留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熊耳山矿集区蒿坪沟Ag–Au多金属矿床绿泥石特征及其找矿意义

刘松岩 张达 杨明建 张鑫明 未国栋 聂胜强 王轩 冯彦平 栗文杰 陈贵兰

刘松岩,张达,杨明建,等,2024. 熊耳山矿集区蒿坪沟Ag–Au多金属矿床绿泥石特征及其找矿意义[J]. 地质力学学报,30(1):129−146 doi: 10.12090/j.issn.1006-6616.2023121
引用本文: 刘松岩,张达,杨明建,等,2024. 熊耳山矿集区蒿坪沟Ag–Au多金属矿床绿泥石特征及其找矿意义[J]. 地质力学学报,30(1):129−146 doi: 10.12090/j.issn.1006-6616.2023121
LIU S Y,ZHANG D,YANG M J,et al.,2024. Characteristics of chlorites from the Haopinggou Ag–Au polymetallic deposit in the Xiong’ershan ore concentration area and its exploration implications[J]. Journal of Geomechanics,30(1):129−146 doi: 10.12090/j.issn.1006-6616.2023121
Citation: LIU S Y,ZHANG D,YANG M J,et al.,2024. Characteristics of chlorites from the Haopinggou Ag–Au polymetallic deposit in the Xiong’ershan ore concentration area and its exploration implications[J]. Journal of Geomechanics,30(1):129−146 doi: 10.12090/j.issn.1006-6616.2023121

熊耳山矿集区蒿坪沟Ag–Au多金属矿床绿泥石特征及其找矿意义

doi: 10.12090/j.issn.1006-6616.2023121
基金项目: 校企合作项目(No. 33112021007);国家自然科学基金(422020067)
详细信息
    作者简介:

    刘松岩(1996—),男,在读博士,构造地质学专业。Email:380126504@qq.com

    通讯作者:

    张达(1967—),男,教授,主要从事构造地质学与区域成矿规律研究。Email:zhangda@cugb.edu.cn

  • 中图分类号: P614

Characteristics of chlorites from the Haopinggou Ag–Au polymetallic deposit in the Xiong’ershan ore concentration area and its exploration implications

Funds: This research is financially supported by the School–Enterprise Cooperation Project (Grant No. 33112021007) and the National Natural Science Foundation of China (Grant No. 42202067).
  • 摘要: 为理清蒿坪沟Ag-Au多金属矿床中多阶段矿化与热液蚀变之间的关系,文章选取与铅锌成矿阶段密切相关的绿泥石进行野外观察及电子探针分析。文章将蒿坪沟Ag-Au多金属矿床中的绿泥石分为3类:Ⅰ型分布在石英脉两侧的围岩中;Ⅱ型呈细粒、隐晶质填充于隐爆角砾岩基质;Ⅲ型与铅锌硫化物共生、或以蠕虫状广泛分布在石英颗粒间隙中。3种类型绿泥石均为斜绿泥石,并落在了铁镁绿泥石的范围内,指示其形成于偏还原的酸性环境中;在阳离子置换中,主要发生了Fe2+对Mg2+的置换,其余置换作用均不明显;3种绿泥石形成与镁铁质围岩关系密切。由校正后的绿泥石地质温度计估算出3种类型绿泥石的形成温度为196~239 ℃,属于中—低温热液蚀变范围。3类绿泥石与蒿坪沟Ag-Au多金属矿床银铅锌成矿阶段相匹配,对进一步找矿勘查具有重要意义。绿泥石化学特征表明岩浆热液参与了成矿流体的形成,绿泥石形成于熊耳山矿集区早白垩世大规模岩浆−成矿时期。

     

  • 图  1  华北克拉通南缘熊耳山矿集区地质简图(底图据Tian et al.,2023修改)

    a—华北克拉通南缘在中国东部的位置;b—熊耳山矿集区大地构造简图及矿产分布图

    Figure  1.  Simplified geological map of the Xiong’ershan ore concentration area along the southern margin of the North China Craton(Base map modified after Tian et al., 2023

    (a) The inset showing the tectonic location of the southern margin of the North China Craton in eastern China; (b) Geological map of the Xiong’ershan ore concentration area, showing the distribution of the major deposits

    图  2  蒿坪沟Ag-Au多金属矿床地质简图(底图据梁涛等,2015修改)

    Figure  2.  Geological map of the Haopinggou Ag-Au polymetallic deposit(Base map modified after Liang et al., 2015

    图  3  蒿坪沟Ag-Au多金属矿床勘探线剖面图(剖面位置见图2)

    Figure  3.  Representative cross-section of the Haopinggou Ag-Au polymetallic deposit (The position of the cross-section is shown in Fig. 2.)

    图  4  蒿坪沟Ag-Au多金属矿床矿物共生序列(据Tian et al., 2023修改)

    Figure  4.  Paragenetic sequence of the Haopinggou Ag-Au polymetallic deposit(modified after Tian et al., 2023

    图  5  蒿坪沟Ag-Au多金属矿床绿泥石分布情况

    Chl—绿泥石;Gn—方铅矿;Sp—闪锌矿;Py—黄铁矿;Ank—铁白云石a—铅锌矿脉两侧围岩绿泥石蚀变;b—石英脉两侧蚀变绿泥石;c—隐爆角砾岩基质中填充绿泥石与铁白云石;d—隐爆角砾岩中发生绿泥石蚀变的斑岩角砾

    Figure  5.  Distribution of chlorites in the Haopinggou Ag-Au polymetallic deposit

    (a) Chlorite alteration of surrounding rocks on both sides of Pb-Zn veins; (b) Altered chlorites occurred on both sides of quartz veins; (c) Chlorites and ankerites filled in breccia matrix; (d) Chlorite-altered porphyry breccia Chl–chlorite; Gn–galena; Sp–sphalerite; Py–pyrite; Ank–ankerite

    图  6  蒿坪沟Ag-Au多金属矿床绿泥石显微形态特征

    Chl—绿泥石;Ser—绢云母;Gn—方铅矿;Qz—石英;Sp—闪锌矿;Py—黄铁矿;Cal—方解石a—发育于石英脉两侧的绿泥石(正交偏光);b—隐爆角砾岩基质中填充的绿泥石(正交偏光);c—与黄铁矿、闪锌矿共生的绿泥石(正交偏光+反射光);d—填充在石英颗粒间隙的蠕虫状绿泥石(正交偏光);e—背散射镜下绿泥石电子探针打点位置分布,可见绿泥石与绢云母共生;f—背散射镜下绿泥石电子探针打点位置分布

    Figure  6.  Representative photomicrographs of chlorite characteristics of the Haopinggou Ag-Au polymetallic deposit

    (a) Chlorite developed on both sides of quartz veins (cross-polarized light); (b) Chlorite filled in breccia matrix (cross-polarized light); (c) Chlorite coexisting with pyrite and sphalerite (cross-polarized light+ reflected light) ; (d) Worm-like chlorite filling the interstices of quartz grains (cross-polarized light); (e) Backscattered electron images of the distribution of chlorite EMPA dots, showing coexistence with sericite; (f) Backscattered electron images of the distribution of chlorite EMPA dots Chl–chlorite; Ser–sericite; Gn–galena; Qz–quartz; Sp–sphalerite; Py–pyrite; Cal–calcite

    图  7  蒿坪沟Ag-Au多金属矿床绿泥石化学性质图解

    a—绿泥石Fe−Si图解(Deer et al.,1962);b—绿泥石Al+□-Mg−Fe图解(Zane and Weiss,1998);c—绿泥石Si−R2+图解(据刘燚平等,2016修改)

    Figure  7.  Chemical diagram of chlorite from the Haopinggou Ag-Au polymetallic deposit

    (a) Fe vs. Si diagram of chlorite (Deer et al., 1962); (b) Al+□–Mg–Fe plot (Zane and Weiss, 1998); (c) Si vs. R2+ diagram (modified after Liu et al., 2016)

    图  8  蒿坪沟Au-Ag多金属矿床绿泥石阳离子相关关系图(单位为a.p.f.u

    a—绿泥石Al-Al图解;b—绿泥石Fe2+-Mg2+图解;c—绿泥石Fe2+/(Fe2++Mg2+)-Al图解;d—绿泥石(Fe2++ Al)-Mg2+图解;e—绿泥石Mg2+-Al图解;f—绿泥石Si4+-Mg2+图解

    Figure  8.  Correlation of cations in chlorites from the Haopinggou Ag-Au polymetallic deposit(unit a.p.f.u

    (a) Al vs. Al diagram of chlorite; (b) Fe2+vs. Mg2+ diagram of chlorite; (c) Fe2+/(Fe2++Mg2+) vs. Al diagram of chlorite; (d) (Fe2++ Al) vs. Mg diagram of chlorite; (e) Mg2+ vs. Al diagram of chlorite; (f) Si4+ vs.Mg2+ diagram of chlorite

    图  9  蒿坪沟Ag-Au多金属矿床绿泥石形成温度频数(N)分布直方图

    a—绿泥石形成温度T1频数分布直方图;b—绿泥石形成温度T2频数分布直方图;c—绿泥石形成温度T3频数分布直方图

    Figure  9.  Hsitogram of formation temperatures of chlorites from the Haopinggou Ag-Au polymetallic deposit

    (a) Hsitogram of formation T1 of chlorites; (b) Hsitogram of formation T2 of chlorites; Hsitogram of formation T3 of chlorites

    图  10  绿泥石形成温度T与Al及Si4+相关性图解

    a—绿泥石AlT平均关系图解;b—绿泥石Si4+T平均关系图解;c—绿泥石AlT3关系图解;d—绿泥石Si4+T3关系图解

    Figure  10.  Correlation diagram of T vs. Al and Si4+

    (a) Al vs. Taverage diagram of chlorite; (b) Si4+ vs. Taverage diagram of chlorite; (c) Al vs. T3 diagram of chlorite; (d)Si4+ vs. T3 diagram of chlorite

    图  11  不同成因类型矿床中的绿泥石特征

    不同矿床类型中的绿泥石投图区域:1—活动的地热系统;2—块状硫化物矿床(Kranidiotis and Maclean,1987);3—热液铜(金)矿化带(Zane and Fyfe,1995);4—与铜金矿化相关的绿泥石(Dora and Randive,2015);5—云母石英岩中的绿泥石(Randive et al.,2015);6—与花岗岩相关的矿床(Trumbull et al.,1996);7—热液脉型矿床(Walshe,1986)a—绿泥石中Fe/(Fe+Mg)−(Si/Al)关系图解;b—绿泥石中Fe/(Fe+Mg)−Al关系图解(据周栋等,2018修改)

    Figure  11.  Chlorite characteristics in different genic types of deposits

    (a) Fe/(Fe+Mg) vs. (Si/Al) diagram of chlorite; (b) Fe/(Fe+Mg) vs. Al diagram of chlorite (modified after Zhou et al., 2018) Data source: 1−active geothermal system; 2−massive sulfide deposit (Kranidiotis and Maclean, 1987); 3−hydrothermal mineralization zone (Zane and Fyfe, 1995); 4−Chlorites related to Cu-Au mineralization (Dora and Randive, 2015); 5−green-mica quartzites (Randive et al., 2015); 6−deposits associated with granite (Trumbull et al., 1996); 7−hydrothermal vein-type deposit (Walshe, 1986)

    表  1  熊耳山矿集区蒿坪沟Ag-Au多金属矿床与康山金多金属矿床地质特征

    Table  1.   Geological characteristics of the Haopinggou Ag-Au polymetallic deposit and the Kangshan Au polymetallic deposit in the Xionger’ shan ore concentration area

    矿床名称蒿坪沟Ag-Au多金属矿床康山金多金属矿床
    矿床类型 岩浆热液型 岩浆热液型
    大地构造位置 华北克拉通南缘、熊耳山矿集区西北部 华北克拉通南缘、熊耳山矿集区西南部
    控矿构造 北东向陡倾断裂和局部隐爆角砾岩 北东向脆性断裂
    成矿阶段及矿物组合(Li et al.,2013 第一阶段:Qz-Sd-Mag-Elc 第一阶段:Qz-Py
    第二阶段:Gn-Sp-Qz-Ank 第二阶段:Qz-Py-Ccp-Au
    第三阶段:Qz-Cal-Fl 第三阶段:Gn-Sp-gold-Qz-Ank-
    第四阶段:Qz-Cal-Fl
    成矿时代 热液独居石125~123 Ma(Tian et al.,2023 热液独居石年龄为131 Ma(张哲铭等,2023
    流体特征及来源 含银硫化物来自蒿坪沟花岗岩体,表现为还原性的酸性流体(Li et al.,2016 含金流体来自隐伏花岗岩体, 表现为相对弱酸性的还原环境;其成矿机制为流体沸腾,第三阶段主要成矿机制为流体混合(Zhang et al.,2020
    成矿温度(Li et al.,2013徐进鸿,2021 Qz-Py:322~359 ℃
    Qz-Sd-Mag-Elc:217~349 ℃ Qz-Py-Ccp-Au:226~305 ℃(256~302 ℃)
    Gn-Sp-Qz-Ank:172~267 ℃(194~237 ℃) Gn-Sp-Au-Qz-Ank:185~246 ℃
    Qz-Cal-Fl:116~205 ℃ Qz-Cal-Fl:130~221 ℃
    绿泥石分类 主要为铁镁绿泥石 富铁种属的绿泥石,围岩属于铁镁绿泥石,与矿化相关的绿泥石为铁绿泥石(周栋等,2018
    注:成矿温度为流体包裹体测温数据(Li et al.,2013徐进鸿,2021),括号内为绿泥石EMPA数据所计算出T3温度
    下载: 导出CSV
  • [1] BOURDELLE F, PARRA T, CHOPIN C, et al. , 2013. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions[J]. Contributions to Mineralogy and Petrology, 165(4): 723-735. doi: 10.1007/s00410-012-0832-7
    [2] BOURDELLE F, CATHELINEAU M, 2015. Low-temperature chlorite geothermometry: a graphical representation based on a T-R2+-Si diagram[J]. European Journal of Mineralogy, 27(5): 617-626. doi: 10.1127/ejm/2015/0027-2467
    [3] CATHELINEAU M, NIEVA D, 1985. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system[J]. Contributions to Mineralogy and Petrology, 91(3): 235-244. doi: 10.1007/BF00413350
    [4] CATHELINEAU M, 1988. Cation site occupancy in chlorites and illites as a function of temperature[J]. Clay Minerals, 23(4): 471-485. doi: 10.1180/claymin.1988.023.4.13
    [5] CHEN Y J, SUI Y H, PIRAJNO F, 2003. Exclusive evidences for CMF model and a case of orogenic silver deposits: isotope geochemistry of the Tieluping silver deposit, east Qinling orogen[J]. Acta Petrologica Sinica, 19(3): 551-568. (in Chinese with English abstract)
    [6] CHEN Y J, PIRAJNO F, SUI Y H, 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: a case study of orogenic silver-dominated deposits and related tectonic setting[J]. Mineralium Deposita. 39(5-6): 560-575. doi: 10.1007/s00126-004-0429-9
    [7] CHENG G G, 2013. Study on the mineralization and prognosis in western Mt. Xiong’er silver-lead-zinc deposit, Henan provice[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [8] DAI C C, LIU X D, RAO Q, et al. , 2017. Authigenic chlorite compositional evolution and temperature calculation of Xujiahe formation sandstone in central Sichuan basin[J]. Geological Review, 63(3): 831-841. (in Chinese with English abstract)
    [9] DEER W A, HOWIE R A, ZUSSMAN J, 1962. Rock-forming minerals: sheet silicates[M]. London: Longman: 270.
    [10] DIWU C R, SUN Y, ZHAO Y, et al. , 2014. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling complex, central China: implications for the evolutionary history of the North Qinling Orogenic Belt[J]. Geoscience Frontiers, 5(4): 499-513. doi: 10.1016/j.gsf.2014.04.001
    [11] DIWU C R, SUN Y, LIN C L, et al. , 2017. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China[J]. Acta Petrologica Sinica, 23(2): 253-262. (in Chinese with English abstract)
    [12] DONG Y P, SAFONOVA I, WANG T, 2016. Tectonic evolution of the Qinling orogen and adjacent orogenic belts[J]. Gondwana Research, 30: 1-5. doi: 10.1016/j.gr.2015.12.001
    [13] DORA M L, RANDIVE K R, 2015. Chloritisation along the Thanewasna shear zone, Western Bastar Craton, Central India: its genetic linkage to Cu-Au mineralisation[J]. Ore Geology Reviews, 70: 151-172. doi: 10.1016/j.oregeorev.2015.03.018
    [14] DYAR M D, GUIDOTTI C V, HARPER G D, et al. , 1992. Controls on ferric iron in chlorite. geological society of America[J]. Abstracts with Programs, 24: 7.
    [15] FANG W X, WANG L, LU J, et al. , 2017. Chloritization facies and restoration of heat flux for tectonic-magmatic-thermal events of Sareke copper mine in the Xinjiang Uygur autonomous region, China[J]. Acta Mineralogica Sinica, 37(5): 661-675. (in Chinese with English abstract)
    [16] FIALIPS C I, PETIT S, DECARREAU A, et al. , 1998. Effects of temperature and PH on the kaolinite crystallinity[J]. Mineralogical Magazine, 62A (1): 452-453. doi: 10.1180/minmag.1998.62A.1.239
    [17] GAO J J, MAO J W, YE H S, et al. , 2010. Geology and ore-forming fluid of silver-lead-zinc lode deposit of Shagou, western Henan province[J]. Acta Petrologica Sinica, 26(3): 740-756. (in Chinese with English abstract)
    [18] GE X K, JU H Y, ZHAO F H, et al. , 2020. Characteristics of chlorites in the Shangdajing porphyry Mo deposit, Inner Mongolia and their metallogenic implications[J]. Geology and Exploration, 56(4): 704-713. (in Chinese with English abstract)
    [19] HAN J S, YAO J M, CHEN H Y, et al. , 2014. Fluid inclusion and stable isotope study of the Shagou Ag–Pb–Zn deposit, Luoning, Henan province, China: Implications for the genesis of an orogenic lode Ag–Pb–Zn system[J]. Ore Geology Reviews, 62: 199-210. doi: 10.1016/j.oregeorev.2014.03.012
    [20] HAN Y G, ZHANG S H, PIRAJNO F, et al. , 2009. New 40Ar–39Ar age constraints on the deformation along the Machaoying fault zone: Implications for Early Cambrian tectonism in the North China Craton[J]. Gondwana Research, 16(2): 255-263. doi: 10.1016/j.gr.2009.02.001
    [21] HEDENQUIST J W, ANTONIO ARRIBAS S, GONZALEZ-URIEN E, 2000. Exploration for epithermal gold deposits[M]//HAGEMANN S G, BROWN P E. Reviews in economic geology. Littleton: Society of Economic Geologists: 245-277.
    [22] HILLIER S, 1993. Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine Mudrocks, Orcadian basin, Scotland[J]. Clays and Clay Minerals, 41(2): 240-259. doi: 10.1346/CCMN.1993.0410211
    [23] HU X K, TANG L, ZHANG S T, et al. , 2020. Geochemistry, zircon U-Pb geochronology and Hf-O isotopes of the Late Mesozoic granitoids from the Xiong'ershan area, East Qinling Orogen, China: implications for petrogenesis and molybdenum metallogeny[J]. Ore Geology Reviews, 124: 103653. doi: 10.1016/j.oregeorev.2020.103653
    [24] INOUE A, 1995. Formation of clay minerals in hydrothermal environments[M]//VELDE B. Origin and mineralogy of clays: clays and the environment. Berlin: Springer: 268-329.
    [25] INOUE A, MEUNIER A, PATRIER-MAS P, et al. , 2009. Application of chemical geothermometry to low-temperature trioctahedral chlorites[J]. Clays and Clay Minerals, 57(3): 371-382. doi: 10.1346/CCMN.2009.0570309
    [26] JOWETT E C, 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer[M]. GAC/MAC/SEG Joint annual meeting. Toronto: 27−29, , Program with Abstracts 16: A62.
    [27] KRANIDIOTIS P, MACLEAN W H, 1987. Systematics of chlorite alteration at the Phelps dodge massive sulfide deposit, Matagami, Quebec[J]. Economic Geology, 82(7): 1898-1911. doi: 10.2113/gsecongeo.82.7.1898
    [28] LAIRD J, 1988. Chlorites: metamorphic petrology[J]. Reviews in Mineralogy and Geochemistry, 19(1): 405-453.
    [29] LI H M, WANG D H, WANG X X, et al. , 2012. The Early Mesozoic syenogranite in Xiong'er Mountain area, southern margin of North China Craton: SHRIMP zircon U-Pb dating, geochemistry and its significance[J]. Acta Petrologica et Mineralogica, 31(6): 771-782. (in Chinese with English abstract)
    [30] LI L, 2011. Study of characters of biotite and chlorite of molybdenum deposit in Antuoling, Hebei[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [31] LI L X, LI H M, XU Y X, et al. , 2015. Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei province, China: timing of BIF deposition and anatexis[J]. Journal of Asian Earth Sciences, 113: 1017-1034. doi: 10.1016/j.jseaes.2015.02.007
    [32] LI N, SUN Y L, LI J, et al. , 2008. Molybdenite Re-Os isotope age of the Dahu Au-Mo deposit, Xiaoqinling and the Indosinian mineralization[J]. Acta Petrologica Sinica, 24(4): 810-816. (in Chinese with English abstract)
    [33] LI N, CHEN Y J, SANTOSH M, et al. , 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews, 182: 141-173. doi: 10.1016/j.earscirev.2018.05.004
    [34] LI Z K, LI J W, CHEN L, et al. , 2010. Occurrence of silver in the Shagou Ag-Pb-Zn Deposit, Luoning County, Henan province: implications for mechanism of silver enrichment[J]. Earth Science: Journal of China University of Geosciences, 35(4): 621-636. (in Chinese with English abstract) doi: 10.3799/dqkx.2010.077
    [35] LI Z K, LI J W, ZHAO X F, et al. , 2013. Crustal-extension Ag-Pb-Zn veins in the Xiong’ershan District, Southern North China craton: constraints from the Shagou deposit[J]. Economic Geology, 108(7): 1703-1729. doi: 10.2113/econgeo.108.7.1703
    [36] LI Z K, LI J W, COOKE D R, et al. , 2016. Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: implications for discrete Au and Ag–Pb–Zn mineralization[J]. Contributions to Mineralogy and Petrology, 171(12): 99. doi: 10.1007/s00410-016-1309-x
    [37] LIANG T, LU R, LUO Z H, et al. , 2015. LA-ICP-MS U-Pb age of zircons from Haopinggou Biotite granite porphyry in Xiong’er Mountain, Western Henan province, and its geologic implications[J]. Geological Review, 61(4): 901-912. (in Chinese with English abstract)
    [38] LIAO Z, LIU Y P, LI C Y, et al. , 2010. Characteristics of chlorites from Dulong Sn-Zn deposit and their metallogenic implications[J]. Mineral Deposits, 29(1): 169-176. (in Chinese with English abstract)
    [39] LIU W Y, LIU J S, HE M X, et al. , 2019. Petrogeochemistry, zircon U-Pb ages and Hf isotopic composition of Haopinggou pluton, Western Henan[J]. The Chinese Journal of Nonferrous Metals, 29(7): 1551-1566. (in Chinese with English abstract)
    [40] LIU Y P, ZHANG S Y, ZHANG H F, 2016. Advances on mineral genesis of chlorite: a review[J]. Advances in Geosciences, 6(3): 264-282. (in Chinese with English abstract) doi: 10.12677/AG.2016.63028
    [41] LOWELL J D, GUILBERT J M, 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 65(4): 373-408. doi: 10.2113/gsecongeo.65.4.373
    [42] LYU Z C, CHEN H, MI K F, et al. , 2022. The theory and method of ore prospecting prediction for exploration area: case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia[J]. Journal of Geomechanics, 28(5): 842-865. (in Chinese with English abstract)
    [43] MAO J W, ZHENG R F, YE H S, et al. , 2006. 40Ar/39 Ar dating of fuchsite and sericite from altered rocks close to ore veins in Shagou large-size Ag-Pb-Zn deposit of Xiong’ershan area, western Henan province, and its significance[J]. Mineral Deposits, 25(4): 359-368. (in Chinese with English abstract)
    [44] MAO J W, YE H S, WANG R T, et al. , 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling, Central China and its implication for prospecting[J]. Geological Bulletin of China, 28(1): 72-79. (in Chinese with English abstract)
    [45] MAO J W, XIE G Q, PIRAJNO F, et al. , 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 57(1): 51-78. doi: 10.1080/08120090903416203
    [46] MAO J W, PIRAJNO F, COOK N, 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings—An introduction to the special issue[J]. Ore Geology Reviews, 43(1): 1-7. doi: 10.1016/j.oregeorev.2011.09.003
    [47] PACEY A, WILKINSON J J, COOKE D R, 2020. Chlorite and epidote mineral chemistry in porphyry ore systems: a case study of the Northparkes District, New South Wales, Australia[J]. Economic Geology, 115(4): 701-727. doi: 10.5382/econgeo.4700
    [48] RANDIVE K R, KORAKOPPA M M, MULEY S V, et al. , 2015. Paragenesis of Cr-rich muscovite and chlorite in green-mica quartzites of Saigaon- Palasgaon area, Western Bastar Craton, India[J]. Journal of Earth System Science, 124(1): 213-225. doi: 10.1007/s12040-014-0514-0
    [49] REYES A G, 1990. Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment[J]. Journal of Volcanology and Geothermal Research, 43(1-4): 279-309. doi: 10.1016/0377-0273(90)90057-M
    [50] SHIROZU H, 1978. Chlorite minerals[J]. Developments in Sedimentology, 26: 243-264.
    [51] SILLITOE R H, HEDENQUIST J W, 2005. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits[M]//SIMMONS S F, GRAHAM I. Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Littleton: Society of Economic Geologists: 315-343.
    [52] TANG K F, 2014. Characteristics, genesis, and geodynamic setting of representative gold deposits in the Xiong’ershan district, southern margin of the North China Craton[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
    [53] TIAN Y F, MAO J W. , JIAN W, et al. , 2023. Recognition of the Xiayu intermediate-sulfidation epithermal Ag-Pb-Zn-Au(-Cu) mineralization in the East Qinling polymetallic ore belt, China: constraints from geology and geochronology[J]. Ore Geology Reviews, 156: 105398. doi: 10.1016/j.oregeorev.2023.105398
    [54] TRUMBULL R B, HUA L, LEHRBERGER G, et al. , 1996. Granitoid-hosted gold deposits in the Anjiayingzi district of inner Mongolia, People’s Republic of China[J]. Economic Geology, 91(5): 875-895. doi: 10.2113/gsecongeo.91.5.875
    [55] WALSHE J L, 1986. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems[J]. Economic Geology, 81(3): 681-703. doi: 10.2113/gsecongeo.81.3.681
    [56] WANG C M, DENG J, BAGAS L, et al. , 2021. Origin and classification of the Late Triassic Huaishuping gold deposit in the eastern part of the Qinling-Dabie Orogen, China: implications for gold metallogeny[J]. Mineralium Deposita, 56(4): 725-742. doi: 10.1007/s00126-020-01004-5
    [57] WANG J L, ZHANG H F, ZHANG J, et al. , 2020. Highly heterogeneous Pb isotope composition in the Archean continental lower crust: insights from the high-grade metamorphic suite of the Taihua Group, Southern North China Craton[J]. Precambrian Research, 350: 105927. doi: 10.1016/j.precamres.2020.105927
    [58] WANG X L, JIANG S Y, DAI B Z, 2010. Melting of enriched Archean subcontinental lithospheric mantle: evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton[J]. Precambrian Research, 182(3): 204-216. doi: 10.1016/j.precamres.2010.08.007
    [59] WANG X X, WANG T, KE C H, et al. , 2015. Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen, central China: constraint on the basements of terranes and distribution of Mo mineralization[J]. Journal of Asian Earth Sciences, 103: 169-183. doi: 10.1016/j.jseaes.2014.07.002
    [60] WANG X Y, MAO J W, CHENG Y B, et al. , 2014. Characteristics of chlorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong province and their geological significance[J]. Acta Petrologica et Mineralogica, 33(5): 885-905. (in Chinese with English abstract)
    [61] WILKINSON J J, CHANG Z S, COOKE R D, et al. , 2015. The chlorite proximitor: a new tool for detecting porphyry ore deposits[J]. Journal of Geochemical Exploration, 152: 10-26. doi: 10.1016/j.gexplo.2015.01.005
    [62] XIAO B, CHEN H Y, HOLLINGS P, et al. , 2018a. Element transport and enrichment during propylitic alteration in Paleozoic porphyry Cu mineralization systems: insights from chlorite chemistry[J]. Ore Geology Reviews, 102: 437-448. doi: 10.1016/j.oregeorev.2018.09.020
    [63] XIAO B, CHEN H Y, WANG Y F, et al. , 2018b. Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan[J]. Ore Geology Reviews, 100: 168-182. doi: 10.1016/j.oregeorev.2017.03.004
    [64] XIE X G, BYERLY G R, FERRELL JR R E, 1997. Iib trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry[J]. Contributions to Mineralogy and Petrology, 126(3): 275-291. doi: 10.1007/s004100050250
    [65] XU J H, 2021. Deposit characteristics and metallogenesis of thin vein-type hydrothermal silver-lead-zinc deposits in the Xiong’ershan district along the eastern Qinling orogenic belt[D]. Beijing: University of Chinese Academy of Sciences.
    [66] YANG F, XUE F, Santonsh M. , et al. , 2019. Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications[J]. Geoscience Frontiers, 10(5): 1803-1821 doi: 10.1016/j.gsf.2019.03.003
    [67] YANG X Z, YANG Z L, TAO K Y, et al. , 2002. Formation temperature of chloritein oil-bearing basalt[J]. Acta Mineralogica Sinica, 22(4): 365-370. (in Chinese with English abstract)
    [68] YE H S, 2006. The mesozoic tectonic evolution and Pb-Zn-Ag Metallogeny in the south margin of North China craton[J]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    [69] YUAN H, HAN R S, FENG Z X, et al. , 2022. Mineralization-alteration zoning law and element compositional zoning pattern in mineralized altered rocks from the Daliangzi Pb-Zn deposit, southwestern Sichuan[J]. Journal of Geomechanics, 28(3): 432-447. (in Chinese with English abstract)
    [70] ZANE A, WEISS Z, 1998. A procedure for classifying rock-forming chlorites based on microprobe data: una procedura per la classificazione delle cloriti sulla base di dati microchimici[J]. Rendiconti Lincei, 9(1): 51-56. doi: 10.1007/BF02904455
    [71] ZANE W, FYFE W S, 1995. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazi[J]. Mineralium Deposita, 30(1): 30-38.
    [72] ZHANG G W, GUO A L, DONG Y P, et al. , 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract)
    [73] ZHANG J, LIU X X, WANG Y T, et al. , 2021. Characteristics of chlorite from the Baguamiao gold deposit in Shaanxi province and its geological implication[J]. Geological Bulletin of China, 40(4): 586-603. (in Chinese with English abstract)
    [74] ZHANG W, ZHANG F F, WANG Y H, et al. , 2022. Chlorite chemistry, H-O-S-Pb isotopes and fluid characteristics of the Yuhai Cu-Mo Deposit in Eastern Tianshan: implications for porphyry copper mineralization and exploration[J]. Journal of Geochemical Exploration, 241: 107059. doi: 10.1016/j.gexplo.2022.107059
    [75] ZHANG X M, ZHANG D, BI M F, et al. , 2021. Genesis and geodynamic setting of the Nanyangtian tungsten deposit, SW China: Constraints from structural deformation, geochronology, and S–O isotope data[J]. Ore Geology Reviews, 138: 104354. doi: 10.1016/j.oregeorev.2021.104354
    [76] ZHANG Y H, ZHANG S H, HAN Y G, et al. , 2006. Strik-slip features of the machaoying fault zone and its evolution in the Huaxiong terrane, southern north China craton[J]. Journal of Jilin University (Earth Science Edition), 36(2): 169-176, 193. (in Chinese with English abstract)
    [77] ZHANG Z M, ZENG Q D, GUO Y P, et al. , 2020. Genesis of the Kangshan Au-polymetallic deposit, Xiong’ershan District, North China Craton: Constraints from fluid inclusions and C-H-O-S-Pb isotopes[J]. Ore Geology Reviews, 127: 103815. doi: 10.1016/j.oregeorev.2020.103815
    [78] ZHANG Z M, ZENG Q D, WANG Y B, et al. , 2023. Metallogenic age and fluid evolution of the Kangshan Au-polymetallic deposit in the southern margin of the North China Craton: constraints from monazite U-Pb age, and in-situ trace elements and S isotopes of pyrite[J]. Acta Petrologica Sinica, 39(3): 865-885. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.03.14
    [79] ZHAO G C, SUN M, WILDE S A, et al. , 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
    [80] ZHENG W, CHEN M H, ZHAO H J, et al. , 2013. Skarn mineral characteristics of the Tiantang Cu-Pb-Zn polymetallic deposit in Guangdong province and their geological significance[J]. Acta Petrologica et Mineralogica, 32(1): 23-40. (in Chinese with English abstract)
    [81] ZHOU D, ZHAO T P, ZHAO P B, et al. , 2018. Chlorite EPMA characteristic and its geological significance of the Kangshan Au-Ag-Pb-Zn deposit in west of Henan[J]. Mineral Exploration, 9(5): 803-824. (in Chinese with English abstract)
    [82] ZHOU J X, WANG X C, WILDE S A, et al. , 2018. New insights into the metallogeny of MVT Zn-Pb deposits: a case study from the Nayongzhi in South China, using field data, fluid compositions, and in situ S-Pb isotopes[J]. American Mineralogist, 103(1): 91-108. doi: 10.2138/am-2018-6238
    [83] ZOU S H, XU D R, DENG T, et al. , 2019. Geochemical variations of the Late Mesozoic granitoids in the southern margin of North China Craton: A possible link to the tectonic transformation from compression to extension[J]. Gondwana Research, 75(0): 118-133
    [84] 陈衍景, 隋颖慧, PIRAJNO F, 2003. CMF模式的排他性依据和造山型银矿实例: 东秦岭铁炉坪银矿同位素地球化学[J]. 岩石学报, 19(3): 551-568. doi: 10.3969/j.issn.1000-0569.2003.03.022
    [85] 程广国, 2013. 河南熊耳山西段银铅锌矿床成矿作用及找矿预测研究[D]. 北京: 中国地质大学(北京).
    [86] 戴朝成, 刘晓东, 饶强, 等, 2017. 川中地区须家河组自生绿泥石成分演化及其形成温度计算[J]. 地质论评, 63(3): 831-841.
    [87] 第五春荣, 孙勇, 林慈銮, 等, 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学[J]. 岩石学报, 23(2): 253-262. doi: 10.3969/j.issn.1000-0569.2007.02.006
    [88] 方维萱, 王磊, 鲁佳, 等, 2017. 新疆萨热克铜矿床绿泥石化蚀变相与构造-岩浆-古地热事件的热通量恢复[J]. 矿物学报, 37(5): 661-675.
    [89] 高建京, 毛景文, 叶会寿, 等, 2010. 豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究[J]. 岩石学报, 26(3): 740-756.
    [90] 葛祥坤, 句海玉, 赵峰华, 等, 2020. 内蒙古上打井斑岩型钼矿床绿泥石特征及成矿意义[J]. 地质与勘探, 56(4): 704-713.
    [91] 李亮, 2011. 河北省安妥岭辉钼矿黑云母、绿泥石特征研究[D]. 北京: 中国地质大学(北京).
    [92] 李诺, 孙亚莉, 李晶, 等, 2008. 小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件[J]. 岩石学报, 24(4): 810-816.
    [93] 李占轲, 李建威, 陈蕾, 等, 2010. 河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理[J]. 地球科学: 中国地质大学学报, 35(4): 621-636.
    [94] 梁涛, 卢仁, 罗照华, 等, 2015. 豫西熊耳山蒿坪沟黑云母花岗斑岩的锆石LA-ICP-MSU-Pb年龄及其地质意义[J]. 地质论评, 61(4): 901-912.
    [95] 廖震, 刘玉平, 李朝阳, 等, 2010. 都龙锡锌矿床绿泥石特征及其成矿意义[J]. 矿床地质, 29(1): 169-176. doi: 10.3969/j.issn.0258-7106.2010.01.015
    [96] 刘燚平, 张少颖, 张华锋, 2016. 绿泥石的成因矿物学研究综述[J]. 地球科学前沿, 6(3): 264-282.
    [97] 刘文毅, 刘继顺, 何美香, 等, 2019. 豫西蒿坪沟岩体岩石地球化学、锆石U-Pb年龄及Hf同位素组成[J]. 中国有色金属学报, 29(7): 1551-1566.
    [98] 吕志成, 陈辉, 宓奎峰, 等, 2022. 勘查区找矿预测理论与方法及其应用案例[J]. 地质力学学报, 28(5): 842-865.
    [99] 毛景文, 郑榕芬, 叶会寿, 等, 2006. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 25(4): 359-368. doi: 10.3969/j.issn.0258-7106.2006.04.002
    [100] 毛景文, 叶会寿, 王瑞廷, 等, 2009. 东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价[J]. 地质通报, 28(1): 72-79.
    [101] 唐克非, 2014. 华北克拉通南缘熊耳山地区金矿床时空演化、矿床成因及成矿构造背景[D]. 武汉: 中国地质大学(武汉).
    [102] 王小雨, 毛景文, 程彦博, 等, 2014. 粤东新寮岽铜多金属矿床绿泥石特征及其地质意义[J]. 岩石矿物学杂志, 33(5): 885-905.
    [103] 徐进鸿, 2021. 东秦岭熊耳山地区薄脉状热液型Ag-Pb-Zn矿床特征与成矿作用研究[D]. 北京: 中国科学院大学.
    [104] 杨献忠, 杨祝良, 陶奎元, 等, 2002. 含油玄武岩中绿泥石的形成温度[J]. 矿物学报, 22(4): 365-370.
    [105] 叶会寿, 2006. 华北陆块南缘中生代构造演化与铅锌银成矿作用[D]. 北京: 中国地质科学院.
    [106] 袁航, 韩润生, 冯志兴, 等, 2022. 川西南大梁子铅锌矿床矿化蚀变分带规律与元素组合分带模型[J]. 地质力学学报, 28(3): 432-447.
    [107] 张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768.
    [108] 张娟, 刘新星, 王义天, 等, 2021. 陕西凤太矿集区八卦庙金矿床绿泥石特征及其找矿意义[J]. 地质通报, 40(4): 586-603.
    [109] 张元厚, 张世红, 韩以贵, 等, 2006. 华熊地块马超营断裂走滑特征及演化[J]. 吉林大学学报(地球科学版), 36(2): 169-176, 193.
    [110] 张哲铭, 曾庆栋, 王永彬, 等, 2023. 华北克拉通南缘康山金多金属矿床成矿时代及流体演化: 来自独居石U-Pb年龄、黄铁矿微量元素和原位S同位素制约[J]. 岩石学报, 39(3): 865-885.
    [111] 郑伟, 陈懋弘, 赵海杰, 等, 2013. 广东省天堂铜铅锌多金属矿床矽卡岩矿物学特征及其地质意义[J]. 岩石矿物学杂志, 32(1): 23-40.
    [112] 周栋, 赵太平, 赵鹏彬, 等, 2018. 豫西康山金银铅锌矿床绿泥石电子探针成分特征及其地质意义[J]. 矿产勘查, 9(5): 803-824.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  85
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-10-18
  • 录用日期:  2023-11-02
  • 预出版日期:  2024-01-31
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回