留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷州半岛中西部第四纪火山岩的40Ar/39Ar年龄及地质意义

李响 张宗言 李海勇 张楗钰 白秀娟

李响,张宗言,李海勇,等,2023. 雷州半岛中西部第四纪火山岩的40Ar/39Ar年龄及地质意义[J]. 地质力学学报,29(4):512−521 doi: 10.12090/j.issn.1006-6616.2023098
引用本文: 李响,张宗言,李海勇,等,2023. 雷州半岛中西部第四纪火山岩的40Ar/39Ar年龄及地质意义[J]. 地质力学学报,29(4):512−521 doi: 10.12090/j.issn.1006-6616.2023098
LI X,ZHANG Z Y,LI H Y,et al.,2023. 40Ar/39Ar ages of Quaternary volcanic rocks from the midwest of the Leizhou Peninsula, and their geologic significance[J]. Journal of Geomechanics,29(4):512−521 doi: 10.12090/j.issn.1006-6616.2023098
Citation: LI X,ZHANG Z Y,LI H Y,et al.,2023. 40Ar/39Ar ages of Quaternary volcanic rocks from the midwest of the Leizhou Peninsula, and their geologic significance[J]. Journal of Geomechanics,29(4):512−521 doi: 10.12090/j.issn.1006-6616.2023098

雷州半岛中西部第四纪火山岩的40Ar/39Ar年龄及地质意义

doi: 10.12090/j.issn.1006-6616.2023098
基金项目: 中国地质调查局地质调查项目(DD20230204,DD20221634,DD20160035);珠海市城市地质调查(含信息化)项目(MZCD-2201-008);广东省基础与应用基础研究基金(2019A1515011244);广州市基础与应用基础研究基金(202201010720);国家自然科学基金项目(91958212)
详细信息
    作者简介:

    李响(1983—),男,博士,正高级工程师,主要从事成因矿物学和第四纪地质研究。E-mail:lixiang_503@163.com

    通讯作者:

    李海勇(1982—),男,博士,副研究员,主要从事研究方向为海洋地球化学研究。E-mail:hyli@scsio.ac.cn

  • 中图分类号: P597;P534

40Ar/39Ar ages of Quaternary volcanic rocks from the midwest of the Leizhou Peninsula, and their geologic significance

Funds: This research is financially supported by the Geological Survey Project of the China Geological Survey (Grants DD20230204, DD20221634, and DD20160035), the Zhuhai Urban Geological Survey (including information) Project (Grant MZCD-2201-008), the Guangdong Basic and Applied Basic Research Foundation (Grant 2019A1515011244), the Guangzhou Basic and Applied Basic Research Fund (Grant 202201010720), and the National Natural Science Foundation of China (Grant No. 91958212).
  • 摘要:

    雷州半岛地区第四纪火山岩广泛分布,但对火山岩形成的时代还存在争议。文章利用高精度的激光阶段加热40Ar/39Ar法对雷州半岛中西部火山岩的年龄进行了测定,并结合与相邻地层的接触关系,划分了2个火山活动旋回。第Ⅰ旋回火山岩呈夹层产于湛江组内部,仅见于钻孔ZKC12中,岩性为橄榄拉斑玄武岩;第Ⅱ旋回火山岩在区内分布最广,覆盖在湛江组之上,40Ar/39Ar年龄为2.02~0.88 Ma,时代为早更新世早期至早更新世晚期,结合与周围地层的接触关系,进一步划分为4个喷发期。第1喷发期(Ⅱ1)规模最大,出露面积最广,形成2个喷发中心,40Ar/39Ar年龄为2.02±0.03 Ma;第2喷发期(Ⅱ2)主要分布于锅盖岭和北插一带,40Ar/39Ar年龄分别为1.77±0.03 Ma、1.70±0.03 Ma;第3喷发期(Ⅱ3)喷发中心位于火炬农场,40Ar/39Ar年龄为1.51±0.07 Ma;第4喷发期(Ⅱ4)岩性以沿裂隙喷发形成的溢流相的玄武质熔岩为主, 40Ar/39Ar年龄为0.88±0.14 Ma。火山活动明显受北东向和北西向基底断裂的控制。研究成果为雷州半岛地区火山活动时代、期次和活动规律研究提供了重要年龄证据。

     

  • 雷州半岛是中国第四纪火山岩的重要分布区,已有研究认为火山活动主要集中于中晚更新世(黄镇国等,1993Ho et al.,2000Wang et al.,2012李蔚然等,2013)。火山年龄的获得主要依靠热释光法、K-Ar年龄法以及古地磁极性的测量,同时参考火山岩与其他地层的关系、火山岩风化壳特征、火山地貌及地质构造等。不同方法获得的火山岩年龄之间存在较大差异,近百个年龄数据显示,雷州半岛新生代火山岩的年龄范围在0.10~3.04 Ma之间(李蔚然等,2013),这也直接导致有关雷州半岛及附近岛屿火山活动期的划分方案多达20种以上(张虎男和赵希涛,1984韩中元等,1987冯国荣,1992黄镇国等,1993黄镇国和蔡福祥,1994樊祺诚等,2004)。石峁岭组是雷州半岛分布最广的第四纪火山岩,但其形成时代一直缺少有效约束,长期以来一直认为其形成于中更新世(广东省地质矿产局,1996),古地磁测量结果则显示,其从松山反极性时到布容正极性时均有(葛同明等,1989),部分下伏湛江组烘烤层的年龄又偏新,年龄值主要为720~73 ka(广东省地质矿产局水文工程地质一大队,1995)。石峁岭组的典型剖面——徐闻勇士农场722钻孔的年龄也存在较大跨度,钻孔26 m、29 m、61 m、133 m深处玄武岩的K-Ar年龄分别为760±470 ka、850±790 ka、1200±500 ka和2900±960 ka,年龄误差也较大(冯国荣,1992),限制了雷州半岛地区火山岩成因及火山活动规律的认识。基于此,文章通过采用高精度的激光阶段加热40Ar/39Ar法对雷州半岛中西部火山岩的形成年龄进行精确测定,可以为雷州半岛地区火山活动时代、期次和活动规律研究提供重要依据。

    雷州半岛位于广东省西南部,是中国三大半岛之一,东西两侧分别濒临南海和北部湾,南隔琼州海峡与海南省相望。半岛地形地貌以平缓台地为主,东、西两侧分布小型沿海平原。在构造上,处于华夏板块的最西南部,欧亚板块、太平洋板块和印度板块碰撞交汇点的前缘(Tu et al.,1991李响等,2019Wang et al.,2020吴孔友等,2021李三忠等,2022),是雷琼盆地北部陆上的一部分。遂溪大断裂和琼州海峡深大断裂分别构成雷州半岛南北边界断裂(张虎男和赵希涛,1984黄玉昆和邹和平,1989)。雷州半岛被大面积的第四系覆盖,主要为早更新世的湛江组和中更新世的北海组。湛江组为河流相杂色砂砾、砂层、粉砂层和黏土层,北海组为滨海–河流相棕黄色粉砂层及亚黏土、棕黄—灰白色砂砾层。后者以假整合或不整合接触形式覆盖于前者之上(葛同明等,1994)。新生代南海盆地的裂陷、扩张与发展(Su et al.,20142015解习农等,2015赵迎冬等,2015),影响了区内新生代盆地的发育与充填序列(张克信等,2017李响等,2019)。该区新生代火山活动十分频繁,一直持续到全新世,与海南岛北部的新生代火山岩共同组成雷琼火山群(黄镇国等,1993樊祺诚等,2004李响等,2019)。雷州半岛及附近岛屿火山岩的面积为3136 km2,火山岩约占半岛总面积的38.5%(黄镇国等,1993),主要分布在雷北和雷南2个片区(图1a)。雷北的火山岩分布在溪县东部(约565 km2)、湛江市西部及东海岛和硇洲岛(约312 km2),还有安浦港北岸(约63 km2),合计约940 km2。雷南的火山岩分布在雷州市中南部及广西的涠洲岛和斜阳岛(约1193 km2),徐闻县全境(约1003 km2),合计约2196 km2。火山岩的厚度变化较大,近火山口处较厚,远离火山口变薄;古地形也会对火山岩的厚度有一定影响,一般在古地形低洼处较厚。田洋、青桐洋、九斗洋等破火山口周围分布的火山岩中见有二辉橄榄岩块和捕虏体(孔中恒,2004)。

    图  1  雷州半岛中西部火山岩分期分布图
    a—雷州半岛第四纪地质简图;b—研究区火山岩分期分布图
    Figure  1.  Distribution of volcanic rocks in the midwest of the Leizhou Peninsula
    (a) Quaternary geological sketch map of the Leizhou Peninsula; (b) Staged distribution of volcanic rocks in the study area

    研究区位于雷州半岛中西部(图1a),范围涉及江洪镇幅、河头镇幅、唐家镇幅、曲港圩幅、企水镇幅等5个1:50000标准图幅(李响等,2019)。区内火山岩主要分布于雷州半岛中西部的企水镇和唐家镇等地(图1b),已有研究将其划归为中更新世石峁岭组,属于雷南火山岩区的西北部(罗树文,1998)。区域内出露的火山岩根据结构可分为熔岩和火山碎屑岩。熔岩的岩性主要为橄榄拉斑玄武岩和石英拉斑玄武岩,根据气孔有无划分为致密玄武岩和气孔状玄武岩。玄武岩多风化形成红土风化壳,风化壳的厚度与母岩年龄密切相关(黄镇国等,1993)。这些风化壳通常发育红色砖红壤(葛同明等,1989许炼烽和刘腾辉,1996),是雷州半岛地区土壤发育的重要母质。玄武岩及风化壳中蕴含丰富的孔洞裂隙水,是雷州半岛具有重要供水意义的含水层(孔中恒,2004)。

    在雷州半岛的企水镇、龙门镇等地采集了地表露头玄武岩样品GGL、BC、PL、D7051 (图1b),在钻孔ZKB03采集了样品ZKB03Ar(图2),共5件火山岩样品用于40Ar/39Ar年龄测定。先将岩石样品破碎至0.2 mm以下,在双目镜下剔除橄榄石等斑晶,将选好的样品放入100 mL烧杯中,依次用稀硝酸、丙酮浸泡样品,以溶蚀表面和裂隙中的杂质等,用超声波震荡30 min左右后再用去离子水多次清洗,直至清洗干净,然后放置在80 ℃烘箱内将样品完全烘干。

    图  2  代表性钻孔及40Ar/39Ar年龄样采样层位
    Figure  2.  Representative drill cores and 40Ar/39Ar age sampling horizons in the study area

    用铝箔将每个样品包装成5 mm左右小圆饼状,依次装入铝管中,每间隔3~5个样品插入1个标样,实验所采用的标样为FCT和ACs。标样用铜箔进行包装,以便与样品进行区分。样品和标样平整放入铝管之后,在最上层标样之上放置一定量的玻璃棉以隔热。为减少样品表面吸收的空气Ar对实验结果的影响,采用激光真空封样,先真空加热烘烤24小时以上去掉空气成分,然后激光焊接将铝管进行密封。

    将封装好的样品送至四川省绵阳市的中国工程物理研究院核物理与化学研究所的核反应堆CMRR中照射48小时,干扰Ar同位素的校正因子取自照射后CaF2和K2SO4,分别为:(39Ar/37Ar)Ca = 6.175 × 10−4、(36Ar/37Ar)Ca = 2.348 × 10−3、(40Ar/39Ar)K = 2.323 × 10−3、(38Ar/39Ar)K = 9.419 × 10−3。照射后待样品的辐射降至可接受范围时取回。

    激光阶段加热40Ar/39Ar定年实验在中国地质大学(武汉)构造与油气资源教育部实验室的多接收稀有气体Argus Ⅵ质谱仪上完成。该质谱仪的质量分辨率约为200,接收器配5个法拉第杯和1个CDD电子倍增器,高阻为1012~1011Ω,量程为5 × 104 ~ 5 × 105 fA。根据样品的信号强度,5个Ar同位素(40Ar、39Ar、38Ar、37Ar 和36Ar)可以在5个法拉第杯上同时测量,也可以在4个法拉第杯和1个CDD 电子倍增器上测量(邱华宁等,2015)。实验分析前,样品盘和整个系统通过加热带或电炉在150℃下进行烘烤,同时用分子泵和离子泵抽取真空,以除去样品表面吸附的多余空气和降低系统本底。样品经过激光阶段加热释放的气体先后通过冷阱和气体纯化装置处理后,然后进入质谱仪进行Ar同位素分析。详细的仪器操作及实验分析流程见(Bai et al.,2018)。40Ar/39Ar定年数据采用ArArCALC软件(Version 2.52)进行年龄计算和作图(Koppers,2002)。

    采用专业软件ArArCALC(v.2.52)进行40Ar/39Ar年龄计算和作图(Koppers,2002张凡等,2009),5件火山岩样品的40Ar/39Ar分析结果见图3。地表新鲜玄武岩样品GGL阶段加热获得了平坦的年龄谱,坪年龄为1.77±0.03 Ma(MSWD=0.87),年龄坪数据点在反等时线图解上构成了很好的等时线,等时线年龄为1.83±0.06 Ma(MSWD=0.50),对应的40Ar/36Ar初始值296.9±1.5,与现代大气空气的40Ar/36Ar比值(295.5)非常接近,表明分析成分中不含过剩Ar,坪年龄与等时线年龄真实可靠。同样,获得了样品BC、PL、D7051的坪年龄分别为1.70±0.03 Ma(MSWD=0.76)、1.51±0.07 Ma(MSWD=0.03)、0.88±0.14 Ma(MSWD=0.70),反等时线年龄分别为1.75±0.08 Ma(MSWD=0.65)、1.50±0.16 Ma(MSWD=0.03)、0.86±0.26 Ma(MSWD=0.78),对应的40Ar/36Ar初始值介于296.5±3.2~298.6±1.1之间,接近现代大气空气的40Ar/36Ar比值(295.5)。

    图  3  雷州半岛中西部火山岩40Ar/39Ar年龄谱和反等时线
    Figure  3.  Age spectra (left) and inverse isochrons (right) of volcanic rock samples from the midwest of the Leizhou Peninsula by 40Ar/39Ar laser stepwise heating

    样品ZKB03Ar取自钻孔ZKB03 21.4 m深处,岩性为致密玄武岩。坪年龄为2.02±0.03 Ma(MSWD = 0.11),年龄坪数据点在反等时线图解上构成了很好的等时线,等时线年龄为2.00±0.28 Ma(MSWD = 0.12),对应的40Ar/36Ar初始值298.9±4.4,与现代大气空气的40Ar/36Ar比值(295.5)非常接近,表明分析成分中不含过剩Ar,坪年龄与等时线年龄真实可靠。

    近年来,随着质谱和高真空技术的发展配合激光融样,40Ar/39Ar法在年轻火山岩定年中的测年精度及可靠性方面明显优于K-Ar法,在国际第四纪火山及环境研究中的作用日益重要(Storey et al.,2012周晶等,2013McDougall,2014Yang et al.,2014Osorio-Ocampo et al.,2018)。区域内火山岩主要出露于雷州半岛南部火山岩区的西北部,其上多被风化残坡积土或第四纪松散沉积物覆盖。根据地表剖面和钻孔资料,区内可见到火山岩呈喷发不整合覆盖在湛江组之上(图4a),说明其时代比湛江组新,属更新世无疑,这也是已有研究划分区内火山岩期次的主要地质依据。通过对钻孔和地表新鲜玄武岩样品进行40Ar/39Ar年龄测定,获得了区内火山岩的高精度40Ar/39Ar年龄。测年结果表明,区内火山岩的形成年龄为2.02~0.88 Ma,时代从早更新世早期到早更新世晚期。

    图  4  雷州半岛中西部火山岩野外地质特征
    a—石峁岭组火山岩呈喷发不整合覆盖在湛江组之上;b—草罗岭采石场火山岩中的喷发韵律,红土夹层代表喷发间断;c—玄武岩球形风化;d—玄武岩中的绳状构造
    Figure  4.  Field geological characteristics of volcanic rocks in the midwest of the Leizhou Peninsula
    (a) Volcanic rocks of the Shimaoling formation unconformably overlying the the Zhanjiang formation; (b) eruptive rhythmites in the volcanic rocks of Caoluoling Quarry, with red clay interlayers representing eruptive discontinuities; (c) Spherical weathering of basalt; (d) Ropy structure in basalt

    钻孔ZKC12中的火山岩下伏于湛江组下部,虽然未有年龄控制,但根据地层的叠覆关系,其形成年龄要老于覆盖在湛江组之上的火山岩。孙嘉诗(1991)获得雷南火炬农场270 m沉积层下伏玄武岩的K-Ar年龄为2.30 Ma,田洋、勇士农场、友好农场剖面的火山岩K-Ar年龄分别为1.87 Ma、1.11 Ma和1.579 Ma,其上都被沉积层与较新的火山岩相隔,并据此认为,早更新世早期的火山岩,除少数样品处于地表外,多呈湛江组的夹层而产出(黄镇国等,1993)。罗树文(1998)通过总结雷南火山活动规律发现,湛江组火山岩夹层的年龄为早更新世。古地磁及火山岩夹层的年龄均指示湛江组的时代为早更新世(葛同明等,1994)。因此,钻孔ZKC12中的火山岩可能也为湛江组内的夹层,其形成时代也为早更新世早期,为揭露的区内最早的火山活动,视为第Ⅰ旋回火山岩。该旋回火山岩仅见于钻孔ZKC12,揭露厚度7.4 m,下未见底,其上为湛江组灰色黏土。

    覆盖于湛江组之上的火山岩,分布最广,面积约为193.2 km2,是区内火山活动的高峰期。采自不同火山机构的代表性样品的40Ar/39Ar年龄为2.02~0.88 Ma,时代均为早更新世,并划归第Ⅱ旋回火山岩。结合火山机构发育特征,该旋回火山岩可以划分为4个喷发期(表1)。第1喷发期(Ⅱ1)出露面积约126.1 km2,形成多个喷发中心。北边的喷发中心以草罗岭为中心,最高点高程为133 m,喷发中心火山岩出露厚度大于71.8 m,在草罗岭采石场南坡发育多个由致密玄武岩和气孔状玄武岩组成的韵律,中间夹有薄层的红土层,表明有短暂的喷发间断(图4b),在距喷发中心南约3 km的火炬农场七队钻孔ZKB03揭露火山岩总厚度33.5 m,21.4 m深处火山岩样品ZKB03Ar的年龄为2.02±0.03 Ma(MSWD = 0.11)。再往南数千米则可见该期火山岩直接覆盖在湛江组之上,露头厚度约4 m,厚度逐渐递减。玄武质熔岩暴露地表后多发生球形风化(图4c),局部可见残留的绳状构造(图4d)。南部的喷发中心位于火炬农场北东约2.5 km,推测有2个小的火山口,呈北东向排列,现今高程分别为107 m和98 m,山坡见大量滚落的气孔状玄武岩转石,山脚下和距喷发中心东约2.8 km路边水井岩芯岩性均为致密玄武质熔岩。第2喷发期(Ⅱ2)火山岩主要分布于企水镇以东锅盖岭一带以及研究区东南角的北插一带,40Ar/39Ar年龄分别为1.77±0.03 Ma(MSWD = 0.87)、1.70±0.03 Ma(MSWD = 0.76)。地表出露岩性为玄武质熔岩,出露面积约34.3 km2。企水镇东侧的火山岩喷发中心位于北塘岭,最高点高程为87.5 m,在锅盖岭和博袍岭等处还存在多个次级喷发中心。第3喷发期(Ⅱ3)火山岩40Ar/39Ar年龄为1.51±0.07 Ma(MSWD = 0.03),喷发中心位于火炬农场十四队北东约1 km,现今高程为91 m,地表出露面积约10.8 km2。风化红土较厚,露头整体较差,未见火山碎屑岩,仅见少量熔岩的转石。据水井岩芯推测,该喷发期的火山岩可能为单次溢流相喷发形成的玄武质熔岩。第4喷发期(Ⅱ4)火山岩40Ar/39Ar年龄为0.88±0.14 Ma(MSWD = 0.70),岩性以沿裂隙喷发形成的溢流相的玄武质熔岩为主,地表出露面积约4.1 km2,在步龙村附近的钻孔见厚约1 m的风化火山角砾岩直接覆盖在湛江组之上,其上为玄武岩风化形成的残坡积红土。

    表  1  雷州半岛中西部火山活动旋回划分表
    Table  1.  Division of volcanic eruption cycles in the midwest of the Leizhou Peninsula
    地质年代旋回喷发期产出层位累计厚度/m出露面
    积/km2
    主要岩性火山岩相同位素
    年龄/Ma
    第四纪 更新世 4 石峁岭组 >4 .0m 4.1 橄榄拉斑玄武岩 溢流相    0.88
    3 >200.0 m 10.8 石英拉斑玄武岩 溢流相    1.51
    2 >101.4 m 34.3 石英拉斑玄武岩、
    火山碎屑岩
    溢流相爆发相 1.70~1.77
    1 >33.5 m 126.1 石英拉斑玄武岩、
    火山碎屑岩
    溢流相爆发相 2.02
    湛江组 >7.4 m 无出露 橄榄拉斑玄武岩 溢流相   
    下载: 导出CSV 
    | 显示表格

    雷南火山岩区是雷琼第四纪火山岩的重要组成部分,已有研究将包括研究区在内的雷南火山岩区火山岩划归中更新世石峁岭组(郑王琼,1999雷天赐等,2020)。石峁岭组是指喷发形成的不整合覆于湛江组之上、田洋组或湖光岩组之下的一套深灰—土黄色玄武质火山角砾岩、玄武质凝灰岩、集块岩与玄武岩不等厚互层的地层(广东省岩石地层,1996)。此次工作获得了雷南火山岩区西北部火山岩的高精度40Ar/39Ar年龄,定年结果显示,区内火山活动始于早更新世早期,早更新世晚期结束。区内火山岩年龄的精确厘定为开展区域火山岩地层对比提供了基础。考虑石峁岭组仅指不整合覆于湛江组之上的火山岩,则此次钻孔揭露的第Ⅰ旋回火山岩(湛江组中的夹层)不能归到石峁岭组。因此,此次获得的区内石峁岭组火山岩的年龄为2.02~0.88 Ma,时代为早更新世早期至早更新世晚期,更新了石峁岭组仅形成于中更新世的传统认识。

    在早更新世,雷州半岛海陆交互作用强烈,沉积形成了湛江组。在该时期,火山活动以小规模、间歇性的基性喷溢为主,玄武岩呈夹层产于湛江组内(郑王琼,1999),相当于钻孔ZKC12中的第Ⅰ旋回火山岩。至中更新世,随着大部分基底断裂下切至中、深地壳(甚至上地幔),发生大规模岩浆活动。雷南地区火山活动明显受新生代雷琼裂谷的控制,来自上地幔的玄武岩浆沿着裂谷中东西向、北东向和北西向3组断裂上涌,在主要断裂的交会部位喷出地表,并在中更新世火山活动达到顶峰,形成雷州半岛大面积出露的石峁岭组火山岩(黄镇国等,1993罗树文,1998)。而此次获得的火山岩的年龄为早更新世,预示在雷南地区大规模的火山活动可能在早更新世就开始了。虽然火山机构受后期风化破坏影响较为严重,但地表火山岩的分布特征依旧能清晰指示,此时期的火山活动明显受北东向和北西向基底断裂的控制,火山口的排列方向为北东向、北西向或二者的交汇部位。早更新世早期,喷发中心主要位于研究区的南部,形成第Ⅱ旋回第1至第3喷发期火山岩,尤以第1和第2喷发期火山活动最为强烈,形成草罗岭、锅盖岭和博袍岭等火山机构。随后火山喷发规模变小,并向北迁移,于1.51 Ma左右形成第3喷发期火山岩。至早更新世晚期,火山活动继续向北迁移,活动强度持续减弱,沿北西和北东向断裂交汇部位以裂隙式喷发方式形成第Ⅱ旋回第4喷发期火山岩。

    纵观整个雷州半岛,石峁岭期火山活动最为强烈。射气岩浆喷发形成了田洋、青桐洋和九斗洋等数量众多的玛珥湖(刘嘉麒等,2000李响等,2018),这些玛珥湖沉积受亚洲季风影响,可为揭示低纬地区亚洲季风的轨道尺度变化提供关键证据(储国强和刘嘉麒,2018汪苗和鹿化煜,2019),而石峁岭组火山岩作为这些玛珥湖的基底围岩,其年龄的精确厘定可以为限制玛珥湖的形成时代提供约束。石峁岭组火山岩发育多旋回的火山岩–红土组合,火山岩年龄的精确厘定也是研究每层红土发育时间、强度、速率的前提条件。将各红土层记录的气候环境与同年代的红土系列、黄土–古土壤系列进行对比,可阐明这些时段内的全球气候环境变化以及古亚洲季风在雷州半岛地区的响应(朱照宇等,2001)。

    通过激光阶段加热40Ar/39Ar法获得雷州半岛中西部晚新生代火山岩的年龄为2.02~0.88 Ma,火山活动始于早更新世早期,结束于早更新世晚期,获得区内石峁岭组的时代为早更新世。火山活动受北东向和北西向基底断裂控制,早更新世早期是火山活动的高峰期,至早更新世晚期火山活动逐渐减弱。该研究也表明,40Ar/39Ar法在限定雷州半岛地区玛珥湖基底围岩和多旋回火山岩−红土序列中火山岩的年龄中具有潜在的应用前景。

  • 图  1  雷州半岛中西部火山岩分期分布图

    a—雷州半岛第四纪地质简图;b—研究区火山岩分期分布图

    Figure  1.  Distribution of volcanic rocks in the midwest of the Leizhou Peninsula

    (a) Quaternary geological sketch map of the Leizhou Peninsula; (b) Staged distribution of volcanic rocks in the study area

    图  2  代表性钻孔及40Ar/39Ar年龄样采样层位

    Figure  2.  Representative drill cores and 40Ar/39Ar age sampling horizons in the study area

    图  3  雷州半岛中西部火山岩40Ar/39Ar年龄谱和反等时线

    Figure  3.  Age spectra (left) and inverse isochrons (right) of volcanic rock samples from the midwest of the Leizhou Peninsula by 40Ar/39Ar laser stepwise heating

    图  4  雷州半岛中西部火山岩野外地质特征

    a—石峁岭组火山岩呈喷发不整合覆盖在湛江组之上;b—草罗岭采石场火山岩中的喷发韵律,红土夹层代表喷发间断;c—玄武岩球形风化;d—玄武岩中的绳状构造

    Figure  4.  Field geological characteristics of volcanic rocks in the midwest of the Leizhou Peninsula

    (a) Volcanic rocks of the Shimaoling formation unconformably overlying the the Zhanjiang formation; (b) eruptive rhythmites in the volcanic rocks of Caoluoling Quarry, with red clay interlayers representing eruptive discontinuities; (c) Spherical weathering of basalt; (d) Ropy structure in basalt

    表  1  雷州半岛中西部火山活动旋回划分表

    Table  1.   Division of volcanic eruption cycles in the midwest of the Leizhou Peninsula

    地质年代旋回喷发期产出层位累计厚度/m出露面
    积/km2
    主要岩性火山岩相同位素
    年龄/Ma
    第四纪 更新世 4 石峁岭组 >4 .0m 4.1 橄榄拉斑玄武岩 溢流相    0.88
    3 >200.0 m 10.8 石英拉斑玄武岩 溢流相    1.51
    2 >101.4 m 34.3 石英拉斑玄武岩、
    火山碎屑岩
    溢流相爆发相 1.70~1.77
    1 >33.5 m 126.1 石英拉斑玄武岩、
    火山碎屑岩
    溢流相爆发相 2.02
    湛江组 >7.4 m 无出露 橄榄拉斑玄武岩 溢流相   
    下载: 导出CSV
  • [1] BAI X J, QIU H N, LIU W G, et al. , 2018. Automatic 40Ar/39Ar dating techniques using multicollector ARGUS VI Noble gas mass spectrometer with self-made peripheral apparatus[J]. Journal of Earth Science, 29(2): 408-415. doi: 10.1007/s12583-017-0948-9
    [2] CHU G Q, LIU J Q, 2018. Maar lakes in China and their significance in paleoclimatic research[J]. Acta Petrologica Sinica, 34(1): 4-12. (in Chinese with English abstract)
    [3] FAN Q C, SUN Q, LI N, et al. , 2004. Periods of volcanic activity and magma evolution of Holocene in North Hainan Island[J]. Acta Petrologica Sinica, 20(3): 533-544. (in Chinese with English abstract)
    [4] FENG G R, 1992. Basic characteristics and relationship to tectonic environment of the Late Cenozoic basalts along the coast of South China Sea[J]. Sun Yatsen University Forum(1): 93-103. (in Chinese with English abstract)
    [5] GE T M, CHEN W J, XU H, et al. , 1989. The geomagnetic polarity time scale of quaternary for Leiqiong region: The K-Ar dating and palaeomagnetic evidences from igneous rocks[J]. Chinese Journal of Geophysics, 32(5): 550-558. (in Chinese with English abstract)
    [6] GE T M, FAN L M, XU X, et al. , 1994. Paleomagnetism of Beihai and Zhanjiang Formations in Lei-Qiong region[J]. Marine Geology & Quaternary Geology, 14(4): 61-70. (in Chinese with English abstract)
    [7] Guangdong Geological Bureau, 1996. Stratigraphy (Lithostratic) of Guangdong province[M]. Beijing: China University of Geosciences Press. (in Chinese)
    [8] HAN Z Y, ZHANG Z Y, LIU R H, 1987. Volcanic Geomorphy in north Hainan island[J]. Tropical Geography, 7(1): 43-53. (in Chinese with English abstract)
    [9] HO K S, CHEN J C, JUANG W S, 2000. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China[J]. Journal of Asian Earth Sciences, 18(3): 307-324. doi: 10.1016/S1367-9120(99)00059-0
    [10] HUANG Y K, ZOU H P, 1989. The tectonics and evolution of the Lei-Qiong Cenozoic graben basin[J]. Acta Scifntiarum Naturalium Universitatis Sunyaatseni, 28(3): 1-11. (in Chinese with English abstract)
    [11] HUANG Z G, CAI F X, HAN Z Y, et al. , 1993. Leiqiong Quaternary volcano[M]. Beijing: Science Press: 170-188. (in Chinese)
    [12] HUANG Z G, CAI F X, 1994. A new approach to the Quaternary volcanicity in the Leiqiong area[J]. Tropical Geography, 14(1): 1-10. (in Chinese with English abstract)
    [13] KONG Z H, 2004. Hydrogeological property and laws of water abundance of the volcanic rocks in Leizhou Peninsula[J]. Tropical Geography, 24(2): 136-139. (in Chinese with English abstract)
    [14] KOPPERS A A P, 2002. ArArCALC—Software for 40Ar/39Ar age calculations[J]. Computers & Geosciences, 28(5): 605-619.
    [15] LEI T C, ZHU X, JIANG H, et al. , 2020. Geochemical survey atlas of land quality in the Leizhou Peninsula[M]. Wuhan: China University of Geosciences Press: 1-160. (in Chinese)
    [16] LI S Z, SUO Y H, ZHOU J, et al. , 2022. Tectonic evolution of the South China Ocean-Continent Connection Zone: transition and mechanism of the Tethyan to the Pacific tectonic domains[J]. Journal of Geomechanics, 28(5): 683-704,doi: 10.12090/j.issn.1006-6616.20222809. (in Chinese with English abstract)
    [17] LI W R, JI J Q, SANG H Q, et al. , 2013. Laser 40Ar/39Ar isochron dating on Leizhou Quaternary volcanic rocks[J]. Acta Petrologica Sinica, 29(8): 2775-2788. (in Chinese with English abstract)
    [18] LI X, ZHANG Z Y, ZHANG J Y, 2018. The jewel inlaying on the crater: the magical Maar lake[J]. Geology and Mineral Resources of South China, 34(2): 168-173. (in Chinese with English abstract)
    [19] LI X, ZHANG Z Y, ZHANG J Y, et al. , 2019. New progress in 1: 50000 reginal survey in Leizhou Peninsular area, Western Guangdong Province[J]. Geology and Mineral Resources of South China, 35(3): 293-305. (in Chinese with English abstract)
    [20] LIU J Q, NEGENDANK J F W, WANG W Y, et al. , 2000. The distribution and geological characteristics of maar lakes in China[J]. Quaternary Sciences, 20(1): 78-86. (in Chinese with English abstract)
    [21] LUO S W, 1998. Volcanism in Southern Leizhou Peninsula and its tectonic setting[J]. Guangdong Geology, 13(3): 20-24. (in Chinese)
    [22] MCDOUGALL I, 2014. K/Ar and 40Ar/39Ar Isotopic dating techniques as applied to young volcanic rocks, particularly those associated with hominin localities[J]. Treatise on Geochemistry (Second Edition), 14: 1-15.
    [23] No. 1 Hydrological and Engineering Geology Team of Guangdong Geological and Mineral Bureau, 1995. 1: 50 000 regional geological survey report of Maichen, Xiaqiao, Pengbigang, and Xuwenxian map-sheets[R]. (in Chinese)
    [24] OSORIO-OCAMPO S, MACÍAS J L, POLA A, et al. , 2018. The eruptive history of the Pátzcuaro Lake area in the Michoacán Guanajuato volcanic field, central México: field mapping, C-14 and 40Ar/39Ar geochronology[J]. Journal of Volcanology and Geothermal Research, 358: 307-328. doi: 10.1016/j.jvolgeores.2018.06.003
    [25] QIU H N, BAI X J, LIU W G, et al. , 2015. Automatic 40Ar/39Ar dating technique using multicollector ArgusVI MS with home-made apparatus[J]. Geochimica, 44(5): 477-484. (in Chinese with English abstract)
    [26] STOREY M, ROBERTS R G, SAIDIN M, 2012. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(46): 18684-18688.
    [27] SU M, ZHANG C, XIE X N, et al. , 2014. Controlling factors on the submarine canyon system: a case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Science China, Earth Sciences, 57(10): 2457-2468. doi: 10.1007/s11430-014-4878-4
    [28] SU M, HSIUNG K H, ZHANG C M, et al. , 2015. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink[J]. Journal of Asian Earth Sciences, 111: 1-13. doi: 10.1016/j.jseaes.2015.05.011
    [29] SUN J S, 1991. Cenozoic volcanic activity in the northern South China Sea and Guangdong coastal area[J]. Marine Geology & Quaternary Geology, 11(3): 45-67, 125-130. (in Chinese with English abstract)
    [30] TU K, FLOWER M F J, CARLSON R W, et al. , 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (South China): implications for a subcontinental lithosphere Dupal source[J]. Geology, 19(6): 567-569. doi: 10.1130/0091-7613(1991)019<0567:SNAPIC>2.3.CO;2
    [31] WANG M, LU H Y, 2019. Age, geochemical composition and their paleoclimatic implications of the basalt in Leizhou Peninsula, Southern China[J]. Quaternary Sciences, 39(5): 1071-1082. (in Chinese with English abstract)
    [32] WANG T T , ZHENG J P, ZHAO H, 2020. Unexposed Archean components and complex evolution beneath the Cathaysia Block: Evidence from zircon xenocrysts in the Cenozoic basalts in Leizhou Peninsula, South China[J]. Journal of Asian Earth Sciences, 192: 104268. DOI: 10.1016/j.jseaes.2020.104268.
    [33] WANG X C, LI Z X, LI X H, et al. , 2012. Temperature, pressure, and composition of the mantle source region of late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?[J]. Journal of Petrology, 53(1): 177-233. doi: 10.1093/petrology/egr061
    [34] WU K Y, LIU Y L, HU D S, et al. , 2021. Types and evolution of faults in the east area of the Wushi Sag, Beibuwan Basin[J]. Journal of Geomechanics, 27(1): 52-62,doi: 10.12090/j.issn.1006-6616.2021.27.01.006. (in Chinese with English abstract)
    [35] XIE X N, REN J Y, WANG Z F, et al. , 2015. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 22(1): 77-87. (in Chinese with English abstract)
    [36] XU L F, LIU T H, 1996. The zonal differentiation of soil environmental background values and critical contents in Guangdong[J]. Journal of South China Agriculture University, 17(4): 58-62. (in Chinese with English abstract)
    [37] YANG L K, WANG F, FENG H L, et al. , 2014. 40Ar/39Ar geochronology of Holocene volcanic activity at Changbaishan Tianchi volcano, Northeast China[J]. Quaternary Geochronology, 21: 106-114. doi: 10.1016/j.quageo.2013.10.008
    [38] ZHANG F, QIU H N, HE H Y, et al. , 2009. Brief introduction to ArArCALC-software for data reduction in 40Ar/39Ar geochronology[J]. Geochimica, 38(1): 53-56. (in Chinese with English abstract)
    [39] ZHANG H N, ZHAO X T, 1984. Characteristics of the neotectonic movement in the Hainan Island and Leizhou Peninsula area[J]. Chinese Journal of Geology, 19(3): 276-287. (in Chinese with English abstract)
    [40] ZHANG K X, HE W H, LUO M S, et al. , 2017. Sedimentary tectonic map of China (1: 2 500 000)[M]. Beijing: Geology Press: 1-604. (in Chinese)
    [41] ZHAO Y D, GAN H J, CHEN S B, et al. , 2015. Determination of Zhu-Qiong movement: the enlightenment from tectonic and sedimentary characteristics of Fushan Sag, Beibuwan Basin[J]. Geology in China, 42(4): 948-959. (in Chinese with English abstract)
    [42] ZHENG W Q, 1999. Demonstration and evolution of tectonic movements in the Leizhou Peninsula since the Quaternary period[J]. Guangdong Geology, 14(1): 9-16. (in Chinese with English abstract)
    [43] ZHOU J, JI J Q, DEINO A, et al. , 2013. Laser fusion 40Ar/39Ar dating on young volcanic rocks[J]. Acta Petrologica Sinica, 29(8): 2811-2825. (in Chinese with English abstract)
    [44] ZHU Z Y, XU Y F, WEN Q Z, et al. , 2001. The stratigraphy and chronology of multicycle quaternary volcanic rock-red soil sequence in Leizhou Peninsula, South China[J]. Quaternary Sciences, 21(3): 270-276. (in Chinese with English abstract)
    [45] 储国强, 刘嘉麒, 2018. 中国玛珥湖及其研究意义[J]. 岩石学报, 34(1): 4-12.
    [46] 樊祺诚, 孙谦, 李霓, 等, 2004. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报, 20(3): 533-544. doi: 10.3969/j.issn.1000-0569.2004.03.017
    [47] 冯国荣, 1992. 华南沿海晚新生代玄武岩基本特征及其与构造环境的关系[J]. 中山大学学报论丛(1): 93-103.
    [48] 葛同明, 陈文寄, 徐行, 等, 1989. 雷琼地区第四纪地磁极性年表: 火山岩钾-氩年龄及古地磁学证据[J]. 地球物理学报, 32(5): 550-558. doi: 10.3321/j.issn:0001-5733.1989.05.007
    [49] 葛同明, 樊利民, 徐行, 等, 1994. 雷琼地区湛江组、北海组的古地磁学研究[J]. 海洋地质与第四纪地质, 14(4): 61-70.
    [50] 广东省地质矿产局, 1996. 广东省岩石地层[M]. 武汉: 中国地质大学出版社.
    [51] 广东省地质矿产局水文工程地质一大队, 1995. 1∶5万迈陈幅、下桥幅、蓬莳港幅、徐闻县幅区域地质调查报告[R].
    [52] 韩中元, 张仲英, 刘瑞华, 1987. 海南岛北部火山地貌[J]. 热带地理, 7(1): 43-53.
    [53] 黄玉昆, 邹和平, 1989. 雷琼新生代断陷盆地构造特征及其演化[J]. 中山大学学报(自然科学版), 28(3): 1-11.
    [54] 黄镇国, 蔡福祥, 韩中元, 等, 1993. 雷琼第四纪火山[M]. 北京: 科学出版社: 170-188.
    [55] 黄镇国, 蔡福祥, 1994. 雷琼第四纪火山活动的新认识[J]. 热带地理, 14(1): 1-10.
    [56] 孔中恒, 2004. 雷州半岛火山岩的水文地质特征与富水规律[J]. 热带地理, 24(2): 136-139.
    [57] 雷天赐, 朱鑫, 姜华, 等, 2020. 雷州半岛土地质量地球化学调查图集[M]. 武汉: 中国地质大学出版社: 1-160.
    [58] 李三忠, 索艳慧, 周洁, 等, 2022. 华南洋陆过渡带构造演化: 特提斯构造域向太平洋构造域的转换过程与机制[J]. 地质力学学报, 28(5): 683-704,doi: 10.12090/j.issn.1006-6616.20222809.
    [59] 李蔚然, 季建清, 桑海清, 等, 2013. 雷州半岛第四纪火山岩激光40Ar/39Ar等时线定年研究[J]. 岩石学报, 29(8): 2775-2788.
    [60] 李响, 张宗言, 张楗钰, 2018. 镶嵌在火山口的“宝石”: 神奇的玛珥湖[J]. 华南地质与矿产, 34(2): 168-173.
    [61] 李响, 张宗言, 张楗钰, 等, 2019. 粤西雷州半岛地区1∶5万区域地质调查成果与主要进展[J]. 华南地质与矿产, 35(3): 293-305.
    [62] 刘嘉麒, NEGENDANK J F W, 王文远, 等, 2000. 中国玛珥湖的时空分布与地质特征[J]. 第四纪研究, 20(1): 78-86.
    [63] 罗树文, 1998. 雷州半岛南部火山活动及其构造背景[J]. 广东地质, 13(3): 20-24.
    [64] 邱华宁, 白秀娟, 刘文贵, 等, 2015. 自动化40Ar/39Ar定年设备研制[J]. 地球化学, 44(5): 477-484. doi: 10.3969/j.issn.0379-1726.2015.05.007
    [65] 孙嘉诗, 1991. 南海北部及广东沿海新生代火山活动[J]. 海洋地质与第四纪地质, 11(3): 45-67, 125-130.
    [66] 汪苗, 鹿化煜, 2019. 雷州半岛玛珥湖区玄武岩的年代、地球化学特征及其意义[J]. 第四纪研究, 39(5): 1071-1082. doi: 10.11928/j.issn.1001-7410.2019.05.01
    [67] 吴孔友, 刘煜磊, 胡德胜, 等, 2021. 北部湾盆地乌石凹陷东区断裂类型及其形成演化[J]. 地质力学学报, 27(1): 52-62,doi: 10.12090/j.issn.1006-6616.2021.27.01.006.
    [68] 解习农, 任建业, 王振峰, 等, 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 22(1): 77-87.
    [69] 许炼烽, 刘腾辉, 1996. 广东土壤环境背景值和临界含量的地带性分异[J]. 华南农业大学学报, 17(4): 58-62.
    [70] 张凡, 邱华宁, 贺怀宇, 等, 2009. 40Ar/39Ar年代学数据处理软件ArArCALC简介[J]. 地球化学, 38(1): 53-56.
    [71] 张虎男, 赵希涛, 1984. 雷琼地区新构造运动的特征[J]. 地质科学, 19(3): 276-287.
    [72] 张克信, 何卫红, 骆满生, 等, 2017. 中国沉积岩建造与沉积大地构造演化[M]. 北京: 地质出版社: 1-604.
    [73] 赵迎冬, 甘华军, 陈善斌, 等, 2015. 珠琼运动的厘定: 来自北部湾盆地福山凹陷构造沉积特征的启示[J]. 中国地质, 42(4): 948-959.
    [74] 郑王琼, 1999. 第四纪以来雷州半岛构造运动的表现及演化[J]. 广东地质, 14(1): 9-16.
    [75] 周晶, 季建清, DEINO A, 等, 2013. (极)年轻火山岩激光熔蚀40Ar/39Ar定年[J]. 岩石学报, 29(8): 2811-2825.
    [76] 朱照宇, 徐义芳, 文启忠, 等, 2001. 华南雷州半岛第四纪多旋回火山岩-红土系列的层序与年代[J]. 第四纪研究, 21(3): 270-276.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  775
  • HTML全文浏览量:  199
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-07-05
  • 录用日期:  2023-07-17

目录

/

返回文章
返回