留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAR影像的干旱区冲/洪积扇地貌面定量分期研究−以河西走廊西部沙漠区的疏勒河洪积扇为例

杨勇忠 任俊杰 李东臣

杨勇忠,任俊杰,李东臣,2023. 基于SAR影像的干旱区冲/洪积扇地貌面定量分期研究:以河西走廊西部沙漠区的疏勒河洪积扇为例[J]. 地质力学学报,29(6):842−855 doi: 10.12090/j.issn.1006-6616.2023080
引用本文: 杨勇忠,任俊杰,李东臣,2023. 基于SAR影像的干旱区冲/洪积扇地貌面定量分期研究:以河西走廊西部沙漠区的疏勒河洪积扇为例[J]. 地质力学学报,29(6):842−855 doi: 10.12090/j.issn.1006-6616.2023080
LI X,ZHANG Z Y,LI H Y,et al.,2023. 40Ar/39Ar ages of Quaternary volcanic rocks from the midwest of the Leizhou Peninsula, and their geologic significance[J]. Journal of Geomechanics,29(4):512−521 doi: 10.12090/j.issn.1006-6616.2023098
Citation: YANG Y Z,REN J J,LI D C,2023. Quantitative staging of alluvial fan geomorphic surfaces in arid areas based on SAR imagery: A case study of the Shule River alluvial fan in the western desert region of the Hexi Corridor[J]. Journal of Geomechanics,29(6):842−855 doi: 10.12090/j.issn.1006-6616.2023080

基于SAR影像的干旱区冲/洪积扇地貌面定量分期研究−以河西走廊西部沙漠区的疏勒河洪积扇为例

doi: 10.12090/j.issn.1006-6616.2023080
基金项目: 国家自然科学基金项目(U2139201,41941016,U1839204);中国科学院重点部署项目(KFZD-SW-422);应急管理部国家自然灾害防治研究院基本科研业务专项(ZDJ2017-24)
详细信息
    作者简介:

    杨勇忠(1999—),男,在读硕士,主要从事遥感与定量地貌学方面科研工作。E-mail:1450844547@qq.com

    通讯作者:

    任俊杰(1979—),男,博士,研究员,主要从事活动构造、构造地貌及地震危险性分析方面的基础理论与应用研究。E-mail:renjunjie@gmail.com

  • 中图分类号: P931.2

Quantitative staging of alluvial fan geomorphic surfaces in arid areas based on SAR imagery: A case study of the Shule River alluvial fan in the western desert region of the Hexi Corridor

Funds: This research is financially supported by the National Natural Science Foundation of China (Grants No. U2139201, 41941016, and U1839204), the Key Program of the Chinese Academy of Sciences (Grant No. KFZD-SW-422), and the Research Fund of the National Institute of Natural Hazards, Ministry of Emergency Management of China (Grant No. ZDJ2017-24).
  • 摘要: 河流作用形成的洪积扇和河流阶地可以提供过去构造活动、气候变化和地貌演变过程的有效记录;而准确划分洪积扇地貌面的期次是开展环境变化及构造活动定量研究的基础。已有研究往往利用L波段数据SAR后向散射系数值作为地貌粗糙度替代参数,进行地貌面定量分期,但并未考虑不同时间数据源对分期结果的影响。以疏勒河洪积扇为研究对象,通过分析多时相L波段SAR数据后验统计指标以及大气评估条件,确定最佳数据源,并运用最大似然分类法对后向散射强度值进行分类,以实现地貌面的定量分期。结果表明:使用分期后验统计指标作为选取最佳时像影像数据的标准,可以获得更好的分期结果;L波段HH单极化数据可得到较好的分期结果,与C波段数据相比,对于不同年龄地貌面的划分更具优势,且数据更易获取,具备自动化分期潜力;SAR影像质量以及分期结果与成像时大气条件密切相关,而与季节相关性不大,因此建议优先选择成像时地表含水量较低的影像,例如,高蒸发强度的夏季。文章提出的这套对遥感数据质量分析并进行地貌面分期的方法可用于完成干旱地区大尺度冲/洪积扇的快速定量分期,为构造和气候的研究提供有价值的信息。

     

  • 九岭地区位于九岭−鄣公山钨锡多金属成矿带的西段,是江西省重要的W–Sn–Cu–Mo–Li–Nb–Ta–U矿集区,已探明有色金属、稀有金属、贵金属和放射性矿产200余处。九岭地区的铀矿找矿工作成果丰硕,该区北部落实了修水铀矿化集中区,发现了董坑、保峰源、大椿、白土、洞下等铀矿床,矿化类型为碳硅泥岩型(赵凤民,2011);南部宜丰—奉新一带开展了放射性伽玛测量和铀矿普查,仅发现了洞上铀矿床和茅坪、东槽铀矿化点,矿化类型为花岗岩型硅质脉亚型,均分布在燕山期甘坊岩体内。已有研究集中在洞上铀矿床地质特征、矿化特征、矿化富集规律及控矿因素等方面,认为铀矿体定位在北北东向甘坊−兰溪硅化断裂内及其上下盘,赋矿围岩为中粗粒斑状黑(二)云母花岗岩(窦小平,2004窦小平等,2015),但产铀花岗岩的形成时代及成因尚不清楚。为此,文章在野外地质调查的基础上,对洞上铀矿床产铀花岗岩进行岩相学、年代学及岩石地球化学系统分析,并结合区域构造演化,探讨产铀花岗岩形成的构造背景与产铀潜力。

    九岭地区位于扬子板块东南缘江南造山带中段,基底地层为新元古界双桥山群浅变质岩,盖层为南华纪和震旦纪—中三叠世的海相沉积地层、白垩纪—古近纪陆相地层(王迪,2017;段政等,2019;图1)。其中,双桥山群(Pt13)广泛出露于九岭地区北部、西部和南部,是断陷环境中形成的海相泥砂质碎屑岩−火山碎屑岩−喷发熔岩组合(蒋少涌等,2015项新葵等,2015a2015b)。南华系(Nh1)—奥陶系(O)分布于北部(图1b),为一套连续的碳酸盐岩−硅质岩沉积组合,是海相沉积盖层。上三叠统(T3)为海陆交互相的含煤建造,下中侏罗统(J1-2)为河湖相沉积,上白垩统(K2)—新近系(N)为红色岩系,分布在西部和南部,是陆相沉积盖层。基底地层发生了褶皱作用,形成了九岭复式紧密线型褶皱,轴线呈近东西(北东东)向。断裂构造以近东西(北东东)向压扭性断裂和北东、北北东向走滑断裂为主,次为北西向、近南北向硅化断裂。岩浆岩以晋宁期中—酸性侵入岩和燕山期酸性侵入岩套、岩枝、岩脉为主,前者侵位于双桥山群中,形成了巨大的九岭岩基,整体呈近东西向展布,出露面积大于4000 km2,是华南最大的花岗质岩基之一,也是钨多金属矿化的赋矿围岩;后者侵位于九岭岩基或双桥山群中,规模大小不一,与北部钨−锡−铜矿化及南部铀−铌−钽−锂等金属成矿作用关系密切(蒋少涌等,2015张勇等,201720192020张勇,2018张达等,2021)。

    图  1  九岭地区大地构造位置及铀矿地质简图
    1—第四系;2—古近系;3—上白垩统;4—奥陶系;5—寒武系;6—下南华统;7—新元古界双桥山群;8—晋宁期花岗岩;9—燕山早期第一阶段花岗岩;10—燕山早期第二阶段花岗岩;11—燕山晚期花岗岩;12—细晶岩脉、花岗斑岩脉;13—推滑覆断层、剥离断层;14—断裂构造;15—不整合界线;16—地质界线;17—岩相界线;18—铀矿床及名称a—大地构造位置简图(张勇,2018);b—铀矿地质简图
    Figure  1.  Geotectonic location map and uranium geological map of Jiuling area
    (a) Geotectonic location map (Zhang, 2018); (b) Uranium geological map 1–Quaternary; 2–Paleogene; 3–Upper Cretaceous; 4–Ordovician; 5–Cambrian; 6–Lower Nanhuan System; 7–Neoproterozoic Shuangqiaoshan Group; 8–Granite of Jinning Period; 9–Granite of first stage in Early Yanshanian; 10–Granite of second stage in Early Yanshanian; 11–Granite of Late Yanshanian; 12–fine-grain dike or ranite-porphyry vein; 13–nappe structure; 14–fault structure; 15–unconformity; 16–geological boundary; 17–lithologic interface; 18–uranium deposit

    洞上铀矿床位于九岭地区南部燕山期甘坊岩体中部,主要受北北东向兰溪−甘坊硅化断裂控制(图1图2)。矿床内主要出露燕山早期中粗粒斑状黑云母花岗岩、中粗粒二云母花岗岩和燕山晚期细晶岩、细粒白云母花岗岩。兰溪−甘坊断裂斜贯该区,带内常见灰色—红褐色硅质−玉髓脉、硅化角砾岩、硅化碎裂岩等,上下盘次一级硅化断裂(裂隙)发育,多呈带组状。北北东向断裂控制着铀矿体的产状、规模、形态等。铀矿化产于中粗粒斑状黑(二)云母花岗岩中,硅化、赤铁矿化、黄铁矿化、萤石化等热液蚀变发育,地表常见钙铀云母、铜铀云母。铀矿石以沥青铀矿−硫化物型和沥青铀矿−萤石型为主。

    图  2  洞上地区铀矿地质简图(据周建廷等,2011;秦程,2018修编)
    1—新元古界双桥山群;2—晋宁期花岗闪长岩;3—晋宁期二长花岗岩;4—燕山早期第一阶段花岗岩;5—燕山早期第二阶段花岗岩;6—燕山晚期第一阶段花岗岩;7—细晶岩脉、花岗斑岩脉;8—断裂构造;9—地质界线、岩相界线;10—铀矿床及名称;11—取样位置及编号
    Figure  2.  Uranium geological map of Dongshang deposit(modified after Zhou et al., 2011; Qin, 2018
    1–Neoproterozoic Shuangqiaoshan Group; 2–granodiorite of Jinning Period; 3–monzonitic granite of Jinning Period; 4–granite of first stage in Early Yanshanian; 5–granite of second stage in Early Yanshanian; 6–granite of Late Yanshanian; 7–fine-grain dike or ranite-porphyry vein; 8–fault structure; 9–geological boundary or lithologic interface; 10–uranium deposit; 11–sampling point and number

    洞上产铀花岗岩采样位置见图2。LA–ICP–MS锆石和独居石U–Pb定年样品选自JL2020-7样品。在岩石学观察的基础上,选取新鲜样品(JL2020-6、JL2020-7、JL2020-8)进行全岩主微量元素及稀土元素分析。

    中粗粒斑状黑(二)云母花岗岩,呈灰白色至浅肉红色(图3a),似斑状结构,块状构造。矿物组成含量分别为石英(30%~35%)、钾长石(20%~35%)、斜长石(15%~30%)、黑云母(5%~15%)和白云母(0%~10%),副矿物有磷灰石、锆石、独居石等。镜下观察,具似斑状结构,斑晶为钾长石和石英。钾长石含量为10%~15%,呈宽板状,卡氏双晶及净边结构,大小(4~6)mm×(6~12)mm,以条纹长石、正长石为主;石英粒径为5 mm,部分可见裂纹(图3b)。基质为斜长石、微斜长石、石英、黑云母及白云母。斜长石呈半自形—自形柱状,以更 −钠长石为主,部分被白云母交代(图3c)。石英呈他形粒状,具有波状消光。黑云母呈板状,弱绿泥石化;白云母分为板状和细小针状、蠕虫状两期,可见绿泥石和白云母组成的黑云母假晶(图3d)。铀矿化部位常见赤铁矿化、硅化、水云母化、萤石化等热液蚀变(图3e、3f)。

    图  3  洞上产铀花岗岩岩石学特征
    Qtz—石英;Pl—斜长石;Ms—白云母;Chl—绿泥石;Kfs—钾长石a—浅肉红色中粗粒斑状黑(二)云母花岗岩;b—似斑状结构,图中石英斑晶超出视域(+);c—斜长石被白云母交代,绿泥石呈黑云母假晶(+);d—绿泥石和白云母组成黑云母的假晶(+);e—野外露头,发育钾长石化、褐铁矿化;f—岩石手标本,见钾长石化、水云母化
    Figure  3.  Petrological characteristics of the U-bearing granite in Dongshang deposit
    (a) medium-coarse biotite granite; (b) orphyritic texture (+); (c) muscovitize (+); (d) chloritization and muscovitize (+); (e) K-alferation and ferritization of geological outcrop; (f) K-alferation and hydromicazation of hand specimens

    主量元素检测采用四硼酸锂−偏硼酸锂混合熔剂,与样品混匀后在1150~1250℃下熔融并铸成玻璃熔片,借助岛津X荧光光谱仪进行测定。X光管最大电压40 kV,最大电流95 mA,利用康普顿射线为内标校正基体效应。各元素含量测量范围介于0.002%~99%之间。微量及稀土元素采用电感耦合等离子体质谱法测定,样品前处理方式为封闭溶矿,用氢氟酸、高氯酸、硝酸、盐酸等处理,检测仪器为美国PerkinElmer公司NexION2000B型电感耦合等离子体质谱仪,选择不同质核比的离子检测某个离子的强度,计算某种元素的含量。仪器主要性能(Li(7)≤3% RSD,Y(89)≤3% RSD,Tl(204)≤3% RSD),雾化气流量0.98 L/min,等离子体气流1.2 L/min,射频功率1200 W,用内标法进行校正。

    锆石制靶方法见宋彪等(2002)。锆石阴极发光图像拍摄和LA–ICP–MS锆石U–Pb同位素测定均在中国地质调查局铀矿地质重点实验室完成。借助New Wave 193 nm激光剥蚀系统和Thermo Fisher Neptune多接收等离子体质谱仪进行LA–ICP–MS分析,剥蚀孔径35 μm,剥蚀频率8 Hz,输出能量5 mJ,年龄外标为锆石GJ-1,元素含量外标为NIST610(肖志斌等,2017)。定年数据处理采用ICPMSDataCal 11.0(Liu et al.,20082010)进行。样品U-Pb年龄谐和图绘制和年龄加权平均计算通过Isoplot /Ex_ver3(Ludwig,2003)完成。

    独居石U–Pb年龄分析在东华理工大学核资源与环境国家重点实验室完成,借助GeoLasHD 193 nm激光剥蚀系统和7900 ICP–MS电感耦合等离子体质谱仪进行LA–ICP–MS分析,剥蚀孔径16 μm,剥蚀频率3 Hz,输出能量3 mJ,年龄外标为国际独居石TS-Mnz,元素含量外标为玻璃标准物质NIST610。定年数据处理采用ICPMSDataCal 11.0(Liu et al.,20082010)进行。样品U-Pb年龄谐和图绘制和年龄加权平均计算通过Isoplot /Ex_ver3(Ludwig,2003)完成。

    洞上产铀花岗岩样品(JL2020-7)中锆石呈无色透明或浅黄色,大部分晶型较好,短柱至长柱状,长90~285 μm,宽45~90 μm,长/宽比1∶2~1∶3,CL图像显示锆石韵律环带清晰(图4),具有核−边结构,为典型的岩浆结晶锆石(吴元保和郑永飞,2004)。

    图  4  洞上产铀花岗岩CL图像、测点位置及206Pb/238U视年龄值
    Figure  4.  CL images,analysis point and 206Pb/238U apparent ages of the U-bearing granite in Dongshang deposit

    文章对样品(JL2020-7)中28颗锆石进行了29个测点分析,结果列于表1。锆石中U含量为135×10−6~5890×10−6,Th含量为102×10−6~1980×10−6,Th/U=0.05~1.49(平均值0.53>0.3),属岩浆结晶锆石(吴元保和郑永飞,2004)。在206Pb/238U−207Pb/235U谐和图中,数据点大都落在谐和线上或靠近谐和线,下交点年龄为152±1 Ma(图5a)。其中19个206Pb/238U视年龄值介于154~150 Ma之间的测点加权平均年龄为152±1 Ma(MSWD=1.3;图5b),表明洞上产铀花岗岩形成于燕山早期(晚侏罗世)。

    表  1  洞上产铀花岗岩锆石LA–ICP–MS U–Pb定年分析结果
    Table  1.  Data of LA–ICP–MS zircon U–Pb dating of the U-bearing granite in Dongshang deposit
    测点号含量/(×10−6同位素比值年龄/Ma
    PbThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
    JL2020-7-02162376910.05110.00100.17150.00350.02440.00022444016131551
    JL2020-7-033953158900.05070.00030.16760.00130.02400.00012271615711531
    JL2020-7-055879221400.05200.00050.17070.00250.02380.00032872216021522
    JL2020-7-08284345100.04990.00130.16420.00390.02390.00021925015431521
    JL2020-7-11127198037000.05640.00090.19100.00400.02450.00024703317731562
    JL2020-7-13152346320.04840.00210.16000.00700.02400.00051188515161533
    JL2020-7-15141927250.04880.00080.16010.00260.02380.00021393315121521
    JL2020-7-1680102233800.05310.00090.17760.00290.02430.00023323616631551
    JL2020-7-17222956070.04930.00090.16110.00310.02370.00021633815231511
    JL2020-7-18141322700.06600.00270.22400.00950.02460.00038058520581572
    JL2020-7-19121792250.05030.00160.16350.00490.02360.00032076015451502
    JL2020-7-2081111960.05140.00170.17000.00550.02400.00022606015951531
    JL2020-7-23263845230.04850.00140.15910.00460.02380.00021236015041521
    JL2020-7-253749446800.05230.00070.17250.00250.02390.00032983116221522
    JL2020-7-28101021350.06960.00320.23900.00900.02490.00089179521881595
    JL2020-7-31233103610.05770.00150.19500.00500.02450.00035205518141562
    JL2020-7-32284189090.04960.00080.16290.00270.02380.00021773415321521
    JL2020-7-33243087200.04980.00100.16410.00340.02390.00021874215431521
    JL2020-7-34213253600.05080.00170.16700.00550.02390.00032316515751522
    JL2020-7-35111253330.05170.00290.16800.00950.02360.000327312015891502
    JL2020-7-36112156034800.05620.00100.18830.00290.02430.00044613617531552
    JL2020-7-374345832600.05360.00280.17800.00950.02410.000735312016681544
    JL2020-7-39131671680.05440.00320.17700.01000.02360.000538612016591503
    JL2020-7-40161964920.05100.00170.16900.00550.02400.00032417015951532
    JL2020-7-43182767610.04910.00080.16170.00260.02390.00021513315221521
    JL2020-7-50263412290.05200.00260.17400.01000.02430.000428611016391553
    JL2020-7-514050415500.05900.00120.19810.00370.02440.00025674618431551
    JL2020-7-53282852470.06060.00370.20300.01200.02430.0006625125188101553
    JL2020-7-542026550500.05170.00070.17110.00310.02400.00032723116031532
    下载: 导出CSV 
    | 显示表格
    图  5  洞上产铀花岗岩锆石U–Pb谐和图和加权平均206Pb/238U年龄图
    Figure  5.  Concordia diagrams of the zircon U–Pb dating and weighted mean diagrams of 206Pb/238U apparent ages for the U-bearing granite in Dongshang deposit

    洞上产铀花岗岩样品(JL2020-7)中独居石呈浅黄色、透明,为半自形—自形短柱状、粒状,粒径40~180 μm。背散射(BSE)图像中独居石内部结构均匀,部分边部出现晶棱圆化、港湾状结构,无明显环带。独居石U–Pb同位素测定结果见表2。对19颗独居石进行U–Pb同位素测年,共获得19个有效点,208Pb/232Th年龄值大多分布于谐和曲线上或附近(图6a),下交点年龄151±1 Ma(MSWD=1.16);对其中15个谐和测点的206Pb/238U年龄进行加权平均,结果为151±2 Ma(MSWD=1.6;图6b),表明洞上产铀花岗岩形成于燕山早期(晚侏罗世)。

    表  2  洞上产铀花岗岩独居石LA–ICP–MS U–Pb定年分析结果
    Table  2.  Data of LA–ICP–MS monaite U–Pb dating of the U-bearing granite in Dongshang deposit
    测点号含量/(×10−6同位素比值年龄/Ma
    ThU207Pb/235U2σ206Pb/238U2σ207Pb/235U2σ206Pb/238U2σ
    JLD2020-7-01191064113050.15300.00950.02300.000714581475
    JLD2020-7-0317626778050.15920.00960.02440.000715081565
    JLD2020-7-0417980838330.17940.01760.02410.0008168151535
    JLD2020-7-0517909496680.15890.00950.02390.000715081525
    JLD2020-7-0721755438840.15910.01320.02360.0007150121515
    JLD2020-7-0918541078910.17330.01030.02400.000816291535
    JLD2020-7-1018551164570.15120.00860.02370.000714381515
    JLD2020-7-13187573104230.15920.00880.02330.000615081484
    JLD2020-7-1516167668010.15860.01230.02420.0007149111545
    JLD2020-7-1618139763350.16160.00960.02420.000715281545
    JLD2020-7-1788445123000.15500.00890.02350.000714681504
    JLD2020-7-1818258571280.16110.01040.02370.000615291514
    JLD2020-7-1918076259640.16890.01320.02400.0007158111535
    JLD2020-7-2118751291020.15720.00960.02350.000614881504
    JLD2020-7-24131495272310.14760.00690.02290.000714061464
    JLD2020-7-02104575137480.43020.03490.02730.0009363251746
    JLD2020-7-1123124023920.89410.11810.03140.0013649631998
    JLD2020-7-2017750352590.76700.11350.03040.0014578651939
    JLD2020-7-2217681248650.21690.01600.02460.0008199131565
    下载: 导出CSV 
    | 显示表格
    图  6  洞上产铀花岗岩独居石U–Pb谐和图和加权平均206Pb/238U年龄图
    Figure  6.  Concordia diagrams of the monazite U–Pb dating and weighted mean diagrams of 206Pb/238U apparent ages for the U-bearing granite in Dongshang deposit

    洞上产铀花岗岩的主微量元素和稀土元素检测结果详见表3。JL2020-6、JL2020-7和JL2020-8数据为此次测得,GF8-1、GF9-1、GF10-1和GF11-1数据引自王迪(2017)。

    表  3  洞上产铀花岗岩主量元素(%)、微量元素(×10−6)及稀土元素(×10−6)分析结果
    Table  3.  The analytical results major elements (%), trace elements (×10−6) and REEs (×10−6) of the U-bearing granite in Dongshang deposit
    样号JL2020-6JL2020-7JL2020-8GF8-1GF9-1GF10-1GF11-1
    元素中粗粒斑状黑(二)云母花岗岩粗粒白云母花岗岩
    SiO2 72.14 73.01 72.51 75.40 73.70 75.00 75.60
    TiO2 0.15 0.16 0.16 0.13 0.16 0.17 0.07
    Al2O3 15.17 14.93 14.97 13.50 14.30 14.00 13.60
    FeOT 1.28 1.13 1.27 0.85 1.02 1.20 0.75
    MnO 0.07 0.06 0.08 0.04 0.03 0.08 0.50
    MgO 0.27 0.23 0.25 0.25 0.31 0.30 0.19
    CaO 0.72 0.76 0.72 0.47 0.43 0.54 0.74
    Na2O 3.78 3.82 3.55 3.47 3.36 3.51 3.78
    K2O 4.65 4.44 4.49 4.01 4.77 3.75 4.25
    P2O5 0.23 0.25 0.24 0.25 0.26 0.28 0.26
    LOI 1.13 1.15 1.03 0.77 0.77 0.96 1.55
    总量 99.60 99.96 99.30 99.10 99.60 99.76 100.76
    K2O+Na2O 8.43 8.26 8.04 7.48 8.13 7.26 8.03
    K2O/Na2O 1.23 1.16 1.26 1.16 1.42 1.07 1.12
    CaO/Na2O 0.19 0.20 0.20 0.14 0.13 0.15 0.20
    Al2O3/TiO2 101.13 93.31 93.56 103.85 89.38 82.35 194.29
    A/CNK 1.21 1.20 1.25 1.24 1.25 1.29 1.12
    A/NK 1.35 1.35 1.40 1.34 1.34 1.42 1.26
    C/FM 0.47 0.56 0.47 0.43 0.32 0.36 0.79
    A/FM 9.81 10.96 9.84 12.27 10.75 9.33 14.47
    Rb 622.00 414.00 448.00 305.00 430.00 580.00 500.00
    Sr 37.60 33.40 37.90 23.40 55.20 55.40 31.30
    Y 8.50 8.58 8.37 4.30 9.63 11.40 4.73
    Zr 90.00 90.00 90.00 35.60 59.90 72.80 29.30
    Hf 2.01 2.12 2.21 1.07 1.69 2.08 1.11
    Nb 16.70 17.10 16.70 8.30 12.10 20.90 12.90
    Ta 7.41 7.39 7.51 3.07 2.09 6.07 6.03
    Ba 96.70 84.50 102.00 42.80 99.70 83.00 76.70
    Th 7.62 7.49 8.11 2.71 4.79 5.96 3.94
    U 30.80 35.90 27.20 9.20 13.90 18.00 8.44
    Pb 23.20 23.00 23.90 12.30 24.50 22.70 24.40
    Ti 930.00 940.00 940.00 779.00 959.00 1019.00 420.00
    P 999.00 1077.00 1038.00 1090.00 1134.00 1221.00 1134.00
    Rb/Sr 16.50 12.40 11.80 13.00 7.79 10.50 16.00
    Rb/Ba 6.43 4.90 4.39 7.13 4.31 6.99 6.52
    Rb/Nb 37.20 24.20 26.80 36.70 35.50 27.80 38.80
    Zr/Hf 44.80 42.50 40.70 33.30 35.40 35.00 26.40
    Th/U 0.25 0.21 0.30 0.29 0.34 0.33 0.47
    La 8.68 9.42 10.10 3.79 7.41 9.56 5.54
    Ce 18.30 19.92 21.24 9.79 17.20 22.50 10.14
    Pr 2.16 2.28 2.50 0.91 1.60 1.94 1.19
    Nd 7.78 8.34 8.94 3.42 6.03 7.31 4.14
    Sm 1.79 2.01 2.09 0.88 1.62 1.88 0.99
    Eu 0.23 0.21 0.23 0.10 0.21 0.22 0.15
    Gd 1.63 1.70 1.83 0.82 1.50 1.77 0.89
    Tb 0.28 0.28 0.29 0.15 0.30 0.34 0.15
    Dy 1.59 1.62 1.56 0.84 1.65 1.83 0.80
    Ho 0.26 0.26 0.26 0.13 0.25 0.28 0.12
    Er 0.67 0.68 0.69 0.36 0.64 0.74 0.35
    Tm 0.09 0.09 0.09 0.05 0.09 0.11 0.05
    Yb 0.61 0.61 0.81 0.32 0.54 0.70 0.33
    Lu 0.08 0.08 0.08 0.05 0.08 0.10 0.05
    ∑REE 44.16 47.49 50.69 21.61 39.12 49.28 24.85
    LREE/HREE 7.47 7.92 8.01 6.94 6.75 7.40 8.07
    δEu 0.41 0.34 0.35 0.35 0.40 0.36 0.48
    (La/Yb)N 10.21 11.13 8.90 8.50 9.84 9.80 12.04
    (La/Sm)N 3.13 3.03 3.12 2.78 2.95 3.28 3.61
    (Gd/Yb)N 2.21 2.32 1.86 2.12 2.30 2.09 2.23
    Zr+Nb+Ce+Y 739.00 523.00 558.00 419.00 532.00 676.00 706.00
    下载: 导出CSV 
    | 显示表格
    3.3.1   主量元素特征

    洞上产铀花岗岩SiO2含量为72.1%~75.6%(平均值73.9%),高硅;K2O含量为3.75%~4.77%(平均值4.33%),Na2O含量为3.36%~3.82%(平均值3.61%),K2O+Na2O含量为7.26%~8.43%(平均值7.95%),富碱;在SiO2−(K2O+Na2O)图解上均投点于花岗岩区(图7a),在SiO2−K2O图解上落入高钾钙碱性系列(图7b)。K2O/Na2O比值为1.07~1.42(平均值1.20),富钾贫钠。Al2O3含量为13.5%~15.2%(平均值14.4%),富铝,A/CNK=Al2O3/(CaO+Na2O+K2O)=1.12~1.29(平均值1.22>1.1),A/NK = Al2O3/(Na2O+ K2O)=1.26~1.42(平均值1.35),在A/CNK−A/NK图解上均落于过铝质岩区(图7c)。TiO2含量为0.07%~0.17%,低钛,与副矿物中少见钛铁矿、磷灰石的特征一致。FeOT含量为0.75%~1.28%(平均值1.07%),MgO含量为0.19%~0.31%(平均值0.26%),Mg#=31.4~41.5(平均值36.1),贫铁镁。CaO和P2O5含量分别为0.43%~0.76%和0.23%~0.28%,在SiO2−P2O5图解上SiO2与P2O5的含量呈明显的正相关(图7d),显示S型花岗岩特征(王文龙等,2017)。这些主量元素特征表明,洞上产铀花岗岩属高钾钙碱性系列过铝质花岗岩,与华南壳源重熔型(S型)花岗岩主量元素特征一致(凌洪飞等,2006)。

    图  7  洞上产铀花岗岩主量元素图解
    JL数据为文中分析结果,GF数据引自王迪(2017)a—SiO2−(K2O+Na2O)图(Middlemost,1994);b—SiO2−K2O图(Peccerillo and Taylor,1976);c—A/CNK−ANK图(Maniar and Piccoli,1989);d—SiO2−P2O5
    Figure  7.  Main element diagrams of the U-bearing granite in Dongshang deposit
    (a) SiO2–(K2O+Na2O) diagram (Middlemost, 1994); (b)SiO2–K2O diagram (Peccerillo and Taylor, 1976); (c) A/CNK–ANK diagram (Maniar and Piccoli, 1989); (d) SiO2–P2O5 diagram The JL data was analyzed for this article; The GF data was quoted from Wang (2017).
    3.3.2   微量元素特征

    洞上产铀花岗岩富集Rb、U、Pb和Ta,亏损Ba、Sr和Nb、Ti,属低Ba、Sr花岗岩,是壳源物质低程度部分熔融的产物(Harris and Inger,1992)。微量元素蛛网图左侧隆起、右侧平缓(图8a),与华南壳源重熔型(S型)花岗岩微量元素特征一致(凌洪飞等,2006)。Zr、Nb、Ce和Y含量偏低,Zr+Nb+Ce+Y含量为57.0×10−6~136×10−6,远低于A型花岗岩中Zr+Nb+Ce+Y含量的下限(350×10−6Whalen et al.,1987)。Nb/Ta比值2.14~5.79(平均值2.98)远小于正常花岗岩值(Nb/Ta=11),Zr/Hf比值26.4~44.8,有3个样品Zr/Hf比值40.7~44.8高于正常花岗岩值(Zr/Hf=33 ~ 40),说明该类岩浆演化过程中存在熔体与富挥发分流体的相互作用,使得Ta、Zr趋向富集而Nb、Hf相对亏损。U含量为8.44×10−6~35.9×10−6,整体大于8×10−6,属富铀花岗岩,与华南铀成矿省产铀花岗岩的特征一致。

    图  8  洞上产铀花岗岩微量元素原始地幔标准化蛛网图及稀土元素球粒陨石标准化配分曲线(标准化数值引自Sun and McDonough (1989))
    JL数据为此研究分析结果,GF数据引自王迪(2017)a—微量元素原始地幔标准化蛛网图;b—稀土元素球粒陨石标准化配分曲线
    Figure  8.  Primitive mantle-normalized trace element spider diagram and chondrite-normalized REE distribution pattern of the U-bearing granite in Dongshang deposit (normalized values after Sun and McDonough(1989))
    (a) Primitive mantle-normalized trace element spider diagram; (b) Chondrite-normalized REE distribution patternThe JL data was analyzed for this article; The GF data was quoted from Wang (2017).
    3.3.3   稀土元素特征

    洞上产铀花岗岩ΣREE=21.6×10−6~50.7×10−6(平均值39.6×10−6),LREE/HREE=6.75~8.07(平均值7.51),(La/Yb)N=8.50~12.0(平均值10.1),明显富集轻稀土,亏损重稀土。(La/Sm)N=2.78~3.61(平均值3.13),轻稀土分馏明显;(Gd/Yb)N=1.86~2.32(平均值2.16),重稀土分馏较弱。球粒陨石标准化配分曲线呈现轻稀土配分曲线相对较陡而重稀土配分曲线相对平坦的特征(图8b);δEu=0.34~0.48(平均值0.39),Eu亏损较明显,与华南壳源重熔型(S型)花岗岩稀土元素特征一致(凌洪飞等,2006)。

    近些年,部分学者对甘坊岩体内铌钽锂等稀有金属矿产的赋矿围岩开展了锆石U−Pb定年,年龄介于147~141 Ma之间(王迪,2017秦程,2018刘莹,2019),并对花岗岩中含铀的铌铁矿族矿物开展U−Pb定年,年龄为144 Ma(刘莹,2019Xie et al.,2019)。但是产铀花岗岩的形成时代尚未精确厘定。文章对洞上铀矿床产铀花岗岩中含铀副矿物−锆石和独居石开展LA−ICP−MS U−Pb定年,获得年龄为152~151 Ma(图5图6),表明该花岗岩形成于晚侏罗世,是燕山早期酸性岩浆上侵的产物。

    洞上产铀花岗岩室内定名为中粗粒斑状黑(二)云母花岗岩,高硅(w(SiO2)>70%)、富铝(A/CNK>1.1),属高钾钙碱性系列花岗岩;在A/CNK−A/NK、SiO2−P2O5图解(图7c、7d)以及(Zr+Nb+Ce+Y)−(K2O+Na2O)/CaO和(Zr+Ce+Y)−(Rb/Ba)图解上(图9a、9b)大都投点于或靠近S型花岗岩区。

    图  9  洞上产铀花岗岩岩石类型判别图解
    FG—酸性花岗岩;OGT—未发生分异花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—(Zr+Nb+Ce+Y)−((K2O+Na2O)/Ca2O)图解(底图引自Whalen et al.(1987));b—(Zr+Ce+Y)−(Rb/Ba)图解(底图引自Whalen et al.(1987)
    Figure  9.  Discrimination diagrams for the rock-type of the U-bearing granite in Dongshang deposit
    (a) (Zr+Nb+Ce+Y)–((K2O+Na2O)/Ca2O) diagram (Schema from Whalen et al.(1987)); (b) (Zr+Ce+Y)–(Rb/Ba) diagram (Schema from Whalen et al.(1987))

    过铝质花岗岩的CaO/Na2O>0.3,暗示源区物质富含斜长石;CaO/Na2O<0.3,暗示源区物质富黏土矿物(Sylvester,1998兰鸿锋等,2016)。洞上产铀花岗岩CaO/Na2O=0.13~0.20<0.3,表明其源区物质主要是富黏土矿物的泥质岩石,与Rb/Sr−Rb/Ba和(Na2O+K2O)/(MgO+FeOT+TiO2)−(Na2O+K2O+MgO+FeOT+TiO2)图解中该类花岗岩投点于“富黏土源区−泥岩”区和“富白云母的变泥质岩”区的结果一致(图10),暗示其源区物质可能是在大陆稳定区经历强烈地壳化学风化和较弱物理剥蚀的贫斜长石的黏土泥质岩(兰鸿锋等,2016)。

    图  10  洞上产铀花岗岩源区属性判别图解
    JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb/Sr−Rb/Ba图解(底图引自Sylvester(1998));b—NK/MFT−NKMFT图解(底图引自Lee et al.(2003)
    Figure  10.  Discrimination diagrams for the source characteristics of the U-bearing granite in Dongshang deposit
    (a) Rb/Sr–Rb/Ba diagram (Schema from Sylvester (1998)); (b) NK/MFT–NKMFT diagram (Schema from Lee et al. (2003))

    岩石和矿物的微量元素含量在岩浆演化过程中变化明显,是推演构造−岩浆作用等地质过程的有效示踪剂(赵振华,1992Zhao and Zhou,1997王涛等,2019;郭小飞等,2022)。洞上产铀花岗岩具有较高的Rb/Sr和Rb/Nb比值,平均值分别为12.6和32.4,暗示其源岩为成熟度较高的陆壳物质。Rb/Sr和Rb/Ba比值与SiO2含量呈弱的正相关关系,暗示该类花岗质岩浆经历了较强的结晶分异演化。重稀土元素弱分异,(Gd/Yb)N=1.86~2.32,暗示岩浆源区较深。负Eu异常明显,δEu=0.34~0.48,暗示岩浆演化过程中存在较强的斜长石分离结晶或者源区物质为贫斜长石的黏土泥质岩(陈迪等,2022)。

    结合洞上产铀花岗岩所在的甘坊岩体周缘出露新元古界双桥山群安乐林组,岩石组合以变余粉砂岩、砂岩和板岩夹灰黑色炭质板岩为主,分析认为该类花岗岩可能是上地壳富铝的浅变质岩系(双桥山群)在减压增温的条件下部分熔融的产物。

    华南中生代花岗岩的成因主要是地壳物质的部分熔融,地幔物质参与较少,并且大规模印支—燕山期岩浆上侵的动力学背景是从挤压−伸展转向后碰撞阶段的拉张环境,表现为多阶段多幕次脉动式活动的特点(谭俊等,2007王莉娟等,2013郭春丽等,2014;孙建东等,2022)。燕山运动被划分出造山的主挤压(165~145 Ma)、过渡(145~130 Ma)、主伸展(130~110 Ma)、次挤压(110~90 Ma)和再伸展(90~80 Ma)等多个阶段(董树文等,2007张岳桥等,2007项新葵等,2015a2015b)。燕山早期江南造山带再次活化,构造−岩浆活动背景由先挤压转向拉张−伸展(毛景文等,2011),构造应力场的转换利于幔源物质上涌,进而诱发九岭地区壳源物质发生重熔,形成过铝质中酸性、酸性岩浆。

    洞上产铀花岗岩在Rb–(Y+Nb)和Ta–Yb图解上投点于同碰撞花岗岩区,靠近后碰撞花岗岩区(图11),表明该花岗岩是燕山早期主挤压阶段(165±5~145 Ma)九岭地区新元古界双桥山群富白云母的变泥质岩在碰撞造山的背景下经不同程度部分熔融形成的酸性岩浆,沿东西向、北东向断裂上侵、冷凝的产物(毛景文等,2008)。

    图  11  洞上产铀花岗岩构造环境判别图解
    syn-COLG—同碰撞花岗岩;WPG—板内花岗岩;post-COLG—后碰撞花岗岩;VAG—火山弧花岗岩;ORG—洋脊花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb–(Y+Nb)图解(底图引自Pearce(1996));b—Ta–Yb图解(底图引自Pearce(1996)
    Figure  11.  Discrimination diagrams for the tectonic environment of the U-bearing granite in Dongshang deposit
    (a) Rb–(Y+Nb) diagram (Schema from Pearce (1996)); (b)Ta–Yb diagram (Schema from Pearce (1996))

    花岗岩中锆石的高U含量、低Th/U比值是判别产铀与非产铀花岗岩的有效依据之一(陈振宇和王登红,2014)。洞上产铀花岗岩JL2020-7样品中28颗锆石的U、Th含量均变化较大,U含量为135×10−6~5890×10−6(平均值1456×10−6>1000×10−6),Th含量为102×10−6~1980×10−6,Th/U比值平均为0.53(接近0.52;表3),与产铀花岗岩的锆石特征一致。在CaO/Na2O–Al2O3/TiO2图解中,洞上产铀花岗岩与诸广花岗岩型铀矿集区产铀的长江岩体和桃山铀矿田产铀的打鼓寨岩体均投点于产铀花岗岩区(图12)。

    图  12  花岗岩与源岩关系图
    图中源区划分引自Sylvester(1998);产铀、非产铀和过渡型花岗岩区划分引自兰鸿锋等(2016);JL数据为文中分析结果,GF数据引自王迪(2017),打鼓寨岩体数据引自徐勋胜等(2021),长江岩体数据引自田泽瑾(2014
    Figure  12.  Relation diagram of granite and source rock

    在《花岗岩型铀矿找矿指南(EJ/T976—96)》(中国核工业总公司,1996)中,产铀花岗岩是指产有铀矿床和具有潜在铀资源的花岗岩,地质特征包括地壳成熟度高、基底岩石铀含量高、多阶段岩浆活动、酸性和中基性岩脉发育、断裂发育、白云母化和碱交代作用强烈、铀场和γ场不均匀、出现偏高场等,属壳源重熔型(S型)花岗岩;副矿物以钛铁矿系列为主,富硅(SiO2含量为70%~75%),富碱(K2O+Na2O含量为7%~9%),铝过饱和(A/CNK>1.10),钾大于钠,铷锶初始比大于0.710,富含U(含量>8×10−6)、Rb、Cs、Li、Be、W、Sn、Ta和F等元素,Rb/Sr比值高,Th/U比值小于3,轻稀土富集,铕负异常明显,锆石铀含量高。

    洞上产铀花岗岩Rb/Sr比值(平均值12.6)和Rb/Nb比值(平均值32.4)高,CaO/Na2O(平均值0.17)<0.3,暗示其源自成熟度较高的陆壳物质,且源区物质以富黏土的泥质岩为主。该花岗岩所处的甘坊岩体是燕山期早晚2期共3阶段7次中酸性—酸性岩浆脉动式活动的产物。岩体内北东、北北东向硅化断裂发育,自变质蚀变以白云母化为主,沿断裂常见赤铁矿化、硅化、水云母化、萤石化等热液蚀变。并且,该花岗岩是过铝质高钾钙碱性S型花岗岩,显微镜下见磷灰石、锆石、独居石等副矿物,富硅(SiO2平均含量73.9%)、富碱(K2O+Na2O平均含量7.95%)、铝过饱和(A/CNK平均值1.22)、钾大于钠(K2O/Na2O平均值1.20),富含U(U平均含量20.5×10−6)、Rb、Cs、Li、Be、W、Sn、Ta和F等元素,钍铀比值(平均值0.31)小于3,轻稀土富集(LREE/HREE平均值7.51)、铕负异常明显(δEu平均值0.39),锆石U(平均含量1456×10−6)高。这些地球化学组分特征与诸广花岗岩型铀矿集区产铀的长江岩体和桃山铀矿田产铀的打鼓寨岩体的地球化学组分特征一致(表4),表明该花岗岩具有提供铀源的条件与潜力。

    表  4  洞上产铀花岗岩、长江岩体、打鼓寨岩体岩石地球化学组分对比表
    Table  4.  Comparison table of petrogeochemical components of Dongshang U-bearing granite, Changjiang granite and Daguzhai granite
    岩体SiO2/%K2O+Na2O/%K2O/Na2OCaO/Na2OA/CNK∑REE/(×10−6LREE/HREEδEu
    长江 74.00 8.22 1.81 0.31 1.11 197.0 7.38 0.21
    洞上 73.90 7.95 1.20 0.17 1.22 39.6 7.51 0.39
    打鼓寨 73.20 8.39 1.69 0.22 1.22 205.0 4.43 0.33
    岩体 (Zr+Nb+Ce+Y)/(×10−6 Zr/Hf Rb/Sr U/(×10−6 Th/U 锆石U/(×10−6 锆石Th/(×10−6 锆石Th/U
    长江 252.00 24.60 10.50 18.00 2.22 2453 1084 0.75
    洞上 107.00 36.90 12.60 20.50 0.31 2592 660 0.49
    打鼓寨 249.00 33.20 6.75 19.50 2.45 68348 33230 0.48
    注:打鼓寨岩体数据引自徐勋胜等(2021),长江岩体数据引自田泽瑾(2014
    下载: 导出CSV 
    | 显示表格

    (1)洞上产铀花岗岩为中粗粒斑状黑(二)云母花岗岩,锆石和独居石U-Pb年龄分别为152±1 Ma和151±2 Ma,年龄在误差范围内一致,表明该花岗岩是燕山早期酸性岩浆上侵的产物。

    (2)洞上产铀花岗岩富硅、高碱、富钾贫钠、高铝、低钛、贫铁镁,微量元素Ba、Sr、Nb、Ti亏损、Rb、U、Pb、Ta富集,轻稀土富集且分馏明显,属高钾钙碱性过铝质S型花岗岩,是燕山早期同碰撞造山的主挤压阶段九岭地区新元古界双桥山群安乐林组富白云母的变泥质岩部分熔融的产物。

    (3)洞上产铀花岗岩与产铀的长江岩体、打鼓寨岩体具有相似的岩石地球化学特征,富铀、Rb/Sr比值高、Th/U比值小于3、锆石铀含量高等指示其为产铀花岗岩,具有提供铀源的条件与潜力。

  • 图  1  疏勒河洪积扇地区地质构造图(引自《1︰50万中国地质图》公开版(http://www.ngac.org.cn);断裂分布据Zelenin et al.,2022修改)

    Figure  1.  Tectonic map of the diluvial fan area of Shule River (The geological map is quoted from the public version of the 1:500000 Geological Map of China at http://www.ngac.org.cn; Fracture distribution is modified after Zelenin et al.,2022)

    图  2  洪积扇演化示意图(据Blair and McPherson,1994修改)

    Figure  2.  Schematic diagram of the evolution of alluvial fans (modified after Blair and McPherson,1994)

    图  3  雷达波后向散射模式图

    Figure  3.  Radar wave backscatter pattern diagram

    图  4  各期地貌面后向散射强度值正态分布概率密度曲线离散程度与区分程度

    F1—F4对应不同期地貌面;AC为现今河床区域;μ为均值,σ为标准差;S为重叠面积

    Figure  4.  Calculation method of dispersion degree and discrimination degree of normal distribution probability density curve of backscatter intensity values of various geomorphic surfaces F1 to F4 correspond to different stages of landforms; AC represents the current riverbed area; μ denotes the mean, σ is the standard deviation; S stands for the overlapping area.

    图  5  地貌面样本选取

    a—样本选取区域(彩色多边形为样本区域范围,不同颜色区域代表不同期地貌面样本);b—蓝色多边形范围对应的后向散射系数统计结果

    Figure  5.  Selection of geomorphic surface samples (a) Sample selection area (Colored polygons represent the sample area range, different colored areas represent samples of different stages of landforms); (b) Statistical results of the backscatter coefficients corresponding to the blue polygon range

    图  6  不同时相各期地貌面后向散射系数分布概率密度曲线

    F1—F4对应不同期地貌面;AC为现今河床区域

    Figure  6.  PDF (Probability density function) of backscatter coefficient distribution on different stages of geomorphic surface at different time periods F1 to F4 correspond to different stages of landforms; AC represents the current riverbed area

    图  7  统计指标与大气条件分析

    为便于对比趋势,对部分数据进行了平移和缩放,其中方差和×10;重叠面积和×10+30,地表含水量+30kg/m2

    Figure  7.  Statistical indicators and atmospheric condition analysis For ease of trend comparison, partial data has been shifted and scaled, where variance is multiplied by 10; overlapping area is multiplied by 10 plus 30, and surface soil moisture is increased by 30 kg/m².

    图  8  不同数据源划分的疏勒河洪积扇地貌面分期结果

    F1—F4对应不同期地貌面;AC为现今河床区域a—成像时间为2007年10月5日;b—成像时间为2008年7月7日;c—C波段RADARSAT(据Zhang and Guo,2013修改)

    Figure  8.  Classification of the geomorphic surface of the Shule River alluvial fan

    (a) Image acquisition date: October 5, 2007; (b) Image acquisition date: July 7, 2008; (c) C-band RADARSAT (modified after Zhang and Guo, 2013)F1 to F4 correspond to different stages of landforms; AC represents the current riverbed area

    图  9  疏勒河洪积扇区域NDVI反演结果

    a—2008年7月28日数据反演结果;b—2007年10月16日数据反演结果

    Figure  9.  The NDVI inversion results of the Shule River alluvial fan area (a) Inversion results for data acquired on July 28, 2008; (b) Inversion results for data acquired on October 16, 2007

    表  1  选取的SAR影像数据信息

    Table  1.   Information of selected SAR images

    影像名称分辨率极化方式入射角飞行方向成像时间轨道号
    ALPSRP05683079015 mHH/HV38.692°升轨2007年7月5日7696
    ALPSRP08367079038.705°2007年8月20日8367
    ALPSRP09038079038.705°2007年10月5日9038
    ALPSRP12393079038.689°2008年5月22日12393
    ALPSRP13064079038.691°2008年7月7日13064
    ALPSRP13735079038.669°2008年8月22日13735
    ALPSRP14406079038.672°2008年10月7日14406
    ALPSRP18432079038.685°2009年7月10日18432
    ALPSRP19103079038.705°2009年8月25日19103
    ALPSRP19103079038.692°2009年10月10日19774
    下载: 导出CSV

    表  2  不同时相各期地貌面后向散射系数分布方差

    Table  2.   Variance of numerical distribution of backscatter coefficients on different levels of landforms at different time periods

    地貌面2007−7−52007−8−202007−10−52008−5−222008−7−72008−8−222008−10−72009−7−102009−8−252009−10−10
    AC 1.52451.22000.96060.94370.99691.14160.99371.25431.20410.8612
    F1 0.73810.82570.89180.74490.73310.77460.82731.20450.80150.7470
    F2 0.74050.74540.76530.68870.69710.73350.74720.75730.72220.7841
    F3 0.75020.73340.81690.79050.74760.81110.81690.70080.73720.7205
    F4 0.68510.79700.80420.67980.68120.74820.81460.60460.71290.7532
    总和2.91393.10153.27822.90392.85903.06743.2063.26722.97383.0048
    下载: 导出CSV

    表  3  不同时相相邻地貌面后向散射系数分布重叠面积

    Table  3.   Overlapping area of numerical distribution of backscatter coefficients on adjacent geomorphic surfaces at different time periods

    地貌面2007−7−52007−8−202007−10−52008−5−222008−7−72008−8−222008−10−72009−7−102009−8−252009−10−10
    F1-AC0.61220.55840.36410.47860.21170.62160.25410.90630.58750.4119
    F1-F2 0.27890.21740.16000.26280.26470.13950.17440.30710.18170.2702
    F2-F3 0.22640.19480.15810.16380.22520.18770.13140.23160.32630.2319
    F3-F4 0.13860.37300.53310.13880.12450.42450.42100.22820.27290.1576
    总和 0.64390.78510.85120.56530.61440.75170.72680.76680.78090.6597
    下载: 导出CSV

    表  4  最大似然法获得的分类区间

    Table  4.   Classification interval obtained by maximum likelihood method

    日期左边界F4−F3地貌面F3−F2地貌面F2−F1地貌面F1−AC地貌面右边界
    2007−10−5−24.9515−23.0302−21.3683−19.2148−17.1550−15.5466
    2008−7−7 −24.1847−22.1909−20.1365−18.5141−16.7880−15.4257
    下载: 导出CSV
  • [1] AUBERT M, BAGHDADI N, ZRIBI M, et al. , 2011. Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust[J]. Remote Sensing of Environment, 115(8): 1801-1810. doi: 10.1016/j.rse.2011.02.021
    [2] AYARI E, KASSOUK Z, LILI-CHABAANE Z, et al. , 2021. Cereal crops soil parameters retrieval using L-band ALOS-2 and C-band sentinel-1 sensors[J]. Remote Sensing, 13(7): 1393. doi: 10.3390/rs13071393
    [3] BEAUDOIN A, LE TOAN T, GWYN Q H J, 1990. SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 886-895. doi: 10.1109/36.58978
    [4] BLAIR T C, MCPHERSON J G, 1994. Alluvial fan processes and forms[M]//ABRAHAMS A D, PARSONS A J. Geomorphology of desert environments. Dordrecht: Springer: 354-402.
    [5] BULL W B, 1977. The alluvial-fan environment[J]. Progress in Physical Geography: Earth and Environment, 1(2): 222-270. doi: 10.1177/030913337700100202
    [6] BULL W B, 1991. Geomorphic responses to climatic change[M]. New York: Oxford University Press.
    [7] COPPO P, LUZI G, SCHIAVON G, 1995. Understanding microwave surface backscattering of bare soil by comparing models and experimental data collected during two different airborne campaigns[C]//1995 International geoscience and remote sensing symposium, IGARSS'95. Quantitative remote sensing for science and applications. Firenze: IEEE: 1346-1348.
    [8] D'ARCY M, MASON P J, RODA-BOLUDA D C, et al. , 2018. Alluvial fan surface ages recorded by Landsat-8 imagery in Owens Valley, California[J]. Remote Sensing of Environment, 216: 401-414. doi: 10.1016/j.rse.2018.07.013
    [9] DE JEU R, OWE M, 2012. TMI/TRMM surface soil moisture (LPRM) L3 1 day 25 km x 25 km nighttime V001, Edited by Goddard Earth Sciences Data and Information Services Center (GES DISC) (Bill Teng), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC),doi: 10.5067/GWHRZEL8SA21.
    [10] ESCORIHUELA M J, KERR Y H, DE ROSNAY P, et al. , 2007. A simple model of the bare soil microwave emission at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 1978-1987. doi: 10.1109/TGRS.2007.894935
    [11] EVANS D L, FARR T G, VAN ZYL J J, 1992. Estimates of surface roughness derived from synthetic aperture radar (SAR) data[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 382-389. doi: 10.1109/36.134087
    [12] FAN L, ATKINSON P M, 2018. A new multi-resolution based method for estimating local surface roughness from point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 369-378. doi: 10.1016/j.isprsjprs.2018.08.003
    [13] FRANKEL K L, DOLAN J F, 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02025.
    [14] FREEMAN A, 1992. SAR calibration: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(6): 1107-1121. doi: 10.1109/36.193786
    [15] FUNG A K, LI Z, CHEN K S, 1992. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 356-369. doi: 10.1109/36.134085
    [16] GREELEY R, LANCASTER N, SULLIVAN R J, et al. , 1988. A relationship between radar backscatter and aerodynamic roughness: preliminary results[J]. Geophysical Research Letters, 15(6): 565-568. doi: 10.1029/GL015i006p00565
    [17] GUO N, 2003. Vegetation index and its advances[J]. Arid Meteorology, 21(4): 71-75. (in Chinese with English abstract)
    [18] GUO Q N, ZHOU Z F, WANG S, 2017. The source, flow rates, and hydrochemical evolution of groundwater in an alluvial fan of Qilian Mountain, northwest China[J]. Water, 9(12): 912. doi: 10.3390/w9120912
    [19] GURALNIK B, MATMON A, AVNI Y, et al. , 2010. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting[J]. Earth and Planetary Science Letters, 290(1-2): 132-141. doi: 10.1016/j.jpgl.2009.12.012
    [20] HAN L F, LIU J, YUAN Z D, et al. , 2019. Extracting features of alluvial fan and discussing landforms evolution based on high-resolution topography data: taking alluvial fan of Laohushan along Haiyuan fault zone as an instance[J]. Seismology and Geology, 41(2): 251-265. (in Chinese with English abstract)
    [21] HETZ G, MUSHKIN A, BLUMBERG D G, et al. , 2016. Estimating the age of desert alluvial surfaces with spaceborne radar data[J]. Remote Sensing of Environment, 184: 288-301. doi: 10.1016/j.rse.2016.07.006
    [22] HOLECZ F, DWYER E, MONACO S, et al. , 2000. An operational rice field mapping tool using spaceborne SAR data[C]//ERS-ENVISAT symposium. mat.
    [23] HUANG F P, ZHANG H P, XIONG J G, et al. , 2021. Estimation of displacements along strike-slip fault on a million-year timescale: a case study of the AltynTagh fault system[J]. Journal of Geomechanics, 27(2): 208-217,doi: 10.12090/j.issn.1006-6616.2021.27.02.020. (in Chinese with English abstract)
    [24] HUFFMAN G J, STOCKER E F, BOLVIN D T, et al. , 2019. GPM IMERG final precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), doi: 10.5067/GPM/IMERGDF/DAY/06.
    [25] HUGGETT R J, 2016. Fundamentals of Geomorphology [M]. Routledge, London, New York.
    [26] LI S, 2007. Soil moisture inversion model research of multi-band and multi-polarization SAR based on IEM[D]. Beijing: Chinese Academy of Agricultural Sciences. (in Chinese with English abstract)
    [27] LIN G Q, GUO H D, ZHANG L, 2013. Study on roughness inversion of alluvial fan in arid areas based on SAR data[J]. Remote Sensing Technology and Application, 28(4): 659-665. (in Chinese with English abstract)
    [28] LUBETKIN L K C, CLARK M M, 1988. Late Quaternary activity along the Lone Pine fault, eastern California[J]. GSA Bulletin, 100(5): 755-766. doi: 10.1130/0016-7606(1988)100<0755:LQAATL>2.3.CO;2
    [29] MAO H L, ZHAO H, LU Y C, et al. , 2007. Pollen assemblages and environment evolution in Shule River alluvial fan oasis of Gansu[J]. Acta Geoscientia Sinica, 28(6): 528-534. (in Chinese with English abstract)
    [30] MATHER P AND TSO B, 2016. Classification methods for remotely sensed data[M]. CRC press.
    [31] MATMON A, SCHWARTZ D P, FINKEL R, et al. , 2005. Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic 26Al and 10Be[J]. GSA Bulletin, 117(5-6): 795-807.
    [32] MATTIA F, LE TOAN T, SOUYRIS J C, et al. , 1997. The effect of surface roughness on multifrequency polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 954-966. doi: 10.1109/36.602537
    [33] REGMI NR, MCDONALD E V, BACON S N, 2014. Mapping Quaternary alluvial fans in the southwestern United States based on multiparameter surface roughness of lidar topographic data [J]. Journal of Geophysical Research: Earth Surface, 119(1): 12—27. doi: 10.1002/2012JF002711
    [34] ROBINSON GU N P, ALLRED B W, JONES M O, et al. , 2017. A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States[J]. Remote sensing, 9(8): 863. doi: 10.3390/rs9080863
    [35] SADEH Y, COHEN H, MAMAN S, et al. , 2018. Evaluation of Manning’s n roughness coefficient in arid environments by using SAR backscatter[J]. Remote Sensing, 10(10): 1505. doi: 10.3390/rs10101505
    [36] SHAO Y, LV Y, DONG Q, et al. , 2002. Study on soil microwave dielectric characteristic as salinity and water content[J]. Journal of Remote Sensing, 6(6): 416-423. (in Chinese with English abstract)
    [37] SU Q, REN J J, LIANG O B, et al. , 2020. Quantitative mapping of the Moleqie River alluvial fan morphologic units in China based on ALOS PALSAR data[J]. Seismology and Geology, 42(1): 79-94. (in Chinese with English abstract)
    [38] SU Q, REN J J, WANG X Y, et al. , 2023. A power-law relation of surface roughness and ages of alluvial fans in a hyperarid environment: a case study in the Dead Sea area[J]. Progress in Physical Geography: Earth and Environment, 47(3): 348-368. doi: 10.1177/03091333221118641
    [39] SUN P, 2017. Modeling the water infiltration and evaporation in unsaturated zone of the extremely arid area[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
    [40] ULABY F T, BRADLEY G A, DOBSON M C, 1979. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture(PartⅡ): Vegetation-covered soil [J]. IEEE Transactions on Geoscience Electronics, 17(2): 33—40. doi: 10.1109/TGE.1979.294626
    [41] WANG P, 2003. Development of the Shulehe alluvial-fan and its response to tectonic activity in Gansu Province, China: characteristics of neotectonic activity of the East end of the Altyn Tagh fault[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    [42] WANG P, LU Y C, DING G Y, et al. , 2004. Response of the development of the shule river alluvial fan to tectonic activity[J]. Quaternary Sciences, 24(1): 74-81. (in Chinese with English abstract)
    [43] WU J, YANG Q K, LI Y R, 2018. Partitioning of terrain features based on roughness[J]. Remote Sensing, 10(12): 1985. doi: 10.3390/rs10121985
    [44] XU X W, TAPPONNIER P, VAN DER WOERD J, et al. , 2003. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model [J]. Science in China Series D 33(10): 967-974. (in Chinese with English abstract)
    [45] YANG X, 2008. An elementary introduction to supervised and unsupervised classification of remote sensing image[J]. Acta Geologica Sichuan, 28(3): 251-254. (in Chinese with English abstract)
    [46] YUN L, ZHANG J, WANG J, et al. , 2021. Discovery of active faults in the southern Beishan area, NW China: implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195-207,doi: 10.12090/j.issn.1006-6616.2021.27.02.019. (in Chinese with English abstract)
    [47] ZELENIN E, BACHMANOV D, GARIPOVA S, et al. , 2022. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset[J]. Earth System Science Data, 14(10): 4489-4503. doi: 10.5194/essd-14-4489-2022
    [48] ZHANG L, GUO H D, 2013. The temporal-spatial distribution of Shule river alluvial fan units in China based on SAR data and OSL dating[J]. Remote Sensing, 5(12): 6997-7016. doi: 10.3390/rs5126997
    [49] ZHENG R Z, 2005. Tectonic uplift and deformation mechanism of the Altun structural system since the middle-late period of late Pleistocene time[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    [50] ZRIBI M, BAGHDADI N, HOLAH N, et al. , 2005. Evaluation of a rough soil surface description with ASAR-ENVISAT radar data[J]. Remote Sensing of Environment, 95(1): 67-76. doi: 10.1016/j.rse.2004.11.014
    [51] ZHOU Z H, 2021. Machine learning[M]. Springer Nature.
    [52] 郭铌, 2003. 植被指数及其研究进展[J]. 干旱气象, 21(4): 71-75.
    [53] 韩龙飞, 刘静, 袁兆德, 等, 2019. 基于高分辨率地形数据的冲洪积扇特征提取与演化模式讨论: 以海原断裂带老虎山地区冲洪积扇为例[J]. 地震地质, 41(2): 251-265. doi: 10.3969/j.issn.0253-4967.2019.02.001
    [54] 黄飞鹏, 张会平, 熊建国, 等, 2021. 走滑断裂百万年时间尺度位移量估计及其在阿尔金断裂系中的应用[J]. 地质力学学报, 27(2): 208-217,doi: 10.12090/j.issn.1006-6616.2021.27.02.020.
    [55] 李森, 2007. 基于IEM的多波段、多极化SAR土壤水分反演算法研究[D]. 北京: 中国农业科学院.
    [56] 林国青, 郭华东, 张露, 2013. 基于SAR数据的干旱区冲积扇地表粗糙度反演[J]. 遥感技术与应用, 28(4): 659-665. doi: 10.11873/j.issn.1004-0323.2013.4.659
    [57] 毛洪亮, 赵华, 卢演俦, 等, 2007. 甘肃疏勒河冲积扇绿洲全新世孢粉组合和环境演化[J]. 地球学报, 28(6): 528-534. doi: 10.3321/j.issn:1006-3021.2007.06.003
    [58] 邵芸, 吕远, 董庆, 等, 2002. 含水含盐土壤的微波介电特性分析研究[J]. 遥感学报, 6(6): 416-423. doi: 10.11834/jrs.20020604
    [59] 苏强, 任俊杰, 梁欧博, 等, 2020. 基于ALOS PALSAR影像的莫勒切河洪积扇地貌面定量分期[J]. 地震地质, 42(1): 79-94. doi: 10.3969/j.issn.0253-4967.2020.01.006
    [60] 孙朋, 2017. 极端干旱区沙漠包气带降水入渗与蒸发规律模拟研究[D]. 兰州: 兰州大学.
    [61] 王萍, 2003. 甘肃疏勒河冲积扇发育对构造活动的响应: 兼论阿尔金断裂东端新构造活动特征[D]. 北京: 中国地震局地质研究所.
    [62] 王萍, 卢演俦, 丁国瑜, 等, 2004. 甘肃疏勒河冲积扇发育特征及其对构造活动的响应[J]. 第四纪研究, 24(1): 74-81. doi: 10.3321/j.issn:1001-7410.2004.01.009
    [63] 徐锡伟, TAPPONNIER P, VAN DER WOERD J, 等, 2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑), 33(10): 967-974. doi: 10.3321/j.issn:1006-9267.2003.10.007
    [64] 杨鑫, 2008. 浅谈遥感图像监督分类与非监督分类[J]. 四川地质学报, 28(3): 251-254. doi: 10.3969/j.issn.1006-0995.2008.03.020
    [65] 云龙, 张进, 王驹, 等, 2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 27(2): 195-207,doi: 10.12090/j.issn.1006-6616.2021.27.02.019.
    [66] 郑荣章, 2005. 阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制[D]. 北京: 中国地震局地质研究所.
  • 期刊类型引用(1)

    1. 肖述刚,徐恒,常国虎,余莉,王宗元,张忠明,张俊学,汤俊,卢楠迪,杨文坚. 云南个旧阳山地区淡色花岗岩成因与成矿效应:岩石地球化学和独居石U-Pb年代学方面的制约. 矿物岩石. 2024(04): 41-57 . 百度学术

    其他类型引用(0)

  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  485
  • HTML全文浏览量:  132
  • PDF下载量:  26
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-21
  • 修回日期:  2023-09-26
  • 录用日期:  2023-10-20

目录

/

返回文章
返回