the 1st~3rd altered zones, it is speculated that the 4th altered zone may reach −60 meters. At least one level (40 m) can be explored at depth, which has a good prospecting potential. Significance The contents of Au, Cu, As, Sb, Zn, Ag, Te, Se, and Pb and the ratios of Au/As, Au/Ag, and Co/Ni in pyrite reflect the vertical mineralization zoning. These trace elements in pyrite are essential markers for prospecting targets in the deeper parts of gold deposits. -
Key words:
- pyrite /
- trace elements /
- metallogenetic prediction /
- Jiuzhanggou gold deposit /
- western Henan
-
0. 引言
位于华北克拉通南缘的小秦岭−熊耳山金成矿带是中国探明金储量超过500 t的6个金成矿带之一(王岩等,2024)。该成矿带内2000 m以浅金资源量达3523 t,深部资源潜力巨大,是中国重要的金矿勘查区(李俊建等,2016)。其中熊耳山矿集区以产出构造蚀变岩型和爆破角砾岩型金矿为特色(刘文毅等,2018;燕长海等,2021;刘松岩等,2024),发育金矿床或矿点50余处,其中大—中型矿床16处(燕长海等,2021),发育三叠纪、侏罗纪和白垩纪多期金成矿事件(Chen and Santosh,2014;Cao et al.,2017;Tian et al.,2017;贺昕宇等,2019;Tian et al.,2019),是豫西地区重要的金矿集区及勘查目标区。
黄铁矿(FeS2)是金矿床中广泛发育的硫化物,为重要的载金矿物(曹根深等,2023;Cao et al.,2023;邓依等,2024)。由于黄铁矿在不同条件下可通过类质同象或包裹体形式赋存多种微量元素,这些微量元素的含量成为反映成矿条件的关键信息(朱昊磊等,2023;邓依等,2024)。因此,通过黄铁矿化学成分研究,尤其是微量元素的含量和比值(Li et al., 2022;第鹏飞等,2023),来揭示金矿床的成矿物质来源、成矿流体来源、形成环境、成矿过程、成因类型、矿床分带特征及埋藏情况(申俊峰等,2021;Naglik et al.,2022;王晓虎等,2022;王蓓琪等,2023;王美云等,2023;杨德平等,2023;Zhou et al.,2023),是矿床成因与找矿矿物学研究的重要内容和对象,在矿产勘查中具有重要的应用价值。近年来激光剥蚀电感耦合等离子质谱(LA-ICP-MS)测试技术逐渐成熟(田广等,2014;张红雨等,2022),为获得精确的黄铁矿微区微量元素含量提供了可靠的技术保障,极大地促进了黄铁矿化学成分在矿床成因指示及找矿勘查中的应用。
豫西九仗沟金矿床是熊耳山矿集区东南部庙岭−九仗沟构造带规模较大的矿床之一(刘玉刚等,2022),其为探获金资源量13 t的中型规模矿床(张勇等,2024),也是区内延深较大的矿床(丁培超等,2020)。该矿床产于南北向断裂带中,相关学者曾对该矿床矿体的地质特征及控矿构造进行了深入研究(李红兵,2005;张伟和伍刚,2007;秦军强等,2019;秦军强等,2022)。该矿床是熊耳山地区构造蚀变岩型金矿床的代表(李红兵,2005;张伟和伍刚,2007;秦军强等,2019,2022),矿石及围岩普遍发育黄铁矿(朱随洲等,2022;王颖辉等,2022),是研究黄铁矿矿物成分在成因认识及深部勘查的良好实例。通过对九仗沟金矿床+260 m至−20 m标高范围内各中段进行构造蚀变岩调查和样品采集,开展黄铁矿地球化学分析研究,并探讨黄铁矿成分对矿床成因及矿化垂向延伸的指示意义,以期为矿区深部成矿预测提供信息约束。
1. 矿床地质特征
豫西九仗沟金矿床位于熊耳山−外方山矿集区庙岭−九仗沟金矿带内的区域性F1断裂带上(图1;丁培超等,2020;刘玉刚等,2022)。矿区出露围岩为长城系熊耳山群鸡蛋坪组英安岩、安山岩、英安质火山角砾岩及第四系河流沉积物和残坡积物。矿区内含矿断裂带出露长度约500 m(图2a),宽80~100 m,走向20°~30°,倾向290°~300°,倾角50°~75°,含矿断裂带呈舒缓波状延伸至深部,主要由碎裂岩、角砾岩和蚀变岩组成(朱随洲等,2022)。角砾岩砾径以2~10 mm为主,角砾成分为火山岩、火山碎屑岩,部分角砾硅化强烈,原岩成分不易识别,蚀变为石英岩。胶结物为硅质、铁质及钙质胶结(朱随洲等,2022)。矿区内围岩蚀变发育,主要有硅化、绢云母化和钾化等。矿区内矿体产于M1构造破碎带内,整体呈脉状产出,工程控制矿体有M1-Ⅰ、M1-Ⅱ、M1-Ⅲ(图2b),矿体彼此间呈平行或近于展布。其中M1-Ⅰ为区内主矿体,长为350 m,控制斜深达1150 m,厚度范围为0.57~32.3 m,金品位为1.09~21.28 g/t、平均为4 g/t(朱随洲等,2022)。九仗沟金矿床主矿体膨大缩小现象明显,在深部+260 m中段、+100 m中段为2个缩小部位,+220~+140 m中段、+60 m中段以深为矿体膨大部分。九仗沟金矿床发育4个蚀变带(图3):第1蚀变带(+300~+240 m)、第2蚀变带(+240~+120 m)、第3蚀变带(+120~+80 m)和第4蚀变带(+80~−20 m)。
图 1 豫西九仗沟金矿床区域地质简图a—豫西熊耳山−外方山地区地质矿产简图(Sheng et al.,2022a);b—庙岭−九仗沟金矿带地质简图(刘玉刚等,2022)Figure 1. Simplified regional geological maps of the Jiuzhanggou gold deposit in western Henan(a) Simplified geological and mineral resource map of the Xiong'ershan-Waifangshan area in western Henan (after Sheng et al., 2022a); (b) Simplified geological map of the Miaoling-Jiuzhanggou gold belt (after Liu et al., 2022)图 2 九仗沟金矿床地质图a—矿床平面地质图(据朱随洲等,2022);b—00线剖面地质图(剖面位置见图2a;据丁培超等,2020)Figure 2. Geological map of the Jiuzhanggou gold deposit(a) Geological plan map of the deposit (after Zhu et al., 2022); (b) The section No. 00 of the deposit (after Ding et al., 2020)图 3 九仗沟金矿床纵剖面图及蚀变分带1—第1蚀变带(+300~+240 m);2—第2蚀变带(+240~+120 m);3—第3蚀变带(+120~+80 m);4—第4蚀变带(+80~−20 m)Figure 3. Longitudinal section of the Jiuzhanggou gold deposit, indicating alteration zones and sampling locations1—1st altered zone (+300~+240 m); 2—2nd altered zone (+240~+120 m); 3—3rd altered zone (+120~+80 m); 4—4th altered zone (+80~−20 m)2. 样品采集及测试方法
2.1 样品采集
在野外调查基础上,对4个蚀变带系统采集了8件样品(图3,表1),并对其开展了详细的矿相学及矿物地球化学研究。
表 1 蚀变岩样品特征Table 1. Characteristics of samples of altered rocks样号 采样位置 样品特征 所在蚀
变带45 260 m中段穿脉7 矿化蚀变火山角砾岩,含有张性的热液脉 1 47 220 m中段穿脉7 矿化蚀变角砾凝灰岩,局部含有团包状硫化物,含有张性的热液脉,可见黄铜矿、方铅矿 2 48 130 m中段穿脉1-3 矿化蚀变角砾凝灰岩,张性细网脉比较发育,脉宽小于0.5 mm,见少量黄铁矿、方铅矿 2 49 100 m中段穿脉1 矿化蚀变角砾凝灰岩,张性细网脉比较发育,脉宽小于0.5 mm,硫化物较为发育 3 50 100 m中段穿脉5 黄铁绢云岩,硫化物网脉较发育,脉宽1~2 mm,脉石矿物较少,发育深、浅两组脉,略具压性特征 3 52 50 m中段穿脉01 矿化蚀变火山角砾凝灰岩,发育多期张性网脉,第二期网脉中角砾明显 4 54 20 m中段穿脉1-3 矿化蚀变角砾岩,角砾有压性特征 4 55 −20 m中段穿脉3 矿化蚀变岩屑凝灰岩,发育浸染状−网脉状矿化 4 2.2 测试方法
2.2.1 矿物主量元素分析
黄铁矿主量元素分析在有色金属成矿预测与地质环境监测教育部重点实验室采用Shimadzu EPMA-1720H型电子探针分析仪完成。点定量分析条件如下:加速电压为15 kV,电流为20 nA,束斑为1 μm。元素特征X射线选择如下:S(Kα)、Fe(Kα)、Cu(Kα)、Zn(Kα)、Pb(Mα)、Au(Mα)、Ag(Lα)、Te(Lα)和As(Lα);标样为黄铁矿(S和Fe)、黄铜矿(Cu)、闪锌矿(Zn)、方铅矿(Pb)、硫化金(Au)、硫化银(Ag)、二硫化碲(Te)、毒砂(As)。数据处理采用仪器自带处理软件,校正方法采用ZAF法。
2.2.2 矿物微量元素分析
黄铁矿原位微量元素分析在广州市拓岩检测技术有限公司完成。仪器为NWR 193 nm ArF准分子激光烧蚀系统与iCAP RQ型电感耦合等离子体质谱仪(Inductively Coupled Plasma Mass Spectrometer,ICPMS)联用。测试过程中使用NIST 610标准玻璃进行调谐,以降低氧化物产率。激光剥蚀过程中采用0.7 L/min 氦气作为载气、0.89 L/min的氩气为补偿气以调节信号灵敏度。测试时的激光通量为3.5 J/cm2,重复率为6 Hz,光斑尺寸为30 μm,分析时间为40 s,随后进行40 s空白背景测量。测试中每间隔5~8个未知样品分析后,对2个玻璃标样(NIST 610和GSE-2G)和1个硫化物标样(MASS-1)进行分析。原始数据的离线处理(包括信号背景值选择、样品有效区间选择、仪器灵敏度校正、元素含量的计算)利用IOLITE软件包完成(Paton et al.,2011)。测定的15种元素包括34S、59Co、60Ni、65Cu、66Zn、75As、77Se、95Mo、107Ag、118Sn、121Sb、125Te、197Au、208Pb和209Bi。MASS-1硫化物标样用于校正元素(Wilson et al.,2002;wFe=15.6%)34S、59Co、60Ni、65Cu、66Zn、75As、77Se、95Mo、107Ag、118Sn、121Sb、125Te、197Au、208Pb和209Bi。60Ni通过GSE-2G(7.55%Fe)合成玄武岩玻璃标准品进行校正,黄铁矿用57Fe(wFe=46%)的内标元素校正。
3. 研究结果
3.1 黄铁矿矿相结构特征
九仗沟矿床矿石的矿物种属有20余种,以黄铁矿、褐铁矿、方铅矿、闪锌矿及自然金为主;脉石矿物以石英、钾长石、绢云母和白云石为主,含少量或微量其他矿物(李红兵,2005;王兴民等,2013)。其中,黄铁矿可划分为3个世代:第1世代为与石英共生的粗粒黄铁矿,第2世代为中—细粒呈脉状或浸染状的黄铁矿,第3世代为被溶蚀为多孔的黄铁矿。金成矿与后2个世代的黄铁矿关系密切(Sheng et al.,2022b)。文中所采集的蚀变岩样品中的黄铁矿为第2、3世代与金成矿关系密切的黄铁矿(图4)。
图 4 蚀变岩中硫化物结构显微照片Py—黄铁矿;Gn—方铅矿;Cpy—黄铜矿a—浸染状细粒黄铁矿;b—脉状黄铁矿;c—碎裂状黄铁矿;d—与方铅矿和黄铜矿共生的黄铁矿Figure 4. Micrographs of textures of sulfide in altered rocks(a) Disseminated fine-grained pyrite; (b) Vein texture pyrite; (c) Cataclastic pyrite; (d) Pyrite intergrown with chalcopyrite and galenaPy—pyrite; Gn—galena; Cpy—chalcopyrite3.2 黄铁矿主量元素特征
九仗沟金矿床不同蚀变带中黄铁矿的电子探针分析结果显示(表2),黄铁矿除含有Fe和S元素外,还含有少量的Zn、Cu、Pb、Au和Ag等元素。其中第1蚀变带中黄铁矿的Pb含量(平均含量为0.08%)略高于其他蚀变带,第3蚀变带中黄铁矿的Zn含量(平均含量为0.06%)略高。针对黄铁矿主成分标型特征,严育通等(2012)提出利用δFe[δFe=(wFe−46.55)/46.55×100]和δS[δS=(wS−53.45)/53.45×100] 2个参数来表示Fe和S元素偏移理论值的程度。九仗沟金矿床各蚀变带的黄铁矿δFe-δS特征图解显示其主要集中分布在第II、III象限(图5),呈贫Fe的特点。其中第1、4蚀变带的黄铁矿集中于第III象限(δS范围分别为−5.762~0.842和−4.733~1.422),比第2、3蚀变带的黄铁矿更贫S(δS范围分别为−5.351~1.254和−2.283~2.376),第4蚀变带黄铁矿Fe含量最低(δFe中位数为−1.719,其他3个蚀变带的δFe中位数分别为−1.300、−1.225和−0.935)。
表 2 九仗沟金矿床蚀变岩黄铁矿电子探针测试结果(×10−2)Table 2. Electron microprobe data of pyrite from tectonically altered rocks of the Jiuzhanggou gold deposit (×10−2)测点 Fe Cu Pb Zn Au Ag Te As S 合计 S/Fe δFe δS 第1带 45.1 45.45 0.05 0.02 53.90 99.41 2.065 −2.363 0.842 45.2 46.81 0.02 0.05 52.21 99.09 1.942 0.559 −2.320 45.3 46.08 0.04 0.08 0.03 52.87 99.10 1.998 −1.010 −1.085 45.4 46.56 0.03 0.08 0.03 0.02 / / 53.73 100.46 2.009 0.021 0.524 45.5 45.71 0.37 0.02 0.03 0.01 / / 50.37 96.51 1.919 −1.805 −5.762 45.6 46.33 0.00 0.02 / / 52.85 99.21 1.986 −0.473 −1.123 45.7 45.73 0.05 0.01 / / 53.21 99.00 2.026 −1.762 −0.449 45.8 45.81 0.07 0.04 0.06 / / 53.53 99.52 2.035 −1.590 0.150 平均值 46.06 / / / / / / / 52.83 99.04 1.998 −1.053 −1.153 中位数 45.95 / / / / / / / 53.04 99.16 2.004 −1.300 −0.767 第2带 47.1 49.02 0.02 0.02 50.59 99.65 1.998 5.306 −5.351 47.3 46.20 0.02 53.77 99.99 1.797 −0.752 0.599 47.4 46.07 0.04 0.06 0.04 53.48 99.68 2.029 −1.031 0.056 47.5 46.00 0.02 53.28 99.31 2.027 −1.182 −0.318 47.8 46.69 0.05 0.05 0.03 53.49 100.32 2.022 0.301 0.075 47.1 46.45 0.04 0.04 54.12 100.65 2.017 −0.215 1.254 48.1 46.06 0.04 0.03 0.02 / / 52.72 98.87 1.995 −1.053 −1.366 48.2 45.55 0.04 0.03 0.05 / / 53.49 99.16 1.993 −2.148 0.075 48.3 45.62 0.09 0.04 0.00 / / 51.68 97.44 2.031 −1.998 −3.312 48.4 45.59 0.05 0.02 / / 51.58 97.25 2.045 −2.062 −3.499 48.5 45.94 0.04 / / 53.26 99.25 1.973 −1.310 −0.355 48.6 45.96 0.10 / / 52.74 98.79 1.970 −1.267 −1.328 48.7 46.06 0.16 0.08 0.02 / / 53.49 99.82 2.019 −1.053 0.075 48.8 45.74 0.02 / / 53.64 99.39 1.998 −1.740 0.335 48.9 45.01 0.03 0.10 0.03 / / 53.21 98.37 2.022 −3.308 −0.449 48.1 45.42 0.02 0.07 0.04 / / 52.96 98.50 2.042 −2.427 −0.917 平均值 46.09 / / / / / / / 52.97 99.15 1.999 −0.996 −0.900 中位数 45.98 / / / / / / / 53.27 99.28 2.018 −1.225 −0.337 第3带 50.3 45.95 0.04 0.02 / / 53.53 99.55 2.058 −1.289 0.150 50.6 45.78 0.04 / / 54.72 100.55 2.002 −1.654 2.376 50.7 46.28 0.07 0.05 / / 52.83 99.24 2.029 −0.580 −1.160 50.8 46.56 0.05 0.12 / / 52.23 98.96 2.081 0.021 −2.283 平均值 46.14 / / 0.06 / / / / 53.33 99.58 2.043 −0.875 −0.229 中位数 46.12 / / 0.05 / / / / 53.18 99.40 2.044 −0.935 −0.505 第4带 52.1 45.50 0.06 0.05 0.04 / 51.83 97.48 1.988 −2.256 −3.031 52.4 45.75 0.04 0.03 0.02 / 51.95 97.78 1.953 −1.719 −2.806 52.5 45.77 0.04 / 52.36 98.17 2.013 −1.676 −2.039 52.6 45.45 0.02 0.05 0.06 0.10 / 50.92 96.60 1.984 −2.363 −4.733 52.8 44.98 0.03 0.04 0.09 / 52.44 97.57 1.977 −3.373 −1.890 54.1 48.95 0.08 0.02 0.02 / 54.21 103.28 1.992 5.156 1.422 54.2 46.39 0.02 / 54.01 100.43 1.951 −0.344 1.048 54.3 46.65 0.03 0.05 0.05 0.02 / 53.58 100.38 2.030 0.215 0.243 54.7 45.94 0.04 0.09 / 53.53 99.59 1.929 −1.310 0.150 54.8 46.00 0.02 0.03 0.03 / 53.02 99.10 2.027 −1.182 −0.804 55.6 45.41 / 0.01 53.41 98.83 2.000 −2.449 −0.075 55.7 45.31 0.04 0.03 / 0.02 53.29 98.70 2.029 −2.664 −0.299 55.8 44.77 0.03 0.03 0.06 0.03 / 53.88 98.80 2.007 −3.824 0.804 平均值 45.91 / / / / / / / 52.96 98.98 1.991 −1.368 −0.924 中位数 45.75 / / / / / / / 53.29 98.7 1.992 −1.719 −0.299 注:“/”表示未测;空白表示低于检测限;S/Fe为原子比 图 5 九仗沟金矿床各蚀变带黄铁矿δFe-δS图解1—第1蚀变带;2—第2蚀变带;3—第3蚀变带;4—第4蚀变带;I—第I象限富Fe、S区;II—第II象限贫Fe富S区;III—第III象限贫Fe、S区;VI—第VI象限富Fe贫S区Figure 5. δFe-δS diagram of pyrite from different altered zones in the Jiuzhanggou gold deposit1—1st altered zone; 2—2nd altered zone; 3—3rd altered zone; 4—4th altered zone; I—Quadrant I Fe-, S-rich area; II—Quadrant II Fe-poor, S-rich area; III—Quadrant III Fe-, S-poor area; VI—Quadrant VI Fe-rich, S-poor area不同成因的黄铁矿S/Fe原子比存在一定差异。沉积成因的黄铁矿S/Fe原子比接近理论值2或者S含量略高,热液成因的黄铁矿S/Fe比值小于2,称为硫亏型(周学武等,1994)。黄铁矿亏硫是S2−被As3−、Sb3−等离子类质同象置换的结果(Springer et al.,1964;Riley,1968),导致其结构失稳,增加了构造缺陷程度,有利于Au的富集(李红兵和曾凡治,2005)。九仗沟金矿床中的黄铁矿S/Fe原子比显示第1蚀变带中黄铁矿的S/Fe原子比中位数为2.004,相对其他蚀变带的黄铁矿更接近理论值2(表2)。
3.3 黄铁矿微量元素特征
黄铁矿LA-ICP-MS元素分析结果显示(表3),As(2.69×10−6~26086×10−6)、Te(0.37×10−6~7352×10−6)、Ag(0.10×10−6~4682×10−6)、Pb(0.11×10−6~5214×10−6)和Zn(1.25×10−6~17306×10−6)元素较其他元素含量高1~2个数量级,Au(0.03×10−6~865.84×10−6)、Cu(0.98×10−6~1567.97×10−6)、Sb(0.43×10−6~958.55×10−6)、Co(0.26×10−6~143.44×10−6)和Ni(0.79×10−6~77.23×10−6)等元素含量也相对较高。此外,黄铁矿中还含有微量的Sn(<5×10−6)和Bi(<1×10−6);Se、Mo含量极低,绝大多数测点数据低于仪器的检测限。各蚀变带中黄铁矿的微量元素统计分析显示,相比其他元素,Co和Ni方差较小,表明其含量较为均匀。各蚀变带中黄铁矿的Au、Cu和Sb元素方差较大,表明其含量变化较大。
表 3 九仗沟金矿床矿化蚀变岩黄铁矿LA-ICP-MS测试结果(×10−6)Table 3. LA—ICP—MS data of pyrite from the tectonically altered rocks of the Jiuzhanggou gold deposit (×10−6)测点 S Co Ni Cu Zn As Se Mo Ag Sn Sb Te Au Pb Bi 第1带 45-1 314534.91 30.77 41.16 467.86 47.08 22373.42 4682.16 0.51 219.99 7352.59 865.84 4059.30 0.01 45-2 331241.10 58.02 77.23 191.82 2682.09 12403.78 770.80 119.21 4040.89 516.84 5214.27 45-3 313316.89 52.70 46.62 148.97 3044.75 12729.02 621.41 0.33 320.24 2462.06 571.50 1031.78 0.01 45-4 307157.24 19.75 25.86 357.42 24.14 22497.85 22.40 3154.18 0.25 408.59 5432.86 780.42 1973.63 0.01 45-5 331751.25 27.43 25.36 1567.97 591.32 26085.62 27.49 1292.62 0.56 381.66 3663.10 714.50 1799.68 0.01 45-6 342514.13 37.99 44.59 95.90 637.06 10316.97 751.65 167.70 3956.25 753.55 1128.58 45-7 330354.27 13.06 28.96 120.37 16.53 14768.53 27.29 1033.28 0.32 133.65 2867.33 608.21 831.34 45-8 335784.77 35.10 37.85 102.41 17306.38 14710.66 27.59 1575.52 1.05 173.53 4151.51 702.09 1659.99 平均(n=8) 325831.82 34.35 40.95 381.59 3043.67 16985.73 26.19 1735.20 0.50 240.57 4240.82 689.12 2212.32 0.01 中位数 330797.69 32.94 39.51 170.40 614.19 14739.60 27.39 1162.95 0.42 196.76 3998.57 708.30 1729.84 0.01 方差 136887097.86 204.74 248.23 216680.63 30327764.96 29487099.19 173.91 1818763.76 0.10 11359.06 2077152.82 11823.82 2178828.11 极差 35356.89 44.96 51.87 1472.07 17289.85 15768.65 5.19 4060.75 0.80 289.38 4890.53 349.00 4382.93 0.01 第2带 47-1 299144.45 31.24 13.17 187.48 279.45 545.78 1.59 268.08 1.43 81.65 319.05 17.02 345.47 0.25 47-2 372280.64 0.29 1.58 1.02 1.69 3.33 0.43 1.05 47-3 359972.18 97.63 32.03 1404.50 13.85 12501.72 22.00 68.03 3.94 154.99 559.35 136.28 411.33 0.64 47-4 338727.58 53.74 44.99 302.48 2695.30 17510.70 19.85 270.46 1399.58 3.42 147.59 1973.67 599.59 383.25 0.07 47-5 329348.76 122.64 54.49 721.46 14.96 12242.35 29.37 0.44 481.16 345.12 1072.16 158.44 1401.17 0.36 47-6 362872.12 82.88 18.57 27.53 6.83 96.67 826.15 7.78 8.36 37.48 0.92 124.81 0.09 47-7 381262.54 59.00 15.05 103.36 17.17 1.18 2.25 9.36 0.07 21.70 0.07 47-8 349997.96 34.11 37.63 112.92 738.80 2830.19 1072.48 2.13 33.28 1123.44 6.65 171.09 0.28 47-9 383906.10 23.41 2.15 260.00 3.20 203.11 75.16 2.20 27.09 11.97 0.30 99.13 0.58 47-10 389696.13 9.78 1.47 26.13 3.89 32.14 11.90 10.76 4.27 48.51 0.70 8536.35 0.23 48-1 289603.21 3.64 9.92 1592.57 62.75 27675.40 0.18 50.59 1.67 780.86 37.29 19.65 876.45 0.03 48-2 343709.34 19.24 17.10 126.92 1.25 3691.67 7.85 0.96 152.17 2.49 1.01 393.86 0.03 48-3 332238.60 17.76 20.85 174.00 29.27 8782.83 12.93 2.72 197.94 5.21 2.00 469.29 0.06 48-4 336590.76 8.91 14.55 698.68 540.96 29186.49 2.45 42.18 4.19 958.55 34.52 14.19 1448.35 0.08 48-5 346017.61 143.44 55.32 153.38 70.39 749.01 2.41 2.20 25.57 2.25 0.19 166.53 0.08 48-6 356325.56 65.74 75.47 2969.04 98.03 749.89 9.72 12.42 1.07 23.73 5.05 0.80 103.07 0.27 48-7 338718.30 41.11 53.74 262.41 1105.22 10447.92 22.56 4.66 528.55 12.44 4.26 1090.63 0.02 48-8 335901.74 19.20 19.80 174.65 4.69 14242.35 0.30 16.36 2.67 418.45 13.79 3.66 684.68 0.03 48-9 334513.61 20.57 23.15 351.81 9.30 15006.54 0.28 26.31 2.85 425.44 14.76 6.68 818.78 0.02 48-10 314452.46 7.63 10.31 947.57 6.33 22334.96 0.67 57.62 2.76 754.25 40.98 19.54 1165.17 0.02 平均(n=20) 344763.98 43.10 27.36 529.92 315.80 9413.00 23.74 99.94 178.18 2.62 253.59 266.35 49.62 935.61 0.17 中位数 341218.46 27.33 19.80 223.74 22.12 8782.83 22.00 2.02 19.46 2.70 149.88 24.64 3.96 402.60 0.08 方差 656190573.80 1582.99 419.74 506321.46 390352.28 88378055.87 74.35 34482.54 139591.03 2.29 84191.50 265583.58 17766.47 3239087.59 0.03 极差 100092.92 143.15 74.00 2967.46 2694.05 29169.32 9.52 825.97 1398.56 3.70 956.86 1971.42 599.52 8535.30 0.62 第3带 50-1 263769.51 2.11 11.65 1.60 6.91 0.26 0.24 7.84 50-2 279260.40 23.24 6.09 9.80 1.50 35.45 0.52 0.29 0.80 20.73 50-3 249046.29 13.23 3.64 361.41 10.94 5641.10 18.88 0.97 346.66 19.58 3.96 619.66 50-4 252044.79 9.38 1.08 11.98 1.25 93.13 0.75 0.38 2.76 0.59 0.06 26.23 50-5 261174.22 4.66 9.85 1.52 10.66 0.66 0.24 0.82 0.48 10.09 50-6 270194.99 48.15 11.07 34.04 4.26 114.92 1.65 1.18 7.28 1.18 0.05 123.89 50-7 250984.14 53.22 16.25 53.91 6.54 171.79 2.22 3.25 21.41 0.09 152.51 50-8 270926.49 37.87 8.11 30.70 36.63 205.25 1.24 1.10 5.35 0.48 0.03 92.82 平均(n=8) 262175.10 23.98 7.71 65.42 8.03 784.90 3.27 0.95 55.01 4.46 0.84 131.72 中位数 262471.87 18.24 7.10 21.34 2.93 104.03 1.00 0.68 5.35 0.59 0.06 59.53 方差 104572907.64 351.62 29.58 12732.67 126.90 3373548.34 35.16 0.89 12773.28 40.42 1.69 36709.90 极差 30214.11 51.11 15.17 351.61 35.38 5634.19 18.62 3.01 345.86 19.10 3.93 611.82 第4带 52-1 285433.79 6.02 1.40 45.04 195.93 3308.10 2.26 1.60 54.14 9.76 0.65 188.20 52-2 325089.23 12.35 2.15 22.78 1.87 105.48 0.43 1.27 0.45 0.03 28.52 52-3 359354.34 5.46 0.79 4.50 758.55 0.10 2.74 1.19 0.46 5.98 52-4 311181.57 2.58 1.03 7210.62 125.35 26898.70 54.44 0.58 246.61 22.90 7.13 248.73 52-5 320269.21 40.83 16.13 17.81 13.72 4856.86 0.70 1.09 31.00 1.99 0.70 129.36 52-6 306594.66 64.04 13.24 68.36 3.66 3595.30 4.23 7.48 20.49 17.68 17.90 52-7 364431.97 84.52 32.77 0.98 6.19 38.62 0.06 0.43 3.20 9.23 52-8 343056.87 30.78 5.16 414.40 15.35 24231.17 8.99 0.64 291.16 136.11 81.01 341.03 54-1 282402.97 4.48 1.71 23.00 26.60 338.97 24.08 5.99 215.31 9.93 178.91 54-2 230330.00 101.56 50.69 48.02 6.29 306.33 2.09 0.26 50.93 24.72 0.10 720.22 54-3 261971.00 20.19 7.70 29.24 156.90 130.69 1.24 32.44 5.79 0.06 313.61 54-4 306347.34 0.26 2.69 0.37 0.11 54-5 275576.83 0.27 1.03 18.53 4.58 11.50 1.37 1.95 54-6 299755.91 1.89 1.87 3.67 79.86 0.53 4.82 1.11 2.17 54-7 300998.85 29.33 12.57 3.75 273.76 9.07 2.05 39.28 4.49 9.64 54-8 254737.91 878.74 274.64 109.33 1.69 4171.40 14.08 0.69 33.72 1792.95 22.14 1105.27 55-1 248768.14 34.97 11.34 324.58 174.99 929.20 0.39 11.15 0.26 87.58 44.12 8.57 246.38 55-2 292527.61 58.02 25.07 415.48 87.88 637.51 880.46 97.33 0.40 90.07 145.58 43.68 3083.01 55-3 267990.03 2.52 69.74 13.51 396.91 0.44 0.91 0.23 7.21 3.65 0.25 60.76 55-4 222558.70 0.81 18.82 437.81 87.64 1.26 0.35 1.35 1.17 27.18 55-5 214405.02 2.37 10.39 17.25 18.23 1.16 0.17 3.40 5.93 0.31 53.20 55-6 283070.03 14.08 5.35 138.41 711.77 160.09 3.38 0.33 31.33 7.39 1.39 102.63 55-7 235163.78 6.05 2.91 47.59 306.04 209.18 2.87 10.63 4.94 1.00 530.94 55-8 282488.50 10.86 3.90 77.24 3300.52 791.36 3.88 61.03 40.15 8.52 124.00 平均(n=24) 286437.68 58.87 24.76 395.86 294.91 3014.38 293.76 10.82 0.61 50.08 110.58 10.03 313.71 中位数 284251.91 11.61 5.35 45.04 26.60 322.65 0.44 2.87 0.40 31.00 9.76 1.37 113.32 方差 1569039297.62 29985.05 2973.06 2043526.92 437330.95 48354159.08 30952.03 458.83 0.19 5372.81 126596.48 322.86 400884.62 极差 150026.95 878.48 273.85 7209.64 3298.83 26896.01 880.07 97.27 1.43 290.73 1792.58 80.98 3082.90 注:空白表示低于检测限 不同蚀变带中黄铁矿的微量元素箱形图能直观地反映元素的空间变化规律(图6)。①黄铁矿中Zn、Pb、As、Sb、Au、Ag、Cu、Ni和Te元素含量在空间上呈现规律性变化(图6a—6i),从第1蚀变带到第3蚀变带,随着深度的增加,上述元素含量均呈现出不同程度的降低,至第4蚀变带其含量又呈现升高的趋势,尤其是Zn、As、Au、Ag、Ni和Te表现最为明显;第1蚀变带黄铁矿中Te(中位数为3998.57×10−6)、Au(中位数为708.30×10−6)、Ag(中位数为1162.95×10−6)和Se(中位数为27.39×10−6)较其他蚀变带黄铁矿元素含量中位数高出1~2个数量级;第3蚀变带黄铁矿的Au(中位数为0.06×10−6)、Ag(中位数为1.00×10−6)、Te(中位数为0.59×10−6)元素含量中位数极低。4个蚀变带黄铁矿为Ni含量表现为:第1、2蚀变带黄铁矿中Ni含量中位数分别为39.51×10−6、19.80×10−6,含量变化不大且较为富集,第3、4蚀变带的Ni含量中位数分别为7.10×10−6、5.35×10−6明显低于第1、2蚀变带。②Co在4个蚀变带黄铁矿中的含量(含量中位数为32.94×10−6、27.33×10−6、18.24×10−6、11.61×10−6)较为均匀,随深度增加呈略微降低趋势(图6j);③相比上述元素,黄铁矿中Sn、Se、Bi、Mo元素含量的空间变化极大(图6k—6n),其中Sn和Bi在第1蚀变带黄铁矿中含量较低,含量中位数分别为0.42×10−6和0.01×10−6;Sn、Mo、Bi元素在第2蚀变带黄铁矿中相对富集,含量中位数分别为2.70×10−6、2.02×10−6、0.08×10−6;Mo元素只集中分布在第2蚀变带黄铁矿中(图6m),Se仅在第1蚀变带黄铁矿中含量略高,在其他蚀变带黄铁矿中均低于检测限(图6n)。
图 6 蚀变岩黄铁矿微量元素含量箱形图1—第1蚀变带;2—第2蚀变带;3—第3蚀变带;4—第4蚀变带a—Zn;b—Pb;c—As;d—Sb;e—Au;f—Ag;g—Cu;h—Ni;i—Te;j—Co;k—Sn;l—Bi;m—Mo;n—SeFigure 6. Box plots of trace elements in pyrite from altered rocks(a) Zn; (b) Pb; (c) As; (d) Sb; (e) Au; (f) Ag; (g) Cu; (h) Ni; (i) Te; (j) Co; (k) Sn; (l) Bi; (m) Mo; (n) Se1—1st altered zone; 2—2nd altered zone; 3—3rd altered zone; 4—4th altered zone黄铁矿微量元素主成分分析显示(图7),Au、Ag、Te和Ni元素之间向量夹角极小,呈现正相关关系;Cu、Sb、As呈正相关关系。这2组向量呈近垂直关系,表明其彼此之间关系不明显。对黄铁矿微量元素聚类分析(图8)显示Au与Te/Ag、Co与Ni相似度系数很高。这些微量元素可以分为3组:第1组为Cu、As、Sb、Zn、Ag、Te、Au、Se和Pb元素,为中—低温元素组合,第2组为Co、Ni、Mo元素,第3组为S、Sn、Bi元素。黄铁矿微量元素之间相关性图解(图9)显示,Au与Cu、As、Zn、Ag、Te和Pb,Cu与Ag、Sb,Ag与Pb、Te和Sb均呈现出良好的正相关关系,表明其具有同步富集的特点。
图 9 蚀变岩黄铁矿微量元素相关性图解图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿a—Au与Cu图解;b—Au与As图解;c—Au与Sb图解;d—Au与Zn图解;e—Au与Ag图解;f—Au与Te图解;g—Au与Pb图解;h—Ag与Cu图解;i—Sb与Cu图解;j—Pb与Ag图解;k—Ag与Te图解;l—Sb与Ag图解Figure 9. Correlation of trace elements in pyrite from altered rocks(a) Au vs Cu; (b) Au vs As; (c) Au vs Sb; (d) Au vs Zn; (e) Au vs Ag; (f) Au vs Te; (g)Au vs Pb; (h) Ag vs Cu; (i) Sb vs Cu; (j) Pb vs Ag; (k) Ag vs Te; (l) Sb vs Ag1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.4. 分析与讨论
4.1 黄铁矿微量元素对矿床成因的指示
黄铁矿中Au含量的变化较大,第1蚀变带其含量中位数在708.30×10−6,其余蚀变带黄铁矿中Au含量中位数均低于4.00×10−6。有研究表明Au在黄铁矿中的溶解度很大程度上取决于As的含量(Cook and Chryssoulis,1990;Reich et al.,2005;Deditius et al.,2014)。在Au-As图上,位于溶解度饱和线以下的黄铁矿中的Au以固溶体形式出现在晶格内,而在该线以上,Au主要以原生Au纳米颗粒形式出现(Reich et al.,2005;Li et al.,2019)。九仗沟金矿床的黄铁矿中Au含量低于As含量控制的溶解度极限,除第1蚀变带及第2、4蚀变带黄铁矿少量点在饱和曲线上,主体位于饱和线下方,表明第1蚀变带黄铁矿中的Au以原生Au纳米形式产出,而深部的第2、3、4蚀变带黄铁矿中的Au以固溶体占主导优势(图10a)。九仗沟矿床黄铁矿的Au-As范围整体与浅成低温热液型矿床一致。
图 10 黄铁矿成因判别图解图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿a—As-Au相对摩尔含量图解(Reich et al.,2005提出的Au溶解度线);b—Ni-Co元素相对含量图解;c—Co-As-Ni质量占比三角图(严育通等,2012)Figure 10. Genetic discrimination of pyrite(a) As vs Au molar proportion diagram (Au saturation line after Reich et al.,2005); (b) Ni vs Co relative abundance diagram; (c) Co-As-Ni relative abundance percent triangle diagram (Yan et al., 2012)1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.黄铁矿中的Co/Ni比值对赋存地质体的形成环境较为敏感,广泛应用于黄铁矿成因和成矿流体来源的分类(Bajwah et al.,1987;Large et al.,2009)。一般来说,沉积成因型黄铁矿的特征是高Ni浓度和低Co/Ni比值(<1),而岩浆热液型黄铁矿的特征是Co/Ni比值介于1~10(Bajwah et al.,1987;Reich et al.,2016)。九仗沟金矿床黄铁矿Co/Ni比值主体落在1~10,属于岩浆热液成因(图10b)。Co-Ni-As三角图解显示,九仗沟金矿床黄铁矿主体落在卡林型与岩浆热液或浅成热液的重叠区,部分落在岩浆热液与浅成热液区(图10c)。Babedi et al.(2023)通过典型的造山型、高硫浅成低温热液型、低硫浅成低温热液型、斑岩型、卡林型黄铁矿中As与温度的拟合显示,As与温度呈中度正相关,R2=0.5(图11)。九仗沟矿床各蚀变带黄铁矿中As含量中位数与温度的拟合关系显示,第1蚀变带黄铁矿形成于230.0 ℃,第2蚀变带黄铁矿形成温度为247.2 ℃,第3蚀变带形成温度为395.4 ℃,第4蚀变带形成温度为377.1 ℃(图11),黄铁矿主体形成温度在高—中温范围内。相关学者曾根据九仗沟金矿床的黄铁矿硫同位素(δ34S为−16.0‰~−7.4‰)和重晶石硫同位素(δ34S为−16.0‰~−7.4‰)结果,计算获得流体中δ34S为1.2‰(Sheng et al.,2022b),显示硫来自于岩浆岩。因此,综合各类判别及矿床深部存在的隐伏岩体推断(刘玉刚等,2022),九仗沟金矿床为岩浆热液有关的金矿床。
图 11 黄铁矿As与温度的关系(Babedi et al.,2023)图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿Figure 11. Correlation between the As content and the temperature of pyrite (after Babedi et al.,2023)1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.黄铁矿中Te元素含量在各类金矿床变化较大(严育通等,2012),Te含量可以很好反映流体的氧逸度(fO2),二者呈负相关性(张哲铭等,2023)。九仗沟金矿床的黄铁矿Te含量除少数低于检测限外,从n×10−6~n×10−3,最高达7352.59×10−6,明显高于熊耳山−外方山矿集区的康山金矿床的黄铁矿(最大值21.9×10−6;张哲铭等,2023),显示九仗沟金矿床氧逸度总体低。4个蚀变带黄铁矿Te含量由浅(第1蚀变带其含量中位数为3998.57×10−6)至中—深部(第3蚀变带其含量中位数为0.59×10−6)逐渐降低,最深部其含量(第4蚀变带其含量中位数为9.76×10−6)又有升高(表3),反映了深部氧逸度有升高的趋势。
4.2 黄铁矿元素空间变化规律及成矿预测
在4个蚀变带中,第3蚀变带黄铁矿的Co/Ni比值最高(3.3 ~ 8.7),其次为第4蚀变带(Co/Ni比值为1.0 ~ 6.9),而浅部第1、2蚀变带的黄铁矿Co/Ni比值较低,约为1.0(图10b)。由第1蚀变带到第3蚀变带黄铁矿中Co/Ni比值逐渐降低。而第4蚀变带黄铁矿的Co/Ni比值高于第3蚀变带,但低于第1、2蚀变带(图10b),说明第4蚀变带与上部蚀变带不是连续变化的地质体。As含量与温度拟合关系显示,第1—3蚀变带黄铁矿形成温度逐渐降低,到第4蚀变带其形成温度反而增高(图11),暗示九仗沟金矿床矿化蚀变经历了不止一次热液活动,第3蚀变带为矿化作用的尾端,第4蚀变带为另一次热液活动的头端。这与金矿床的构造叠加晕表现特征具有类似之处(李惠等,2021)。
黄铁矿其他微量元素及参数空间变化与Co/Ni比值的变化类似,第1—3蚀变带与第4蚀变带差异明显。例如,第1蚀变带至第3蚀变带Au含量逐渐递减,而第4蚀变带略有递增(图12a)。As含量总体在上部富集,但各中段的变化较为复杂(图12b);Au/As变化与Au的变化类似(图12c),但更具有指示性。Ni与Co在上部含量较高(图12d、12e),两元素变化类似,未呈现深部富集的特点(周立宏和冯瑞,1994)。不同标高黄铁矿的Au/Ag比值特征显示,上部富集Ag、下部富集Au(图12f)。因此,黄铁矿的Au/As、Co/Ni对不同蚀变带具有重要的指示(图12f、12g)。在黄铁矿Co/Ni-Au/Ag图上,第1、2、3蚀变带的黄铁矿的Co/Ni与Au/Ag呈反比,由原点向第II象限分布(图12h),而第4蚀变带分布范围较广,与其他3个蚀变带的黄铁矿有明显的差异(图12h),这也显示第4蚀变带可能是另外一次热液活动的产物。矿床勘查及开采资料显示,+80 m中段以下矿块品位主体大于6 g/t,而+80 m中段以上矿块主体品位小于4 g/t,这些特征与黄铁矿微量元素反映的热液活动具有一致性。
图 12 蚀变岩黄铁矿微量元素及相关系数的空间变化图解图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿a、b、c、d、e、f、g—为矿床垂向上Au、As、Au/As、Ni、Co、Au/Ag、Co/Ni图解;h—Ag/Au与Co/Ni图解(I—第I象限富Au、Co区;II—第II象限贫Au富Co区;III—第III象限贫Co贫Au区;VI—第VI象限贫Co富Au区)Figure 12. Spatial variation of trace elements and associated coefficients of pyrite in altered rocksa, b, c, d, e, f, g—are Au, As, Au/As, Ni, Co, Au/Ag, Co/Ni vertical variation diagram; h—Ag/Au vs Co/Ni (in Figure 12h I—Quadrant I Au-, Co-rich area; II—Quadrant II Au-poor, Co-rich area; III—Quadrant III Co-, Au-poor area; VI—Quadrant VI Co-rich, Au-poor area)1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.综合黄铁矿微量元素的空间变化规律,在第1—3蚀变带中第3蚀变带黄铁矿的Co/Ni比值最高,暗示其为该次热液活动的尾部,而第1蚀变带为热液活动的头部(上部情况不清楚),整个蚀变带垂深至少160 m(图13)。第4蚀变带为另一次热液活动的头部,参照上部矿体空间变化,推测延伸可达160 m,保守估计在−60 m可能见到蚀变带的尾部。目前该矿床最深已控制至−20 m,因此,深部至少还可以勘探一个中段(约40 m)。由于上部采矿区无法获得相关样品,实际深部延伸可能更大,表明其具有良好的勘查前景。
5. 结论
(1)九仗沟金矿床+260 m至−20 m中段可分为4个蚀变带,第1蚀变带黄铁矿中的Au以纳米颗粒形式,第2—4蚀变带其以固溶体形式为主。黄铁矿中Co/Ni比值(1~10)及Co-Ni-As图解显示其为岩浆热液成因。
(2)由第1蚀变带至第3蚀变带(由浅至深)黄铁矿中Au含量中位数分别为708.30×10−6、3.96×10−6、0.06×10−6,呈逐渐降低的趋势。黄铁矿中Au与Ag、Te、Zn、Sb、As、Se和Pb元素呈正相关,Au/As、Au/Ag比值与Au含量呈正相关变化,而Co/Ni比值与Au含量呈负相关变化。因此,黄铁矿中Au、Ag、Te、Zn、Sb、As、Se、Pb元素含量及Au/As、Au/Ag、Co/Ni对蚀变带垂深变化具重要的指示意义。
(3)黄铁矿中微量元素在垂向上存在系统性的变化规律,在第1—3蚀变带黄铁矿中微量元素含量呈连续性渐变规律,为同一期次成矿活动的产物;而在第4蚀变带其含量出现跳跃,推测其为另一次成矿活动的产物。根据第1—3蚀变带的垂向深度,推测第4蚀变带垂向延深可达−60 m,目前至少还可勘探一个中段(40 m),九仗沟金矿床深部具有良好的勘查前景。
-
图 1 豫西九仗沟金矿床区域地质简图
a—豫西熊耳山−外方山地区地质矿产简图(Sheng et al.,2022a);b—庙岭−九仗沟金矿带地质简图(刘玉刚等,2022)
Figure 1. Simplified regional geological maps of the Jiuzhanggou gold deposit in western Henan
(a) Simplified geological and mineral resource map of the Xiong'ershan-Waifangshan area in western Henan (after Sheng et al., 2022a); (b) Simplified geological map of the Miaoling-Jiuzhanggou gold belt (after Liu et al., 2022)
图 2 九仗沟金矿床地质图
a—矿床平面地质图(据朱随洲等,2022);b—00线剖面地质图(剖面位置见图2a;据丁培超等,2020)
Figure 2. Geological map of the Jiuzhanggou gold deposit
(a) Geological plan map of the deposit (after Zhu et al., 2022); (b) The section No. 00 of the deposit (after Ding et al., 2020)
图 3 九仗沟金矿床纵剖面图及蚀变分带
1—第1蚀变带(+300~+240 m);2—第2蚀变带(+240~+120 m);3—第3蚀变带(+120~+80 m);4—第4蚀变带(+80~−20 m)
Figure 3. Longitudinal section of the Jiuzhanggou gold deposit, indicating alteration zones and sampling locations
1—1st altered zone (+300~+240 m); 2—2nd altered zone (+240~+120 m); 3—3rd altered zone (+120~+80 m); 4—4th altered zone (+80~−20 m)
图 4 蚀变岩中硫化物结构显微照片
Py—黄铁矿;Gn—方铅矿;Cpy—黄铜矿a—浸染状细粒黄铁矿;b—脉状黄铁矿;c—碎裂状黄铁矿;d—与方铅矿和黄铜矿共生的黄铁矿
Figure 4. Micrographs of textures of sulfide in altered rocks
(a) Disseminated fine-grained pyrite; (b) Vein texture pyrite; (c) Cataclastic pyrite; (d) Pyrite intergrown with chalcopyrite and galenaPy—pyrite; Gn—galena; Cpy—chalcopyrite
图 5 九仗沟金矿床各蚀变带黄铁矿δFe-δS图解
1—第1蚀变带;2—第2蚀变带;3—第3蚀变带;4—第4蚀变带;I—第I象限富Fe、S区;II—第II象限贫Fe富S区;III—第III象限贫Fe、S区;VI—第VI象限富Fe贫S区
Figure 5. δFe-δS diagram of pyrite from different altered zones in the Jiuzhanggou gold deposit
1—1st altered zone; 2—2nd altered zone; 3—3rd altered zone; 4—4th altered zone; I—Quadrant I Fe-, S-rich area; II—Quadrant II Fe-poor, S-rich area; III—Quadrant III Fe-, S-poor area; VI—Quadrant VI Fe-rich, S-poor area
图 6 蚀变岩黄铁矿微量元素含量箱形图
1—第1蚀变带;2—第2蚀变带;3—第3蚀变带;4—第4蚀变带a—Zn;b—Pb;c—As;d—Sb;e—Au;f—Ag;g—Cu;h—Ni;i—Te;j—Co;k—Sn;l—Bi;m—Mo;n—Se
Figure 6. Box plots of trace elements in pyrite from altered rocks
(a) Zn; (b) Pb; (c) As; (d) Sb; (e) Au; (f) Ag; (g) Cu; (h) Ni; (i) Te; (j) Co; (k) Sn; (l) Bi; (m) Mo; (n) Se1—1st altered zone; 2—2nd altered zone; 3—3rd altered zone; 4—4th altered zone
图 9 蚀变岩黄铁矿微量元素相关性图解
图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿a—Au与Cu图解;b—Au与As图解;c—Au与Sb图解;d—Au与Zn图解;e—Au与Ag图解;f—Au与Te图解;g—Au与Pb图解;h—Ag与Cu图解;i—Sb与Cu图解;j—Pb与Ag图解;k—Ag与Te图解;l—Sb与Ag图解
Figure 9. Correlation of trace elements in pyrite from altered rocks
(a) Au vs Cu; (b) Au vs As; (c) Au vs Sb; (d) Au vs Zn; (e) Au vs Ag; (f) Au vs Te; (g)Au vs Pb; (h) Ag vs Cu; (i) Sb vs Cu; (j) Pb vs Ag; (k) Ag vs Te; (l) Sb vs Ag1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.
图 10 黄铁矿成因判别图解
图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿a—As-Au相对摩尔含量图解(Reich et al.,2005提出的Au溶解度线);b—Ni-Co元素相对含量图解;c—Co-As-Ni质量占比三角图(严育通等,2012)
Figure 10. Genetic discrimination of pyrite
(a) As vs Au molar proportion diagram (Au saturation line after Reich et al.,2005); (b) Ni vs Co relative abundance diagram; (c) Co-As-Ni relative abundance percent triangle diagram (Yan et al., 2012)1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.
图 11 黄铁矿As与温度的关系(Babedi et al.,2023)
图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿
Figure 11. Correlation between the As content and the temperature of pyrite (after Babedi et al.,2023)
1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.
图 12 蚀变岩黄铁矿微量元素及相关系数的空间变化图解
图例中1、2、3、4分别代表了第1、2、3、4蚀变带的黄铁矿a、b、c、d、e、f、g—为矿床垂向上Au、As、Au/As、Ni、Co、Au/Ag、Co/Ni图解;h—Ag/Au与Co/Ni图解(I—第I象限富Au、Co区;II—第II象限贫Au富Co区;III—第III象限贫Co贫Au区;VI—第VI象限贫Co富Au区)
Figure 12. Spatial variation of trace elements and associated coefficients of pyrite in altered rocks
a, b, c, d, e, f, g—are Au, As, Au/As, Ni, Co, Au/Ag, Co/Ni vertical variation diagram; h—Ag/Au vs Co/Ni (in Figure 12h I—Quadrant I Au-, Co-rich area; II—Quadrant II Au-poor, Co-rich area; III—Quadrant III Co-, Au-poor area; VI—Quadrant VI Co-rich, Au-poor area)1, 2, 3, and 4 are pyrite from the 1st, 2nd, 3rd, and 4th altered zones, respectively.
表 1 蚀变岩样品特征
Table 1. Characteristics of samples of altered rocks
样号 采样位置 样品特征 所在蚀
变带45 260 m中段穿脉7 矿化蚀变火山角砾岩,含有张性的热液脉 1 47 220 m中段穿脉7 矿化蚀变角砾凝灰岩,局部含有团包状硫化物,含有张性的热液脉,可见黄铜矿、方铅矿 2 48 130 m中段穿脉1-3 矿化蚀变角砾凝灰岩,张性细网脉比较发育,脉宽小于0.5 mm,见少量黄铁矿、方铅矿 2 49 100 m中段穿脉1 矿化蚀变角砾凝灰岩,张性细网脉比较发育,脉宽小于0.5 mm,硫化物较为发育 3 50 100 m中段穿脉5 黄铁绢云岩,硫化物网脉较发育,脉宽1~2 mm,脉石矿物较少,发育深、浅两组脉,略具压性特征 3 52 50 m中段穿脉01 矿化蚀变火山角砾凝灰岩,发育多期张性网脉,第二期网脉中角砾明显 4 54 20 m中段穿脉1-3 矿化蚀变角砾岩,角砾有压性特征 4 55 −20 m中段穿脉3 矿化蚀变岩屑凝灰岩,发育浸染状−网脉状矿化 4 表 2 九仗沟金矿床蚀变岩黄铁矿电子探针测试结果(×10−2)
Table 2. Electron microprobe data of pyrite from tectonically altered rocks of the Jiuzhanggou gold deposit (×10−2)
测点 Fe Cu Pb Zn Au Ag Te As S 合计 S/Fe δFe δS 第1带 45.1 45.45 0.05 0.02 53.90 99.41 2.065 −2.363 0.842 45.2 46.81 0.02 0.05 52.21 99.09 1.942 0.559 −2.320 45.3 46.08 0.04 0.08 0.03 52.87 99.10 1.998 −1.010 −1.085 45.4 46.56 0.03 0.08 0.03 0.02 / / 53.73 100.46 2.009 0.021 0.524 45.5 45.71 0.37 0.02 0.03 0.01 / / 50.37 96.51 1.919 −1.805 −5.762 45.6 46.33 0.00 0.02 / / 52.85 99.21 1.986 −0.473 −1.123 45.7 45.73 0.05 0.01 / / 53.21 99.00 2.026 −1.762 −0.449 45.8 45.81 0.07 0.04 0.06 / / 53.53 99.52 2.035 −1.590 0.150 平均值 46.06 / / / / / / / 52.83 99.04 1.998 −1.053 −1.153 中位数 45.95 / / / / / / / 53.04 99.16 2.004 −1.300 −0.767 第2带 47.1 49.02 0.02 0.02 50.59 99.65 1.998 5.306 −5.351 47.3 46.20 0.02 53.77 99.99 1.797 −0.752 0.599 47.4 46.07 0.04 0.06 0.04 53.48 99.68 2.029 −1.031 0.056 47.5 46.00 0.02 53.28 99.31 2.027 −1.182 −0.318 47.8 46.69 0.05 0.05 0.03 53.49 100.32 2.022 0.301 0.075 47.1 46.45 0.04 0.04 54.12 100.65 2.017 −0.215 1.254 48.1 46.06 0.04 0.03 0.02 / / 52.72 98.87 1.995 −1.053 −1.366 48.2 45.55 0.04 0.03 0.05 / / 53.49 99.16 1.993 −2.148 0.075 48.3 45.62 0.09 0.04 0.00 / / 51.68 97.44 2.031 −1.998 −3.312 48.4 45.59 0.05 0.02 / / 51.58 97.25 2.045 −2.062 −3.499 48.5 45.94 0.04 / / 53.26 99.25 1.973 −1.310 −0.355 48.6 45.96 0.10 / / 52.74 98.79 1.970 −1.267 −1.328 48.7 46.06 0.16 0.08 0.02 / / 53.49 99.82 2.019 −1.053 0.075 48.8 45.74 0.02 / / 53.64 99.39 1.998 −1.740 0.335 48.9 45.01 0.03 0.10 0.03 / / 53.21 98.37 2.022 −3.308 −0.449 48.1 45.42 0.02 0.07 0.04 / / 52.96 98.50 2.042 −2.427 −0.917 平均值 46.09 / / / / / / / 52.97 99.15 1.999 −0.996 −0.900 中位数 45.98 / / / / / / / 53.27 99.28 2.018 −1.225 −0.337 第3带 50.3 45.95 0.04 0.02 / / 53.53 99.55 2.058 −1.289 0.150 50.6 45.78 0.04 / / 54.72 100.55 2.002 −1.654 2.376 50.7 46.28 0.07 0.05 / / 52.83 99.24 2.029 −0.580 −1.160 50.8 46.56 0.05 0.12 / / 52.23 98.96 2.081 0.021 −2.283 平均值 46.14 / / 0.06 / / / / 53.33 99.58 2.043 −0.875 −0.229 中位数 46.12 / / 0.05 / / / / 53.18 99.40 2.044 −0.935 −0.505 第4带 52.1 45.50 0.06 0.05 0.04 / 51.83 97.48 1.988 −2.256 −3.031 52.4 45.75 0.04 0.03 0.02 / 51.95 97.78 1.953 −1.719 −2.806 52.5 45.77 0.04 / 52.36 98.17 2.013 −1.676 −2.039 52.6 45.45 0.02 0.05 0.06 0.10 / 50.92 96.60 1.984 −2.363 −4.733 52.8 44.98 0.03 0.04 0.09 / 52.44 97.57 1.977 −3.373 −1.890 54.1 48.95 0.08 0.02 0.02 / 54.21 103.28 1.992 5.156 1.422 54.2 46.39 0.02 / 54.01 100.43 1.951 −0.344 1.048 54.3 46.65 0.03 0.05 0.05 0.02 / 53.58 100.38 2.030 0.215 0.243 54.7 45.94 0.04 0.09 / 53.53 99.59 1.929 −1.310 0.150 54.8 46.00 0.02 0.03 0.03 / 53.02 99.10 2.027 −1.182 −0.804 55.6 45.41 / 0.01 53.41 98.83 2.000 −2.449 −0.075 55.7 45.31 0.04 0.03 / 0.02 53.29 98.70 2.029 −2.664 −0.299 55.8 44.77 0.03 0.03 0.06 0.03 / 53.88 98.80 2.007 −3.824 0.804 平均值 45.91 / / / / / / / 52.96 98.98 1.991 −1.368 −0.924 中位数 45.75 / / / / / / / 53.29 98.7 1.992 −1.719 −0.299 注:“/”表示未测;空白表示低于检测限;S/Fe为原子比 表 3 九仗沟金矿床矿化蚀变岩黄铁矿LA-ICP-MS测试结果(×10−6)
Table 3. LA—ICP—MS data of pyrite from the tectonically altered rocks of the Jiuzhanggou gold deposit (×10−6)
测点 S Co Ni Cu Zn As Se Mo Ag Sn Sb Te Au Pb Bi 第1带 45-1 314534.91 30.77 41.16 467.86 47.08 22373.42 4682.16 0.51 219.99 7352.59 865.84 4059.30 0.01 45-2 331241.10 58.02 77.23 191.82 2682.09 12403.78 770.80 119.21 4040.89 516.84 5214.27 45-3 313316.89 52.70 46.62 148.97 3044.75 12729.02 621.41 0.33 320.24 2462.06 571.50 1031.78 0.01 45-4 307157.24 19.75 25.86 357.42 24.14 22497.85 22.40 3154.18 0.25 408.59 5432.86 780.42 1973.63 0.01 45-5 331751.25 27.43 25.36 1567.97 591.32 26085.62 27.49 1292.62 0.56 381.66 3663.10 714.50 1799.68 0.01 45-6 342514.13 37.99 44.59 95.90 637.06 10316.97 751.65 167.70 3956.25 753.55 1128.58 45-7 330354.27 13.06 28.96 120.37 16.53 14768.53 27.29 1033.28 0.32 133.65 2867.33 608.21 831.34 45-8 335784.77 35.10 37.85 102.41 17306.38 14710.66 27.59 1575.52 1.05 173.53 4151.51 702.09 1659.99 平均(n=8) 325831.82 34.35 40.95 381.59 3043.67 16985.73 26.19 1735.20 0.50 240.57 4240.82 689.12 2212.32 0.01 中位数 330797.69 32.94 39.51 170.40 614.19 14739.60 27.39 1162.95 0.42 196.76 3998.57 708.30 1729.84 0.01 方差 136887097.86 204.74 248.23 216680.63 30327764.96 29487099.19 173.91 1818763.76 0.10 11359.06 2077152.82 11823.82 2178828.11 极差 35356.89 44.96 51.87 1472.07 17289.85 15768.65 5.19 4060.75 0.80 289.38 4890.53 349.00 4382.93 0.01 第2带 47-1 299144.45 31.24 13.17 187.48 279.45 545.78 1.59 268.08 1.43 81.65 319.05 17.02 345.47 0.25 47-2 372280.64 0.29 1.58 1.02 1.69 3.33 0.43 1.05 47-3 359972.18 97.63 32.03 1404.50 13.85 12501.72 22.00 68.03 3.94 154.99 559.35 136.28 411.33 0.64 47-4 338727.58 53.74 44.99 302.48 2695.30 17510.70 19.85 270.46 1399.58 3.42 147.59 1973.67 599.59 383.25 0.07 47-5 329348.76 122.64 54.49 721.46 14.96 12242.35 29.37 0.44 481.16 345.12 1072.16 158.44 1401.17 0.36 47-6 362872.12 82.88 18.57 27.53 6.83 96.67 826.15 7.78 8.36 37.48 0.92 124.81 0.09 47-7 381262.54 59.00 15.05 103.36 17.17 1.18 2.25 9.36 0.07 21.70 0.07 47-8 349997.96 34.11 37.63 112.92 738.80 2830.19 1072.48 2.13 33.28 1123.44 6.65 171.09 0.28 47-9 383906.10 23.41 2.15 260.00 3.20 203.11 75.16 2.20 27.09 11.97 0.30 99.13 0.58 47-10 389696.13 9.78 1.47 26.13 3.89 32.14 11.90 10.76 4.27 48.51 0.70 8536.35 0.23 48-1 289603.21 3.64 9.92 1592.57 62.75 27675.40 0.18 50.59 1.67 780.86 37.29 19.65 876.45 0.03 48-2 343709.34 19.24 17.10 126.92 1.25 3691.67 7.85 0.96 152.17 2.49 1.01 393.86 0.03 48-3 332238.60 17.76 20.85 174.00 29.27 8782.83 12.93 2.72 197.94 5.21 2.00 469.29 0.06 48-4 336590.76 8.91 14.55 698.68 540.96 29186.49 2.45 42.18 4.19 958.55 34.52 14.19 1448.35 0.08 48-5 346017.61 143.44 55.32 153.38 70.39 749.01 2.41 2.20 25.57 2.25 0.19 166.53 0.08 48-6 356325.56 65.74 75.47 2969.04 98.03 749.89 9.72 12.42 1.07 23.73 5.05 0.80 103.07 0.27 48-7 338718.30 41.11 53.74 262.41 1105.22 10447.92 22.56 4.66 528.55 12.44 4.26 1090.63 0.02 48-8 335901.74 19.20 19.80 174.65 4.69 14242.35 0.30 16.36 2.67 418.45 13.79 3.66 684.68 0.03 48-9 334513.61 20.57 23.15 351.81 9.30 15006.54 0.28 26.31 2.85 425.44 14.76 6.68 818.78 0.02 48-10 314452.46 7.63 10.31 947.57 6.33 22334.96 0.67 57.62 2.76 754.25 40.98 19.54 1165.17 0.02 平均(n=20) 344763.98 43.10 27.36 529.92 315.80 9413.00 23.74 99.94 178.18 2.62 253.59 266.35 49.62 935.61 0.17 中位数 341218.46 27.33 19.80 223.74 22.12 8782.83 22.00 2.02 19.46 2.70 149.88 24.64 3.96 402.60 0.08 方差 656190573.80 1582.99 419.74 506321.46 390352.28 88378055.87 74.35 34482.54 139591.03 2.29 84191.50 265583.58 17766.47 3239087.59 0.03 极差 100092.92 143.15 74.00 2967.46 2694.05 29169.32 9.52 825.97 1398.56 3.70 956.86 1971.42 599.52 8535.30 0.62 第3带 50-1 263769.51 2.11 11.65 1.60 6.91 0.26 0.24 7.84 50-2 279260.40 23.24 6.09 9.80 1.50 35.45 0.52 0.29 0.80 20.73 50-3 249046.29 13.23 3.64 361.41 10.94 5641.10 18.88 0.97 346.66 19.58 3.96 619.66 50-4 252044.79 9.38 1.08 11.98 1.25 93.13 0.75 0.38 2.76 0.59 0.06 26.23 50-5 261174.22 4.66 9.85 1.52 10.66 0.66 0.24 0.82 0.48 10.09 50-6 270194.99 48.15 11.07 34.04 4.26 114.92 1.65 1.18 7.28 1.18 0.05 123.89 50-7 250984.14 53.22 16.25 53.91 6.54 171.79 2.22 3.25 21.41 0.09 152.51 50-8 270926.49 37.87 8.11 30.70 36.63 205.25 1.24 1.10 5.35 0.48 0.03 92.82 平均(n=8) 262175.10 23.98 7.71 65.42 8.03 784.90 3.27 0.95 55.01 4.46 0.84 131.72 中位数 262471.87 18.24 7.10 21.34 2.93 104.03 1.00 0.68 5.35 0.59 0.06 59.53 方差 104572907.64 351.62 29.58 12732.67 126.90 3373548.34 35.16 0.89 12773.28 40.42 1.69 36709.90 极差 30214.11 51.11 15.17 351.61 35.38 5634.19 18.62 3.01 345.86 19.10 3.93 611.82 第4带 52-1 285433.79 6.02 1.40 45.04 195.93 3308.10 2.26 1.60 54.14 9.76 0.65 188.20 52-2 325089.23 12.35 2.15 22.78 1.87 105.48 0.43 1.27 0.45 0.03 28.52 52-3 359354.34 5.46 0.79 4.50 758.55 0.10 2.74 1.19 0.46 5.98 52-4 311181.57 2.58 1.03 7210.62 125.35 26898.70 54.44 0.58 246.61 22.90 7.13 248.73 52-5 320269.21 40.83 16.13 17.81 13.72 4856.86 0.70 1.09 31.00 1.99 0.70 129.36 52-6 306594.66 64.04 13.24 68.36 3.66 3595.30 4.23 7.48 20.49 17.68 17.90 52-7 364431.97 84.52 32.77 0.98 6.19 38.62 0.06 0.43 3.20 9.23 52-8 343056.87 30.78 5.16 414.40 15.35 24231.17 8.99 0.64 291.16 136.11 81.01 341.03 54-1 282402.97 4.48 1.71 23.00 26.60 338.97 24.08 5.99 215.31 9.93 178.91 54-2 230330.00 101.56 50.69 48.02 6.29 306.33 2.09 0.26 50.93 24.72 0.10 720.22 54-3 261971.00 20.19 7.70 29.24 156.90 130.69 1.24 32.44 5.79 0.06 313.61 54-4 306347.34 0.26 2.69 0.37 0.11 54-5 275576.83 0.27 1.03 18.53 4.58 11.50 1.37 1.95 54-6 299755.91 1.89 1.87 3.67 79.86 0.53 4.82 1.11 2.17 54-7 300998.85 29.33 12.57 3.75 273.76 9.07 2.05 39.28 4.49 9.64 54-8 254737.91 878.74 274.64 109.33 1.69 4171.40 14.08 0.69 33.72 1792.95 22.14 1105.27 55-1 248768.14 34.97 11.34 324.58 174.99 929.20 0.39 11.15 0.26 87.58 44.12 8.57 246.38 55-2 292527.61 58.02 25.07 415.48 87.88 637.51 880.46 97.33 0.40 90.07 145.58 43.68 3083.01 55-3 267990.03 2.52 69.74 13.51 396.91 0.44 0.91 0.23 7.21 3.65 0.25 60.76 55-4 222558.70 0.81 18.82 437.81 87.64 1.26 0.35 1.35 1.17 27.18 55-5 214405.02 2.37 10.39 17.25 18.23 1.16 0.17 3.40 5.93 0.31 53.20 55-6 283070.03 14.08 5.35 138.41 711.77 160.09 3.38 0.33 31.33 7.39 1.39 102.63 55-7 235163.78 6.05 2.91 47.59 306.04 209.18 2.87 10.63 4.94 1.00 530.94 55-8 282488.50 10.86 3.90 77.24 3300.52 791.36 3.88 61.03 40.15 8.52 124.00 平均(n=24) 286437.68 58.87 24.76 395.86 294.91 3014.38 293.76 10.82 0.61 50.08 110.58 10.03 313.71 中位数 284251.91 11.61 5.35 45.04 26.60 322.65 0.44 2.87 0.40 31.00 9.76 1.37 113.32 方差 1569039297.62 29985.05 2973.06 2043526.92 437330.95 48354159.08 30952.03 458.83 0.19 5372.81 126596.48 322.86 400884.62 极差 150026.95 878.48 273.85 7209.64 3298.83 26896.01 880.07 97.27 1.43 290.73 1792.58 80.98 3082.90 注:空白表示低于检测限 -
[1] BABEDI L, VON DER HEYDEN B P, TADIE M, et al. , 2023. Trace elements in pyrite from five different gold ore deposit classes: a review and meta-analysis[M]//TORVELA T, LAMBERT-SMITH J S, CHAPMAN R J. Recent advances in understanding gold deposits: from orogeny to alluvium. London: Geological Society of London: 47-83. [2] BAJWAH Z U, SECCOMBE P K, OFFLER R, 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 22(4): 292-300. [3] CAO G S, ZHANG Y, CHEN H Y, 2023. Trace elements in pyrite from orogenic gold deposits: Implications for metallogenic mechanism[J]. Acta Petrologica Sinica, 39(8): 2330-2346. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.08.06 [4] CAO G S, ZHANG Y, ZHAO H T, et al., 2023. Trace element variations of pyrite in orogenic gold deposits: Constraints from big data and machine learning[J]. Ore Geology Reviews, 157: 105447. doi: 10.1016/j.oregeorev.2023.105447 [5] CAO M P, YAO J M, DENG X H, et al., 2017. Diverse and multistage Mo, Au, Ag-Pb-Zn and Cu deposits in the Xiong'er Terrane, East Qinling: from Triassic Cu mineralization[J]. Ore Geology Reviews, 81: 565-574. doi: 10.1016/j.oregeorev.2016.02.014 [6] CHEN Y J, SANTOSH M, 2014. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geological Journal, 49(4-5): 338-358. doi: 10.1002/gj.2618 [7] COOK N J, CHRYSSOULIS S L, 1990. Concentrations of invisible gold in the common sulfides[J]. The Canadian Mineralogist, 28(1): 1-16. [8] DEDITIUS A P, REICH M, KESLER S E, et al., 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 140: 644-670. doi: 10.1016/j.gca.2014.05.045 [9] DENG Y, ZHANG J, ZHONG R C, et al., 2024. Application of principal component analysis method based on machine learning to gold deposit type discrimination: a case study of the geochemical characteristics of pyrite[J]. Acta Petrologica Sinica, 40(6): 1801-1816. (in Chinese with English abstract doi: 10.18654/1000-0569/2024.06.07 [10] DI P F, TANG Q Y, LIU D X, et al., 2023. Trace element geochemistry of pyrite and its significance in the Gannan district, West Qinling: A case study from the Jiagantan and Zaozigou gold deposits[J]. Chinese Rare Earths, 44: 140-154. (in Chinese with English abstract [11] DING P C, WANG Z Q, GUO Q Q et al. , 2020. Mineralization and enrichment characteristics and deep prospecting prospect evaluation of the Miaoling-Jiuzhanggou gold metallogenic belt in Henan Province[J]. Gold, 41(10): 7-12, 18. (in Chinese with English abstract [12] HE X Y, WANG C M, YUAN J M, et al., 2019. Mesozoic Au-Mo metallogenic system in the Xiong'ershan-Waifangshan ore field[J]. Earth Science Frontiers, 26(5): 33-52. (in Chinese with English abstract [13] LARGE R R, DANYUSHEVSKY L, HOLLIT C, et al., 2009. Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J]. Economic Geology, 104(5): 635-668. doi: 10.2113/gsecongeo.104.5.635 [14] LI H, YU B, WEI J, et al., 2021. Research on prediction of hidden ore bodies at depth in exploration (new) areas using structural superimposed halos and a reference practical ideal model[J]. Geology and Exploration, 57(2): 351-359. (in Chinese with English abstract [15] LI H B, ZENG F Z, 2005. The pyrite’s typomorphic characteristics in gold deposit[J]. Contributions to Geology and Mineral Resources Research, 20(3): 199-203. (in Chinese with English abstract [16] LI H B, 2005. The discussion about genesis of Jiuzhanggou gold deposit of Henan[J]. Resources Environment & Engineering, 19(1): 16-22, 58. (in Chinese with English abstract [17] LI J J, HE Y L, FU C, et al., 2016. Metallogenic characteristics and potential analysis of the Yuxi Au-Mo-W-Pb-Zn-Ag-Fe-bauxite-graphite metallogenic belt in Western Henan[J]. Acta Geologica Sinica, 90(7): 1504-1524. (in Chinese with English abstract [18] LI W, COOK N J, XIE G Q, et al., 2019. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au-Sb deposit, South China[J]. Mineralium Deposita, 54(4): 591-610. doi: 10.1007/s00126-018-0826-0 [19] LI X H, FAN H R, XIE H L, et al., 2022. Geochronology, ore-forming processes and fluid sources of the Qinglonggou gold deposit, North Qaidam (NW China): Constraints from in-situ U-Pb dating of monazite and geochemistry of pyrite[J]. Ore Geology Reviews, 149: 105093. doi: 10.1016/j.oregeorev.2022.105093 [20] LIU S Y, ZHANG D, YANG M J, et al., 2024. Characteristics of chlorites from the Haopinggou Ag-Au polymetallic deposit in the Xiong'ershan ore concentration area and its exploration implications[J]. Journal of Geomechanics, 30(1): 129-146. (in Chinese with English abstract [21] LIU W Y, LIU J S, HE M X, et al., 2018. Geochemical features of Au-Ag polymetallic deposits in Xiong'ershan ore district of western Henan and their geological significances[J]. The Chinese Journal of Nonferrous Metals, 28(7): 1401-1417. (in Chinese with English abstract [22] LIU Y G, DING P C, XU J W et al., 2022. Discussion on genesis of F8 ore-bearing structure in Miaoling-Jiuzhanggou gold belt in Songxian, Henan Province[J]. Gold, 43(8): 5-9. (in Chinese with English abstract [23] NAGLIK B, TOBOŁA T, DUMAŃSKA-SŁOWIK M, et al., 2022. Multi-stage ore forming history of the Variscan porphyry Mo-Cu-W Myszków deposit (Poland): Evidence from trace elements of pyrite[J]. Ore Geology Reviews, 150: 105185. doi: 10.1016/j.oregeorev.2022.105185 [24] PATON C, HELLSTROM J, PAUL B, et al., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. doi: 10.1039/c1ja10172b [25] QIN J Q J, QU W X, ZHOU Y L, et al., 2022. Vertical zoning characteristics and deep prediction of primary halo in Jiuzhanggou gold deposit, Western Henan Province[J]. Mining Technology, 22(6): 202-206. (in Chinese with English abstract [26] QIN J Q, QU W X, ZHOU Y L, et al., 2019. Geological characteristics of Jiuzhanggou gold deposit in Song County, Henan Province and prospects for deep prospecting[J]. Advances in Geosciences, 9(6): 429-436. (in Chinese with English abstract doi: 10.12677/AG.2019.96048 [27] REICH M, KESLER S E, UTSUNOMIYA S, et al., 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781-2796. doi: 10.1016/j.gca.2005.01.011 [28] REICH M, SIMON A C, DEDITIUS A, et al., 2016. Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems?[J]. Economic Geology, 111(3): 743-761. doi: 10.2113/econgeo.111.3.743 [29] RILEY J F, 1968. The cobaltiferous pyrite series[J]. American Mineralogist, 53(1-2): 293-295. [30] SHEN J F, LI S R, HUANG S F, et al., 2021. The decennary new advances on the genetic mineralogy and prospecting mineralogy(2010-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 610-623. (in Chinese with English abstract [31] SHENG Y M, TANG L, ZHANG S T, et al., 2022a. Distal gold mineralization associated with porphyry system: the case of Hongzhuang and Yuanling deposits, East Qinling, China[J]. Ore Geology Reviews, 142: 104701. doi: 10.1016/j.oregeorev.2022.104701 [32] SHENG Y M, TANG L, ZHANG S T, et al., 2022b. Influence of fluid-rock interaction on gold mineralization in the Dongwan deposit, East Qinling, China: constraints from systematic sulfur isotope and trace element geochemistry[J]. Ore Geology Reviews, 142: 104718. doi: 10.1016/j.oregeorev.2022.104718 [33] SPRINGER G, SCHACHNER-KORN D, LONG J V P, 1964. Metastable solid solution relations in the system FeS2-CoS2-NiS2[J]. Economic Geology, 59(3): 475-491. doi: 10.2113/gsecongeo.59.3.475 [34] TIAN G, ZHANG C Q, PENG H J, et al., 2014. Petrogenesis and geodynamic setting of the Chang’an gold deposit in southern Ailaoshan metallogenic belt[J]. Acta Petrologica Sinica, 2014, 30(1): 125-138. (in Chinese with English abstract [35] TIAN Y F, SUN J, YE H S, et al., 2017. Genesis of the Dianfang breccia-hosted gold deposit, western Henan Province, China: constraints from geology, geochronology and geochemistry[J]. Ore Geology Reviews, 91: 963-980. doi: 10.1016/j.oregeorev.2017.08.011 [36] TIAN Y F, YE H S, MAO J W, et al., 2019. Geochronology and geochemistry of the Dianfang gold deposit, western Henan Province, central China: Implications for mineral exploration[J]. Ore Geology Reviews, 111: 102967. doi: 10.1016/j.oregeorev.2019.102967 [37] WANG B Q, SONG Y, LI F Q, et al. , 2023. Study on element content and thermoelectrie properties of pyrite in porphyry copper-gold metallogenic system. Geological Review, 69(S1): 193-194. (in Chinese with English abstract [38] WANG M Y, LI J, SONG M C, et al., 2023. The metallogenic mechanism of the Dadengge gold polymetallic deposit in the Jiaodong Peninsula: Constraints from pyrite Rb-Sr dating, in situ S isotope and trace elements[J]. Acta Petrologica Sinica, 39(5): 1501-1515. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.05.17 [39] WANG X H, GUO T, LI X Z, et al., 2022. A study on the geochemical characteristics and metallogenesis of the Lanmugou gold deposit in the South Qinling Belt, Shaanxi, China[J]. Journal of Geomechanics, 28(3): 464-479. (in Chinese with English abstract [40] WANG X M, SU K F, SUN H S, et al. , 2013. Study on the metallogenic settings and gold metallogenic regularity of Dongwan-Huaishuping ore deposit in Songxian County, Henan Province[M]. Wuhan: China University of Geosciences Press. (in Chinese) [41] WANG Y, WANG D H, WANG C H, 2024. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data[J]. Earth Science Frontiers, 31(4): 438-455. (in Chinese with English abstract [42] WANG Y H, HAN D, PAN B D, et al., 2022. Characteristics and ore-forming material source of gold minerals in Jiuzhanggou gold deposit, Henan Province[J]. Gold, 43(7): 3-8. (in Chinese with English abstract [43] WILSON S A, RIDLEY W I, KOENIG A E, 2002. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique[J]. Journal of Analytical Atomic Spectrometry, 17(4): 406-409. doi: 10.1039/B108787H [44] YAN C H, LI X L, HAN J W, 2021. New understanding of gold polymetallic mineralization in Xiong'er mountain ore concentration area[J]. Metal Mine(5): 1-12. (in Chinese with English abstract [45] YAN Y T, LI S R, JIA B J, et al., 2012. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 19(4): 214-226. (in Chinese with English abstract [46] YANG D P, LIU P R, SONG Y X, et al., 2023. Trace element characteristics of pyrite in Qujia gold deposit, Laizhou, Shandong Province, and its implication on metallogenic process[J]. Acta Petrologica et Mineralogica, 42(6): 788-808. (in Chinese with English abstract [47] ZHANG H Y, ZHAO Q Q, ZHAO G, et al., 2022. In situ LA-ICP-MS trace element analysis of pyrite and its application in study of Au deposit[J]. Mineral Deposits, 41(6): 1182-1199. (in Chinese with English abstract [48] ZHANG W, WU G, 2007. Structure analysis for ore body controlling of Jiuzanggou gold deposit in Henan[J]. Nonferrous Metals, 59(2): 70-74. (in Chinese with English abstract [49] ZHANG Y, LI S P, JING P, et al., 2024. Geochemical characteristics and exploration model of the Jiuzhanggou gold deposit, Songxian County, Henan province[J]. Gold Science and Technology, 32(2): 258-269. (in Chinese with English abstract [50] ZHANG Z M, ZENG Q D, WANG Y B, et al., 2023. Metallogenic age and fluid evolution of the Kangshan Au-polymetallic deposit in the southern margin of the North China Craton: Constraints from monazite U-Pb age, and in-situ trace elements and S isotopes of pyrite[J]. Acta Petrologica Sinica, 39(3): 865-885. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.03.14 [51] ZHOU L H, FENG R, 1994. The application of pyrite prospecting-mineralogy to prospective value in Bainaimiao gold deposites[J]. Journal of Changchun University of Earth Sciences, 24(3): 265-270. (in Chinese with English abstract [52] ZHOU X W, SHAO J L, BIAN Q J, 1994. Study on typomorphic characteristics of pyrite from Dongbeizhai gold deposit, Sichuan Province[J]. Earth Science-Journal of China University of Geosciences, 19(1): 52-59. (in Chinese with English abstract [53] ZHOU Z J, CHEN Z L, WEYER S, et al., 2023. Metal source and ore precipitation mechanism of the Ashawayi orogenic gold deposit, southwestern Tianshan Orogen, western China: Constraints from textures and trace elements in pyrite[J]. Ore Geology Reviews, 157: 105452. doi: 10.1016/j.oregeorev.2023.105452 [54] ZHU H L, YANG X K, HE H J, et al., 2023. Discrimination of gold deposit types based on convolutional neural network and pyrite big data[J]. Acta Geologica Sinica, 97(10): 3396-3409. (in Chinese with English abstract [55] ZHU S Z, CHU Z B, JIN G, et al., 2022. Geological characteristics and genetic mechanism of Jiuzhanggou gold deposit in southwest Henan Province[J]. China Manganese Industry, 40(2): 72-78. (in Chinese with English abstract [56] 曹根深,张宇,陈华勇,2023. 造山型金矿床黄铁矿微量元素对成矿机制的指示[J]. 岩石学报,39(8):2330-2346. doi: 10.18654/1000-0569/2023.08.06 [57] 邓依,张静,钟日晨,等,2024. 基于机器学习的主成分分析方法在金矿类型判别中的应用:以黄铁矿元素地球化学特征为例[J]. 岩石学报,40(6):1801-1816. doi: 10.18654/1000-0569/2024.06.07 [58] 第鹏飞,汤庆艳,刘东晓,等,2023. 西秦岭甘南地区金矿床黄铁矿微量元素地球化学特征及意义:以加甘滩和早子沟金矿为例[J]. 稀土,44(4):140-154. [59] 丁培超,王振强,郭勤强,等,2020. 河南省庙岭—九仗沟金矿带矿化富集特征及深部找矿远景评价[J]. 黄金,41(10):7-12,18. doi: 10.11792/hj202001002 [60] 贺昕宇,王长明,袁继明,等,2019. 熊耳山—外方山矿集区中生代Au-Mo成矿系统[J]. 地学前缘,26(5):33-52. [61] 李红兵,2005. 河南嵩县九仗沟金矿床成因探讨[J]. 资源环境与工程,19(1):16-22,58. doi: 10.3969/j.issn.1671-1211.2005.01.004 [62] 李红兵,曾凡治,2005. 金矿中的黄铁矿标型特征[J]. 地质找矿论丛,20(3):199-203. doi: 10.3969/j.issn.1001-1412.2005.03.011 [63] 李惠,禹斌,魏江,等,2021. 勘查(新)区构造叠加晕研究方法及预测参照实用理想模型[J]. 地质与勘探,57(2):351-359. doi: 10.12134/j.dzykt.2021.02.010 [64] 李俊建,何玉良,付超,等,2016. 豫西Au-Mo-W-Pb-Zn-Ag-Fe-铝土矿-石墨成矿带主要地质成矿特征及潜力分析[J]. 地质学报,90(7):1504-1524. doi: 10.3969/j.issn.0001-5717.2016.07.017 [65] 刘松岩,张达,杨明建,等,2024. 熊耳山矿集区蒿坪沟Ag-Au多金属矿床绿泥石特征及其找矿意义[J]. 地质力学学报,30(1):129-146. doi: 10.12090/j.issn.1006-6616.2023121 [66] 刘文毅,刘继顺,何美香,等,2018. 豫西熊耳山矿集区金银多金属矿床地球化学特征及地质意义[J]. 中国有色金属学报,28(7):1401-1417. [67] 刘玉刚,丁培超,徐金武,等,2022. 河南省嵩县庙岭—九仗沟金矿带F8含矿构造成因探讨[J]. 黄金,43(8):5-9. doi: 10.11792/hj20220802 [68] 秦军强,曲伟勋,周宇乐,等,2019. 河南省嵩县九仗沟金矿地质特征及深部找矿前景[J]. 地球科学前沿,9(6):429-436. [69] 秦军强,曲伟勋,周宇乐,等,2022. 豫西九仗沟金矿床原生晕垂向分带特征及深部预测[J]. 采矿技术,22(6):202-206. doi: 10.3969/j.issn.1671-2900.2022.06.049 [70] 申俊峰,李胜荣,黄绍锋,等,2021. 成因矿物学与找矿矿物学研究进展(2010—2020)[J]. 矿物岩石地球化学通报,40(3):610-623. [71] 田广,张长青,彭惠娟,等,2014. 哀牢山长安金矿成因机制及动力学背景初探:来自LA-ICP-MS锆石U-Pb定年和黄铁矿原位微量元素测定的证据[J]. 岩石学报,30(1):125-138. [72] 王蓓琪,宋扬,李发桥,等,2023. 斑岩铜金成矿系统中黄铁矿的元素含量与热电性特征研究[J]. 地质论评,69(S1):193-194. [73] 王美云,李杰,宋明春,等,2023. 胶东大邓格金多金属矿床成矿机制:来自黄铁矿Rb-Sr定年、原位硫同位素及微量元素的制约[J]. 岩石学报,39(5):1501-1515. doi: 10.18654/1000-0569/2023.05.17 [74] 王晓虎,郭涛,李效壮,等,2022. 南秦岭烂木沟金矿床地球化学特征与矿床成因研究[J]. 地质力学学报,28(3):464-479. doi: 10.12090/j.issn.1006-6616.2021002 [75] 王兴民,苏凯峰,孙华山,等,2013. 河南省嵩县东湾-槐树坪矿区成矿环境及金矿规律研究[M]. 武汉:中国地质大学出版社. [76] 王岩,王登红,王成辉,等,2024. 基于地质大数据的中国金矿时空分布规律定量研究[J]. 地学前缘,31(4):438-455. [77] 王颖辉,韩东,潘柏东,等,2022. 河南省九仗沟金矿床金矿物特征及成矿物质来源[J]. 黄金,43(7):3-8. doi: 10.11792/hj20220702 [78] 燕长海,李肖龙,韩江伟,等,2021. 熊耳山矿集区金多金属矿成矿的几点新认识[J]. 金属矿山(5):1-12. [79] 严育通,李胜荣,贾宝剑,等,2012. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘,19(4):214-226. [80] 杨德平,刘鹏瑞,宋英昕,等,2023. 山东莱州曲家金矿黄铁矿微量元素对成矿过程的指示[J]. 岩石矿物学杂志,42(6):788-808. [81] 张红雨,赵青青,赵刚,等,2022. 黄铁矿微量元素LA-ICP-MS原位微区分析方法及其在金矿床研究中的应用[J]. 矿床地质,41(6):1182-1199. [82] 张伟,伍刚,2007. 河南省九丈沟金矿控矿构造分析[J]. 有色金属,59(2):70-74. [83] 张勇,李水平,荆鹏,等,2024. 河南嵩县九仗沟金矿床地球化学特征与勘查模式[J]. 黄金科学技术,32(2):258-269. [84] 张哲铭,曾庆栋,王永彬,等,2023. 华北克拉通南缘康山金多金属矿床成矿时代及流体演化:来自独居石U-Pb年龄、黄铁矿微量元素和原位S同位素制约[J]. 岩石学报,39(3):865-885. doi: 10.18654/1000-0569/2023.03.14 [85] 周立宏,冯瑞,1994. 黄铁矿找矿矿物学在白乃庙金矿床远景评价中的应用[J]. 长春地质学院学报,24(3):265-270. [86] 周学武,邵洁涟,边秋娟,1994. 四川松潘东北寨金矿黄铁矿标型特征研究[J]. 地球科学-中国地质大学学报,19(1):52-59. [87] 朱昊磊,杨兴科,何虎军,等,2023. 基于卷积神经网络和黄铁矿大数据判别金矿类型[J]. 地质学报,97(10):3396-3409. [88] 朱随洲,储照波,金刚,等,2022. 河南九仗沟金矿地质特征及成因机制探讨[J]. 中国锰业,40(2):72-78. -