Debris flow hazard analysis before and after improvement of Hanjia gully control engineering at the source area of the Fujiang River
-
摘要: 为了降低涪江源区左岸韩家沟泥石流的危害,文章采用遥感解译、野外调查、FLO-2D数值模拟等手段,查清了韩家沟泥石流特征及其防治现状,认为现有防治工程不能满足防灾需求,并据此提出改进的防治工程,对不同降雨频率下防治工程改进前后的泥石流危险性进行了研究,并分析改进防治工程的有效性。结果表明:韩家沟位于“8·8”九寨沟地震扰动区,震后泥石流物源丰富,导致每逢强降雨时泥石流频发。在10年一遇降雨频率下,丰河村及平松路均处于低危险区,现有防治工程可有效防治泥石流灾害;在50年一遇降雨频率下,丰河村处于泥石流高危险区,泥石流冲出排导槽,冲毁平松路,现有防治工程不能满足要求。采用多级拦挡坝、排导槽截弯取直等改进的防治工程后,可有效预防泥石流对沟口下方承灾体的损害,泥石流堆积方量减少50.2%,堆积面积减少86%,高危险区均位于排导槽内,治理效果显著。Abstract:
Objective Debris flow from the Hanjia gully develops on the left bank of the source area of the Fujiang River, Fenghe Village, Xiaohe Town, Songpan County, China. In recent years, debris flows have occurred frequently, and the largest debris flow occurred in August 2022, which seriously threatened the lives and properties of villagers in the Hanjia gully. Existing prevention and control engineering methods have decreased in effectiveness or even become ineffective. Currently, researchers have set a variety of extreme rainfall conditions and used FLO-2D to analyze the hazards of debris flow, based on which the governance effect of debris flow prevention and control engineering can be evaluated. However, there are few reports on how to improve the prevention and control engineering and evaluate the effect of the improved prevention and control engineering when the existing prevention and control engineering is ineffective. Methods To reduce damage to the Hanjia gully, the characteristics as well as prevention and control status of the debris flow in/from this gully were determined using remote sensing interpretation, field investigation, and FLO-2D numerical simulation; subsequently, improved prevention and control engineering was proposed. The hazard of debris flow before and after the improvements in prevention and control engineering under different rainfall frequencies were studied to analyze the effectiveness of the improved prevention and control engineering. Results The results show that the Hanjia gully is located in the "8.8" Jiuzhaigou earthquake disturbance area, the static reserves of post-earthquake landslides and collapses are about 49.79 × 104 m3, and the debris flow sources are abundant, which leads to frequent debris flow during heavy rainfall. The high-hazard area is concentrated in the No. 1 retaining dam, and Fenghe Village and Pingsong Highway are in the low-hazard area under a rainfall event occurring every 10 years, and the existing prevention and control engineering can effectively prevent the debris flow disaster. Under a rainfall event occurring once in 50 years, Fenghe Village is in the high-hazard area of debris flow. The debris flow rushes out of the drainage channel and destroys the Pingsong Highway. The maximum mud depth in the accumulation area increases from 1.41 m to 3.14 m, the maximum velocity increases from 2.4 m/s to 3.65 m/s, and the accumulation area increases from 0.28 × 104 m2 to 5.41 × 104 m2. However, the existing prevention and control engineering methods cannot meet these requirements. After adopting improved prevention and control engineering, such as multistage retaining dams and cutting and straightening of drainage channels, the flow velocity of the debris flow in front of the two additional retaining dams becomes lower than that before the improvement, and the depth of mud in front of the additional retaining dams becomes higher than that before the improvement. The maximum velocity of the debris flow within 100 m of Dam No. 3 decreases by 29%, and the maximum mud depth increases by 413%. The maximum flow velocity in the first 100 m of Dam No. 2 decreases by 21%, the maximum mud depth increases by 175%, the maximum mud depth in the accumulation area is 3.9 m, and the maximum flow velocity is 3.4 m/s. The accumulation volume of debris flows is reduced by 50.2%, and the accumulation area is reduced by 86%. Conclusion Improved prevention and control engineering can effectively reduce the solid mass of debris flows and guide debris flow to discharge along drainage channels. The high-hazard area of the debris flow is concentrated in the drainage channel, and the control effect of the debris flow is remarkable. Significance The research results provide a scientific method for evaluating the effectiveness of debris-flow control engineering improvements and offer technical support for local debris-flow early warning systems. -
0. 引言
作为衔接盆缘隆起区与沉积盆地的纽带,陆源碎屑岩中的碎屑颗粒记录了从源区剥蚀到沉积物搬运、沉积物卸载等一系列地质过程中丰富的地质信息。自Dickinson[1]建立了碎屑颗粒组分与源区构造背景的关系判别图解之后,碎屑颗粒在分析物源区地体岩石学类型、反演隆起区地质演化等方面的独特意义已成为地学界的共识[2~3]。
盆山格局建立、盆地边缘的界定是研究低级勘探区含油气系统的必备基础工作之一。柴达木盆地东北缘德令哈周边地区上古生界露头出露不多,后期剥蚀、改造强烈,仅有的几个剖面地层序列极不完整,与上下岩层多为断层接触;地层平面展布分块性强,埋藏厚度大,地震资料识别精度不足,原始地层厚度及展布未知,勘探条件“先天不足”。在这种无法获得详尽地层、沉积格架资料的低勘探区,常规沉积-古地理研究手段难以复原沉积期的古地理格局,粗陆源碎屑岩岩石碎屑颗粒组成及垂向演化成为根据极少露头反演物源区所经历的构造-岩浆-热事件的最直接手段,进而可从盆地周缘不同构造带或地质体地质演化史中构造-岩浆-热事件类型、期次、年限的差异性对物源区构造属性与演化进行推断,最终确定源区位置,建立沉积期的盆山关系并复原构造-古地理格局。
1. 区域地质背景
研究区位于青海省海西蒙古族自治州首府德令哈周边,构造上属柴北缘块断带东缘,从大地构造位置上看,研究区夹持在柴达木地块与祁连褶皱带之间,由柴北缘构造带(包括鱼卡河—沙柳河高压—超高压变质带及滩间山岛弧构造带)、欧龙布鲁克微地块、宗务隆构造带3个构造单元组成(见图 1)。
鱼卡—沙柳河构造带于距今800~900 Ma发生裂解[4~8],随后形成成熟洋盆;不晚于距今540 Ma[9]鱼卡—沙柳河洋开始俯冲,滩间山岛弧地体及弧后盆地形成;距今500~465 Ma[5]柴达木地块与滩间山岛弧地体发生陆-弧碰撞,随后在距今465~435 Ma[5]柴达木地块-滩间山岛弧地体-欧龙布鲁克地块发生“陆-弧-陆”碰撞;后碰撞伸展开始于距今435~400 Ma[5],加里东运动结束,研究区进入海西—早印支期构造旋回。北部土尔垦大坂—宗务隆—青海南山构造带伸展开始于距今400 Ma左右[8, 10],裂陷槽内发育了泥盆系鱼北沟群(D1-3y)滨浅海相夹中酸性火山岩的碎屑岩-碳酸盐岩沉积;同期,拼贴到一起的柴北缘加里东期“陆-弧-陆”碰撞造山带及欧龙布鲁克地块发育泥盆系牦牛山组(D1-3m)陆相、滨海相砂砾岩夹火山岩、火山碎屑岩建造。石炭系—下二叠统沉积建造类型差异不大,以滨海相陆源碎屑岩与碳酸盐岩混合沉积发育为主要特点。石炭系自下而上发育下石炭统城墙沟组(下部砂砾岩段,上部碳酸盐岩段)、怀头他拉组(下部砂砾岩段,上部碳酸盐岩段),上石炭统克鲁克组(夹煤层泥页岩段,灰泥互层段,砂砾岩与泥岩、灰岩互层段,灰泥互层段),扎布萨尕秀组下段(砂砾岩与灰岩、泥岩互层段)(见图 1)。
柴达木盆地东北缘德令哈地区晚古生代海侵来自北部土尔垦大坂—宗务隆海槽已无争议。现在的问题是:上古生界累计厚度达千米的砂砾岩物源区在哪?物源区何种构造属性?柴达木海盆与德令哈海盆是否发育统一的沉积体系?晚古生代,柴达木海盆与德令哈海盆界限在哪?马寅生等[11]给出的石炭系残余地层厚度图中,鱼卡河—沙柳河高压—超高压变质带及周边地区残余地层厚度极低与晚古生代沉积格局是何种关系?鱼卡—沙柳河加里东期造山带如何消亡,造山带存在多久?这些问题的解答均与上古生界砂砾岩物源区分析有关。
2. 采样位置与研究方法
柴东北缘德令哈地区上古生界露头在研究区主要山系均有出露,本次研究选取城墙沟、石灰沟、旺尕秀及扎布萨尕秀4个剖面,另外加上石灰沟地区的4口钻井岩心资料,开展地层、沉积研究工作并进行采样,采样点位置及各剖面采样层段见图 2。所选4个剖面是该区上古生界研究程度最高的剖面,也是泥盆系、石炭系—二叠系建组剖面。青海省地质调查局、中石油青海分公司、中国地质科学院等单位对这几个剖面开展了大量的生物地层和年代地层研究,生物资料丰富,各组、段界限清楚,岩性特征明显,已成为区域对比标准。
图 2 柴达木盆地东北缘地质简图(据文献[4]简化)Figure 2. Geological sketch map of northeastern Qaidam basin首先,通过野外工作对所选露头剖面、钻井岩心进行详细观察与实测,依据区调报告给出的古生物资料及岩性组合特征进行地层划分与对比,并确定不同剖面、不同层段的上下关系。其次,选取典型剖面砂砾岩段进行系统样品采集,样品采集过程中确保各采样露头、不同组段砂砾岩垂向上有足够样品控制,在组、段界限或砂砾岩相序变化界面加密采样。采样层位包括泥盆系牦牛山组,下石炭统城墙沟组、怀头他拉组,上石炭统—二叠系克鲁克组与扎布萨尕秀组,涵盖区内全部上古生界层段,共采集样品126件。室内碎屑成分统计采用点计法,详细标准与操作参见文献[3]。
3. 分析结果
研究区上古生界碎屑岩类型包括石英砂岩、长石岩屑砂岩、岩屑长石砂岩、岩屑石英砂岩和岩屑砂岩5类,砂砾岩碎屑颗粒中单晶石英(Q)与长石(F)加岩屑(R)的比值Q/(R+F)在1.89~3.74之间(见表 1,图 3,图 4)。石英砂岩占20%左右,绝大多数出现在克鲁克组(见图 3),其余层段碎屑岩岩屑、长石含量较高,总体表现出低成分成熟度的特点。长石平均含量为12%,以钾长石为主,部分样品呈现出斜长石含量优势,大多数样品或多或少含一定量的条纹长石与微斜长石。岩屑约占14%,种类复杂,以变质石英岩屑、花岗岩岩屑、安山岩岩屑为主,另可见少量燧石、砂岩与泥岩岩屑(见图 5)。
表 1 德令哈地区上古生界砂岩碎屑组分平均含量Table 1. The average detrial composition of Upper Paleozoic in Delingha area地层 碎屑组分平均含量/% 石英 长石 岩屑 岩浆岩岩屑 沉积岩岩屑 变质岩岩屑 牦牛山组 62.1 12.5 20.3 12.0 4.7 4.1 城墙沟组 68.3 20.4 8.5 1.5 4.9 2.9 怀头他拉组 63.3 18.2 14.4 1.2 6.5 6.7 克鲁克组 72.5 9.6 15.1 1.3 6.5 6.5 扎布萨尕秀组 76.1 7.6 13.5 5.3 1.9 6.3 图 3 柴北缘上古生界砂岩碎屑中石英(Qt)、长石(F)和岩屑(L)含量三角图以及柴北缘上古生界可能的物源区(据文献[1]修改)Figure 3. The Qt-F-L triangle plot of 126 Upper Paleozoic sandstone samples and the potential provenance in northern Qaidam自下而上,石英含量整体增大,长石和岩屑含量整体降低,岩浆岩岩屑与沉积岩岩屑变化趋势不明显,变质岩岩屑含量整体增高,但变化幅度并不十分明显,组内各类碎屑颗粒含量变化波动明显(见表 1,图 3,图 4)。总体来说,自下而上,成分成熟度具有略微增高的趋势。虽然岩屑含量整体减少,但变质岩岩屑比重明显增高,这与变质岩岩屑中的多晶石英岩屑稳定性略强于长石与其他类型岩屑有关。
需要特别指出的是,牦牛山组与城墙沟组虽然石英含量变化不大,但长石与岩屑含量变化趋势存在极大但不一致的变化。上覆城墙沟组较牦牛山组,长石含量增大65%左右,但岩屑含量却减少150%,岩浆岩岩屑由12%减少到1.5%,这种异常的变化趋势反映源区地体(岩片)组成发生事件性转变。考虑到城墙沟组底部碎屑岩与下伏牦牛山组碎屑岩为不整合接触,且德令哈地区石炭纪—泥盆纪之交沉积体系存在明显的向北退覆趋势,推测泥盆纪—石炭纪之交隆起区存在一期强烈的构造抬升事件,导致物源区构造岩片出露与剥蚀情况发生明显变化,该事件同时也造成德令哈地区发生强制海退。
从碎屑岩结构上来看,大部分样品分选、磨圆中等,整体体现中等或偏低的结构成熟度(见图 5),仅克鲁克组中存在分选、磨圆极好的砂岩。
4. 讨论
4.1 德令哈地区上古生界砂砾岩典型近物源沉积证据
野外及岩心观测发现,泥盆系牦牛山组砾岩中砾石颗粒极大,不分选、不磨圆,杂乱堆积,部分砾石垂直层面排列,下石炭统城墙沟组、怀头他拉组砂砾岩中尖棱角状杂乱堆积砾石亦屡见不鲜(见图 6a—6c),这皆是重力流沉积的典型证据。前人一直将克鲁克组砂砾岩看作无障壁海岸砂岩,但ZK1-1岩心中发现典型重力流证据——砾石杂乱堆积、部分砾石垂直层面排列(见图 6d)。牦牛山组磨拉石中直径达数十厘米的辉绿片岩、花岗片麻岩砾石的存在说明物源区就在附近。泥盆系及石炭系砂砾岩中重力流证据的普遍存在表明,泥盆纪—石炭纪德令哈地区的海相沉积体系属于近物源沉积,物源区位于研究区内或紧邻研究区。
4.2 柴北缘上古生界砂砾岩成分特征及物源区
泥盆系牦牛山组内见大量花岗片麻岩、辉绿片岩、石英岩、安山岩、白云岩等成分各异但成分成熟度极低的砾石,表明源区物质组成极为复杂。辉绿片岩等在极短搬运过程中即出现稳定性极差的砾石,也暗示物源区紧邻研究区。取自研究区内上古生界不同层段的砂砾岩碎屑颗粒Q/(R+F)值在1.89~3.74之间,呈现低成分成熟度特点,也客观佐证了研究区晚泥盆世—早二叠世各时期均属近物源沉积。Dickinson碎屑骨架三角图(见图 3)指示上古生界各组物源区均为造山带和稳定克拉通基底,由于北部土尔垦大坂—宗务隆地区晚古生代发生裂陷,故砂砾岩不可能来自宗务隆造山带,唯一可能是来自柴北缘鱼卡—沙柳河造山带。沉积特征及碎屑颗粒成分组成、结构的证据均表明,德令哈地区晚古生代物源区为柴北缘鱼卡—沙柳河加里东期造山带,德令哈海盆陆源碎屑沉积物属近物源堆积,在此背景下晚古生代发育自南向北展布的陆源碎屑海岸-碳酸盐岩台地混积陆表海沉积体系(见图 7)。
图 7 柴北缘地区晚古生代构造-古地理剖面简图[1]Figure 7. The paleostructure-paleogeographic sketch map of Late Paleozoic in northern Qaidam4.3 鱼卡—沙柳河加里东期造山带的存在时限
古生物资料表明,扎布萨尕秀组砂砾岩段沉积时间为早二叠世,该组碎屑岩的物源区依旧为造山带(见图 3)。这意味着,柴北缘鱼卡—沙柳河加里东期造山带直至距今294~270 Ma(早二叠世)依旧向德令哈陆表海盆中供给碎屑物质,鱼卡—沙柳河造山带的存在一直持续到距今294~270 Ma。由于扎布萨尕秀组之上的古生界全部遭受剥蚀,柴北缘造山带的确切存在上限未知,但确定不会晚于距今294~270 Ma。以距今465 Ma左右陆(柴达木地块)—弧(滩间山岛弧)碰撞开始时间作为该造山带的隆升起始时限,该造山带至少存在了195 Ma,包括465~430 Ma(430 Ma为后碰撞伸展开始时限[5])山体隆升与430~270 Ma的山体剥蚀阶段。山体隆升持续了约35 Ma,山体剥蚀时间超过160 Ma,具快速隆升、缓慢剥蚀的特点。
4.4 德令哈海盆晚古生代盆山格局
关于柴达木周边地区加里东运动—海西运动转换的地质记录及晚古生代大地构造背景,前人已有大量论述[12~14]。早期的构造-古地理研究中,前人一致将柴北缘构造带视为晚古生代柴达木海盆的一部分[15~16]。本次对德令哈海盆晚古生代物源区、鱼卡—沙柳河加里东期造山带存在时限的论证表明,泥盆纪—早二叠世柴北缘构造带一直存在,晚古生代德令哈地区盆山格局为“南山-北海”,海侵自北向南,发育南北向展布沉积体系。由于毗邻缝合带,鱼卡河—沙柳河高压—超高压变质带成为柴北缘构造带隆升幅度最大的地区,其周边地带上古生界残余厚度极低与接受沉积晚(或未接受沉积)导致的原始沉积厚度低存在一定关系。
4.5 晚古生代柴达木海盆与德令哈海盆的关系
虽然二者同处于宗务隆(北)—兴海(东)—昆仑(南)特提斯海域之中,且柴达木海盆与德令哈海盆晚古生代三级海平面变化曲线完全可以对比(据陈世悦,2012,2013;内部汇报),但是,由于鱼卡—沙柳河加里东期造山带在泥盆纪—早二叠世的持续存在,柴达木海盆与德令哈海盆是2个独立的海盆,发育展布方向完全相反的沉积体系,以柴北缘构造带为中心,呈“镜像”关系。德令哈地区上古生界含油气系统的勘探过程中,应将鱼卡河—沙柳河高压—超高压变质带视为勘探边界。
5. 结论
研究区上古生界砂砾岩碎屑颗粒Q/(R+F)值在1.89~3.74之间,具有成分成熟度低的特点,垂向上碎屑颗粒成分成熟度略微增高。碎屑颗粒结构以中等分选、磨圆为主,整体为中等或偏低的结构成熟度。
上古生界各组物源区均为造山带或稳定克拉通基底。柴东北缘地区晚古生代物源区为鱼卡—沙柳河加里东期造山带,德令哈海盆陆源碎屑沉积物属近物源沉积。该造山带至少存在了195 Ma,包括距今465~430 Ma的山体隆升与距今430~270 Ma的山体剥蚀阶段。
由于鱼卡—沙柳河加里东期造山带的持续存在,柴达木海盆与德令哈海盆是2个独立海盆,发育展布方向完全相反的沉积体系。德令哈地区上古生界含油气系统的勘探应将鱼卡河—沙柳河高压—超高压变质带视为勘探边界。
-
图 2 韩家沟泥石流流域崩滑体分布特征及“8·19”泥石流遗迹
a—韩家沟泥石流流域遥感影像及崩滑体分布;b—泥石流堆积区;c—泥石流淤埋公路;d—泥石流冲毁农田;e—排导槽拐弯处最高泥位;f—泥石流冲上排导槽;g—沟口拦挡坝淤满泥石流物质
Figure 2. Distribution characteristics of collapses and landslides and remains of the "8·19" debris flow in Hanjia gully debris flow watershed
(a) Remote sensing image and distribution of collapses and landslides in Hanjia Gully debris flow watershed; (b) Debris flow accumulation area; (c) Debris flow burying the highway; (d) Debris flow that washed away farmland; (e) The highest mud position at the bend of the drainage channel; (f) Debris flow that washed up the drainage channel; (g) The retaining dam at the mouth of the gully was filled with debris flow material
图 6 10年一遇降雨频率下不同防治工程的泥石流泥深与流速
a—现有防治工程下泥深;b—现有防治工程下流速;c—防治工程改进后泥深;d—防治工程改进后流速
Figure 6. Mud depth and velocity of debris flow in different control engineering conditions under 10-year rainfall frequency
(a) Mud depth of debris flow under existing control engineering conditions; (b) Velocity of debris flow under existing control engineering conditions; (c) Mud depth of debris flow after improvement of control engineering; (d) Velocity of debris flow after improvement of control engineering
图 7 50年一遇降雨频率下不同防治工程的泥石流泥深与流速
a—现有防治工程下泥深;b—现有防治工程下流速;c—防治工程改进后流速;d—防治工程改进后泥深
Figure 7. Mud depth and velocity of debris flow in different control engineering conditions under 50-year rainfall frequency
(a) Mud depth of debris flow under existing control engineering conditions; (b) Velocity of debris flow under existing control engineering conditions; (c) Velocity of debris flow after improvement in control engineering; (d) Mud depth of debris flow after improvement in control engineering
表 1 韩家沟流域崩滑体体积
Table 1. Static reserves of slumped masses in the Hanjia gully watershed
编号 崩滑体面积/×104 m2 体积/×104 m3 编号 崩滑体面积/×104 m2 体积/×104 m3 N1 2.29 6.66 S4 1.60 4.74 N2 0.69 2.13 S5 0.76 2.33 N3 0.24 0.78 S6 3.17 9.08 N4 0.63 1.95 W1 0.12 0.40 N5 0.26 0.84 W2 0.31 0.99 N6 0.50 1.57 W3 0.24 0.78 S1 0.17 0.56 W4 0.92 2.80 S2 3.69 10.49 W5 0.26 0.84 S3 0.62 1.92 W6 0.29 0.93 崩滑体总计 49.79 注:N、S、W分别为韩家沟流域内北侧、南侧、西侧 表 2 不同防治工程下的泥石流模拟结果
Table 2. Simulation results of debris flow under different control engineering conditions
降雨频率 模拟情况 拦挡坝数
量/座坝前100 m内最大
泥深/m坝前100 m内最大
流速/(m/s)堆积面积/
×104 m2泥石流堆积方量/
×104 m3威胁民宅面积/
×104 m210年一遇 ⅠP10 1 4.07(1号) 1.98(1号) 0.28 0.10 0 ⅡP10 3 1.05(1号)5.23(2号)6.2(3号) 1.40(1号)2.07(2号)2.04(3号) 0 0 0 50年一遇 ⅠP50 1 8.85(1号) 2.3(1号) 5.41 2.15 0.47 ⅡP50 3 6.17(1号)6.07(2号)6.88(3号) 2.26(1号)2.56(2号)2.61(3号) 0.76 1.07 0 注:1号为原有拦挡坝;2号、3号为新建拦挡坝 表 3 不同防治工程下堆积区的危险区面积、最大泥深与流速模拟结果
Table 3. Simulation results of hazardous area, maximum mud depth and velocity of accumulation area under different control engineering conditions
降雨频率 模拟情况 危险区面积/×104 m2 最大流速/(m/s) 最大泥深/m 高危险 中危险 低危险 10年一遇 ⅠP10 0 0.11 0.17 2.40 1.41 ⅡP10 0 0 0 0 0 50年一遇 ⅠP50 0.44 1.43 3.54 3.65 3.14 ⅡP50 0.35 0.12 0.29 3.40 3.90 表 4 泥石流危险性分区标准
Table 4. Debris flow hazard zoning standards
危险性 堆积深度/m 逻辑关系 堆积深度与流速乘积 高 H≥1.5 OR VH≥1.5 中 0.5<H<1.5 AND 0.5<VH<1.5 低 0.01≤H≤0.5 AND 0.1≤VH≤0.5 表 5 不同防治工程下泥石流危险性分区统计
Table 5. Statistics of hazard zones of debris flow under different control engineering conditions
降雨频率 模拟情况 危险区总面积
/×104 m2高危险区 中危险区 低危险区 面积
/×104 m2占总面积比例/% 面积
/×104 m2占总面积比例
/%面积
/×104 m2占总面积比例
/%10年一遇 ⅠP10 29.22 0.64 2.19 1.91 6.54 26.67 91.27 ⅡP10 28.79 0.62 2.15 1.83 6.36 26.34 91.49 50年一遇 ⅠP50 36.08 1.83 5.07 5.01 13.89 29.24 81.04 ⅡP50 31.56 1.99 6.31 3.99 12.64 25.58 81.05 表 6 韩家沟泥石流数值模拟精度
Table 6. Numerical simulation accuracy of Hanjia gully debris flow
沟名 堆积扇面积/×104 m2 $A_{\mathrm{c}} $ Sa Sn S0 韩家沟 5.15 5.41 4.57 75 -
[1] BONIELLO M A, CALLIGARIS C, LAPASIN R, et al., 2010. Rheo-logical investigation and simulation of a debris-flow event in the Fella watershed[J]. Natural Hazards and Earth System Sciences, 10(5): 989-997. doi: 10.5194/nhess-10-989-2010 [2] BERTOLO P, WIECZOREK G F, 2005. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA[J]. Natural Hazards and Earth System Sciences, 5(6): 993-1001. doi: 10.5194/nhess-5-993-2005 [3] BOCCALI C, CALLIGARIS C, ZINI L, et al. , 2015. Comparison of scenarios after ten years: The influence of input parameters in Val Canale valley (Friuli Venezia Giulia, Italy)[M]//LOLLINO G, GIORDAN D, CROSTA G B, et al. Engineering geology for society and territory - volume 2: Landslide processes. Cham: Springer: 525-529. [4] CHANG M, LIU Y, ZHOU C, et al., 2020. Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China[J]. Engineering Geology, 275: 105733. doi: 10.1016/j.enggeo.2020.105733 [5] CHEN P Y, YU H M, LIU Y, et al., 2013. Evaluation of debris flow risk based on independent information data fluctuation weighting method[J]. Rock and Soil Mechanics, 34(2): 449-454. (in Chinese with English abstract [6] CONG K, LI R D, BI Y H, 2019. Benefit evaluation of debris flow control engineering based on the FLO-2D model[J]. Northwestern Geology, 52(3): 209-216. (in Chinese with English abstract [7] CHEN H, DONG T X, LI Y, et al., 2020. Geomorphological characteristics and its response to fault activity in the upper reaches of the Fujiang Drainge Basin, China[J]. Mountain Research, 38(4): 542-551. (in Chinese with English abstract [8] CAO P, HOU S S, CHEN L, et al., 2021. Risk assessment of mass debris flow based on numerical simulation: An example from the Malu River Basin in Min County[J]. The Chinese Journal of Geological Hazard and Control, 32(2): 100-109. (in Chinese with English abstract [9] DU X J, SUN S Q, ZHAO Z, et al., 2016. Research on engineering control effect on Hongchun Gully debris based on FLO-2D model[J]. Earth and Environment, 44(3): 376-381. (in Chinese with English abstract [10] FU G C, LV T Y, SUN D X, et al., 2017. Seismogenic structure of the MS7.0 earthquake on August 8, 2017 in Jiuzhaigou, Sichuan[J]. Journal of Geomechanics, 23(6): 799-809. (in Chinese with English abstract [11] FANG Q S, TANG C, WANG Y, et al., 2016. A calculation method for predicting dynamic reserve and the total amount of material source of the debris flows in the Wenchuan meizoseismal area[J]. Journal of Disaster Prevention and Mitigation Engineering, 36(6): 1008-1014. (in Chinese with English abstract [12] GREGORETTI C, STANCANELLI L M, BERNARD M, et al., 2019. Relevance of erosion processes when modelling in-channel gravel debris flows for efficient hazard assessment[J]. Journal of Hydrology, 568: 575-591. doi: 10.1016/j.jhydrol.2018.10.001 [13] LIU X L, TANG C, FANG Q S, et al., 2017. Hazard assessment of dam-breaking debris flow based on numerical simulation[J]. Journal of Sediment Research, 42(6): 28-34. (in Chinese with English abstract [14] LI B X, CAI Q, SONG J, et al., 2022. Risk assessment of debris flow hazard based on FLO-2D: A case study of debris flow in Maiduo Gully[J]. Journal of Natural Disasters, 31(4): 256-265. (in Chinese with English abstract [15] MA S Q, YANG W M, ZHANG C S, et al., 2022. Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou city[J]. Journal of Geomechanics, 28(6): 1059-1070. (in Chinese with English abstract [16] Ministry of Land and Resources of the People's Republic of China, 2006. Specification of geological investigation for debris flow stabilization: DZ/T 0220-2006[S]. Beijing: Standards Press of China. (in Chinese) [17] O’BRIEN J S, 2009. FLO-2D Reference manual version 2009[R]. Arizona: FLO -2D software, Inc. [18] O’BRIEN J S, JULIEN P Y, FULLERTON W T, 1993. Two-dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering, 119(2): 244-261. doi: 10.1061/(ASCE)0733-9429(1993)119:2(244) [19] SHANG H, WANG M X, LUO D H, et al., 2019. Single gully debris flow hazard assessment based on function assignment model and fuzzy comprehensive evaluation method[J]. The Chinese Journal of Geological Hazard and Control, 30(1): 61-69. (in Chinese with English abstract [20] SHAO Y X, JI Y, YAN B Q, et al., 2021. Daqinggou debris flow hazard investigation and evaluation in Renhe, Panzhihua of Sichuan[J]. Journal of Agricultural Catastrophology, 11(5): 145-150. (in Chinese with English abstract [21] TAN C, CHEN J P, LI H Z, et al., 2012. Application of weighted distance discriminant analysis in debris flow risk assessment[J]. Journal of Jilin University (Earth Science Edition), 42(6): 1847-1852. (in Chinese with English abstract [22] TANG C, ZHOU J Q, ZHU J, et al., 1994. A study on the risk zoning of debris flow on alluvial fans by applying technology of numerical simulation[J]. Journal of Catastrophology, 9(4): 7-13. (in Chinese with English abstract [23] TANG H, TANG C, CHEN M, et al., 2019. Numerical simulation and analysis of debris flow prevention engineering effects in strong earthquake area[J]. Bulletin of Soil and Water Conservation, 39(4): 196-201. (in Chinese with English abstract [24] WEI B B, ZHAO Q H, HAN G, et al., 2013. Grey correlation method based hazard assessment of debris flow in quake-hit area-taking debris flows in Beichuan as an example[J]. Journal of Engineering Geology, 21(4): 525-533. (in Chinese with English abstract [25] WU Y H, LIU K F, CHEN Y C, 2013. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study[J]. Journal of Mountain Science, 10(2): 293-304. doi: 10.1007/s11629-013-2511-1 [26] WANG N N, TANG C, 2014. Numerical simulation of Huangyang Gully debris flow Longchi town Dujiangyan city based on FLO-2D[J]. Journal of Geological Hazards and Environment Preservation, 25(1): 107-112. (in Chinese with English abstract [27] WANG J, DING M T, HUANG Y, 2016. Debris flow motion feature and control measures of Lianhexi Valley based on FLO-2D[J]. Journal of Southwest University of Science and Technology, 31(2): 59-66. (in Chinese with English abstract [28] WANG G F, CHEN Z L, MAO J R, et al., 2020. Debris flow risk assessment in Bailong River Basin under different engineering scenarios and rainfall frequency conditions[J]. Journal of Shandong University of Science and Technology (Natural Science), 39(5): 30-40. (in Chinese with English abstract [29] WU J H, ZHANG C S, YANG W M, et al., 2022. Risk assessment of debris flow in Zhujiagully watershed based on entropy weight coefficient of variation fusion algorithm and FLO-2D[J]. Journal of Natural Disasters, 31(1): 81-91. (in Chinese with English abstract [30] WANG Y Y, ZHAN Q D, HAN W L, et al., 2003. Stress-strain properties of viscous debris flow and determination of volocity parameter[J]. The Chinese Journal of Geological Hazard and Control, 14(1): 9-13. (in Chinese with English abstract [31] YANG H L, FAN X Y, JIANG Y J, 2017. Analysis of engineering treatment effect of debris flow based on FLO-2D: Case of Yindongzi gully in Dujiangyan city[J]. Yangtze River, 48(17): 66-71, 95. (in Chinese with English abstract [32] YAO X, ZHOU Z K, LI L J, et al., 2017. InSAR co-seismic deformation of 2017 MS7.0 Jiuzhaigou earthquake and discussions on seismogenic tectonics[J]. Journal of Geomechanics, 23(4): 507-514. (in Chinese with English abstract [33] ZHANG C S, ZHANG Y C, MA Y S, 2003. Regional dangerous on the geological hazards of collapse, landslide and debris flow in the upper reaches of the Yellow River[J]. Journal of Geomechanics, 9(2): 143-153. (in Chinese with English abstract [34] ZHANG H W, LIU F Z, WANG J C, et al., 2022. Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation[J]. Journal of Geomechanics, 28(2): 306-318. (in Chinese with English abstract [35] ZHANG F X, ZHANG L Q, ZHOU J, et al., 2019. Risk assessment of debris flow in Ruoru Village, Tibet based on FLO-2D[J]. Journal of Water Resources and Water Engineering, 30(5): 95-102. (in Chinese with English abstract [36] ZHANG X Z, TIE Y B, LI G H, et al., 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS6.8 Luding earthquake[J]. Journal of Geomechanics, 28(6): 1035-1045. (in Chinese with English abstract [37] 丛凯,李瑞冬,毕远宏,2019. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质,52(3):209-216. [38] 陈浩,董廷旭,李勇,等,2020. 涪江上游流域地貌特征及其对断裂活动性的响应[J]. 山地学报,38(4):542-551. [39] 陈鹏宇,余宏明,刘勇,等,2013. 基于独立信息数据波动赋权的泥石流危险度评价[J]. 岩土力学,34(02):449-454. [40] 曹鹏,侯圣山,陈亮,等,2021. 基于数值模拟的群发性泥石流危险性评价:以甘肃岷县麻路河流域为例[J]. 中国地质灾害与防治学报,32(2):100-109. [41] 杜雪剑,孙书勤,赵峥,等,2016. 基于FLO-2D模型的红椿沟泥石流工程治理效果研究[J]. 地球与环境,44(3):376-381. [42] 付国超,吕同艳,孙东霞,等,2017. 2017年8月8日四川九寨沟7.0级地震发震构造浅析[J]. 地质力学学报,23(6):799-809. [43] 方群生,唐川,王毅,等,2016. 汶川极震区泥石流动储量与总物源量计算方法研究[J]. 防灾减灾工程学报,36(6):1008-1014. [44] 高士麟,2021. 四川省小流域设计洪水分析及应用[J]. 四川建筑,41(5):230-233. doi: 10.3969/j.issn.1007-8983.2021.05.075 [45] 刘鑫磊,唐川,方群生,等,2017. 基于数值模拟的溃决型泥石流危险性评价研究[J]. 泥沙研究,42(6):28-34. [46] 李宝幸,蔡强,宋军,等,2022. 基于FLO-2D的泥石流灾害风险评价:以麦多沟泥石流为例[J]. 自然灾害学报,31(4):256-265. [47] 马思琦,杨为民,张春山,等,2022. 兰州市寺儿沟泥石流物源特征及其危险性分析[J]. 地质力学学报,28(6):1059-1070. doi: 10.12090/j.issn.1006-6616.20222829 [48] 尚慧,王明轩,罗东海,等,2019. 基于函数赋值模型与模糊综合评判法的单沟泥石流危险性评价[J]. 中国地质灾害与防治学报,30(1):61-69. [49] 邵玉祥,计扬,严步青,等,2021. 四川攀枝花仁和区大箐沟泥石流调查及危险性评价[J]. 农业灾害研究,11(5):145-150. doi: 10.3969/j.issn.2095-3305.2021.05.058 [50] 唐川,周钜乾,朱静,等,1994. 泥石流堆积扇危险度分区评价的数值模拟研究[J]. 灾害学,9(4):7-13. [51] 唐海,唐川,陈明,等,2019. 强震区泥石流防治工程效果数值模拟分析[J]. 水土保持通报,39(4):196-201. [52] 谭春,陈剑平,李会中,等,2012. 加权距离判别法在泥石流危险度评价中的应用[J]. 吉林大学学报(地球科学版),42(06):1847-1852. [53] 魏斌斌,赵其华,韩刚,等,2013. 基于灰色关联法的地震灾区泥石流危险性评价:以北川县泥石流为例[J]. 工程地质学报,21(4):525-533. doi: 10.3969/j.issn.1004-9665.2013.04.007 [54] 王纳纳,唐川,2014. 基于FLO-2D的都江堰市龙池镇黄央沟泥石流数值模拟[J]. 地质灾害与环境保护,25(1):107-112. doi: 10.3969/j.issn.1006-4362.2014.01.020 [55] 王骏,丁明涛,黄英,2016. 基于FLO-2D的联合溪沟泥石流运动特征及防治对策[J]. 西南科技大学学报,31(2):59-66. doi: 10.3969/j.issn.1671-8755.2016.02.012 [56] 王高峰,陈宗良,毛佳睿,等,2020. 不同工程情景和降雨频率工况下白龙江流域泥石流危险性评价[J]. 山东科技大学学报(自然科学版),39(5):30-40. [57] 吴季寰,张春山,杨为民,等,2022. 基于熵权变异系数融合算法和FLO-2D的朱家沟流域泥石流危险性评价[J]. 自然灾害学报,31(1):81-91. [58] 王裕宜,詹钱登,韩文亮,等,2003. 粘性泥石流体的应力应变特性和流速参数的确定[J]. 中国地质灾害与防治学报,14(1):9-13. doi: 10.3969/j.issn.1003-8035.2003.01.002 [59] 杨海龙,樊晓一,姜元俊,2017. 基于FLO-2D的泥石流工程治理效果分析:以都江堰银洞子沟泥石流为例[J]. 人民长江,48(17):66-71,95. [60] 姚鑫,周振凯,李凌婧,等,2017. 2017年四川九寨沟MS7.0地震InSAR同震形变场及发震构造探讨[J]. 地质力学学报,23(4):507-514. doi: 10.3969/j.issn.1006-6616.2017.04.001 [61] 张春山,张业成,马寅生,2003. 黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价[J]. 地质力学学报,9(2):143-153. doi: 10.3969/j.issn.1006-6616.2003.02.007 [62] 张浩韦,刘福臻,王军朝,等,2022. 基于FLO-2D数值模拟的工布江达县城泥石流灾害危险性评价[J]. 地质力学学报,28(2):306-318. [63] 张奋翔,张路青,周剑,等,2019. 基于FLO-2D的西藏若如村泥石流危险性分析[J]. 水资源与水工程学报,30(5):95-102. [64] 张宪政,铁永波,李光辉,等,2022. 四川泸定MS6.8级地震区湾东河流域泥石流活动性预测[J]. 地质力学学报,28(6):1035-1045. doi: 10.12090/j.issn.1006-6616.20222827 [65] 中华人民共和国国土资源部,2006. 泥石流灾害防治工程勘查规范:DZ/T 0220-2006[S]. 北京:中国标准出版社. -