留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京顺义断裂活动对首都机场地裂缝影响定量研究

任雅哲 丰成君 戚帮申 葛伟亚 谭成轩 孟静

任雅哲, 丰成君, 戚帮申, 等, 2023. 北京顺义断裂活动对首都机场地裂缝影响定量研究. 地质力学学报, 29 (5): 685-703. DOI: 10.12090/j.issn.1006-6616.2023063
引用本文: 任雅哲, 丰成君, 戚帮申, 等, 2023. 北京顺义断裂活动对首都机场地裂缝影响定量研究. 地质力学学报, 29 (5): 685-703. DOI: 10.12090/j.issn.1006-6616.2023063
REN Yazhe, FENG Chengjun, QI Bangshen, et al., 2023. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China. Journal of Geomechanics, 29 (5): 685-703. DOI: 10.12090/j.issn.1006-6616.2023063
Citation: REN Yazhe, FENG Chengjun, QI Bangshen, et al., 2023. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China. Journal of Geomechanics, 29 (5): 685-703. DOI: 10.12090/j.issn.1006-6616.2023063

北京顺义断裂活动对首都机场地裂缝影响定量研究

doi: 10.12090/j.issn.1006-6616.2023063
基金项目: 

中国地质调查局地质调查项目 DD20230540

详细信息
    作者简介:

    任雅哲(1996-), 女, 在读硕士, 主要从事城市活动断裂、地质安全风险调查评价等工作。E-mail: renyz77@163.com

    通讯作者:

    丰成君(1985-), 男, 博士, 正高级工程师, 主要从事原位地应力测量、构造应力场研究、地质安全风险评价、深部流体注采诱发断层活化等研究工作。E-mail: fengchengjun@mail.cgs.gov.cn

  • 中图分类号: P553;P554;P642

Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China

Funds: 

the Geological Survey Project of the China Geological Survey DD20230540

  • 摘要:

    顺义断裂是北京平原区重要的晚更新世活动断层。首都国际机场位于顺义断裂中段, 2010年以来, 机场跑道地裂缝逐渐加剧, 地裂缝两侧最大垂直位移差高达20 cm, 已经严重影响机场安全运行。当前, 顺义断裂活动对首都机场地裂缝的影响仍以定性描述为主。文章以顺义断裂几何结构、第四纪活动性以及首都机场地裂缝调查研究为基础, 依据断层位错理论, 定量分析了顺义断裂蠕滑活动对机场地裂缝形成的贡献, 研究了1996年12月16日顺义ML4.5级地震对机场地裂缝可能产生的影响, 并讨论了顺义断裂未来发生潜在强震时机场地裂缝灾害风险增加的趋势。分析认为, 在0.6 mm/a的垂直活动速率下, 顺义断裂蠕滑活动46年, 在机场地裂缝两侧产生的差异沉降量不超过2.5 cm, 对机场地裂缝形成和发展的贡献量约占20%;顺义ML4.5级地震对机场地裂缝的形成影响甚微, 顺义断裂若未来发生7.0级地震, 估算在断裂两盘产生的差异沉降量最大达104 cm, 机场地裂缝灾害风险将增加5倍; 顺义断裂上盘中、深层地下水抽采引起的地面差异沉降在机场地裂缝形成和扩展中的贡献量为70%, 仍是导致机场地裂缝加剧的主要因素。研究结果可为首都国际机场地裂缝灾害精准防控提供重要科学参考。此外, 为深入揭示顺义断裂沿线地裂缝、地面差异沉降等缓变型地质灾害成因机理和灾害效应, 建议在其关键部位实施跨断层位移或形变动态监测工作。

     

  • 图  1  北京顺义地区地质构造简图

    Figure  1.  Sketch map of the geological structure in the Shunyi region, Beijing

    图  2  2018年首都国际机场地裂缝展布特征

    Figure  2.  Ground fissure distribution in the Beijing Capital International Airport (in 2018)

    图  3  半无限空间断层位错模型示意图(据Okada,1992修改)

    α—倾角; β—滑动角

    Figure  3.  Diagrammatic sketch of the fault dislocation model in semi-infinite space (modified after Okada, 1992)

    α-dip angle; β-slope angle

    图  4  顺义断裂正断蠕滑活动46年在地表产生的垂直位移(正表示上升,负表示下降)

    Figure  4.  Surface vertical displacement induced by normal fault creep-sliding of the Shunyi fault for 46 years (Positive means vertical upward displacement, while negative represents vertical downward displacement.)

    图  5  顺义断裂正断蠕滑活动46年在全新统底界产生的垂直位移(正表示上升,负表示下降)

    Figure  5.  Vertical displacement at the bottom of the Holocene induced by normal fault creep-sliding of the Shunyi fault for 46 years (Positive means vertical upward displacement, while negative represents vertical downward displacement.)

    图  6  1996年12月16日顺义ML4.5级地震在地表产生的垂直位移(正表示上升,负表示下降)

    Figure  6.  Surface vertical displacement induced by the ML4.5 earthquake occurred on December 16th, 1996 near the Shunyi fault (Positive means vertical upward displacement, while negative represents vertical downward displacement.)

    图  7  顺义断裂发生6.5级地震时在地表产生的垂直位移(正表示上升,负表示下降)

    Figure  7.  Surface vertical displacement induced by the the potential strong earthquake with a magnitude of 6.5 along the Shunyi fault (Positive means vertical upward displacement, while negative represents vertical downward displacement.)

    图  8  顺义断裂发生7.0级地震时在地表产生的垂直位移(正表示上升,负表示下降)

    Figure  8.  Surface vertical displacement induced by the the potential strong earthquake with a magnitude of 7.0 along the Shunyi fault (Positive means vertical upward displacement, while negative represents vertical downward displacement.)

    图  9  顺义断裂倾角对地表垂直位移的影响(正表示上升,负表示下降)

    Figure  9.  The effect of the shunyi fault' s dip angle on the surface vertical displacement (Positive means vertical upward displacement, while negative represents vertical downward displacement.)

    图  10  顺义断裂垂直活动速率对地表垂直位移的影响(正表示上升,负表示下降)

    Figure  10.  The effect of the Shunyi fault' s verticle displacement rate on the surface vertical displacement (Positive means vertical upward displacement, while negative represents vertical downward displacement.)

    图  11  首都国际机场地裂缝耦合成因模式

    Figure  11.  The coupled genetic model of the ground fissures in the Beijing Capital International Airport

    表  1  首都国际机场及邻区垂向深度地层结构和物理力学参数模型

    Table  1.   Model of vertical stratigraphic texture and physical-mechanical parameters of the Beijing Capital International Airport and its vicinities

    地层 深度范围/m 密度/(g/cm3) vp/(km/s) vs/(km/s)
    全新统 0~10 1.90 1.83 0.42
    上更新统 10~30 1.91 1.83 0.42
    中更新统 30~115 2.08 1.83 0.42
    下更新统 115~410 2.14 1.83 0.42
    上新统 410~520 2.37 1.83 0.42
    侏罗系 520~1000 2.65 4.20 2.30
    蓟县系 1000~2250 2.70 4.20 2.30
    长城系 2250~3650 2.70 4.20 2.30
    太古界 3650~12000 2.72 6.10 3.50
    下载: 导出CSV

    表  2  顺义断裂未来发生6.5级和7.0级强震时产生的地震破裂参数

    Table  2.   Seismic rupture parameters of potential strong earthquakes with the manitude of 6.5 and 7.0 along the Shunyi fault

    M L/km W/km A/km2 AD/m
    6.5 25.4 10.6 269.5 0.30
    7.0 45.1 18.9 851.1 1.22
    下载: 导出CSV
  • BAI L Y, ZHANG L, CAI X M, et al., 2014. Quaternary magnetostratigraphic time framework constraints on activity characteristics of the Shunyi fault, Beijing plain[J]. Geoscience, 28(6): 1234-1242. (in Chinese with English abstract)
    BERRY D S, SALES T W, 1962. An elastic treatment of ground movement due to mining-Ⅲ three dimensional problem, transversely isotropic ground[J]. Journal of the Mechanics and Physics of Solids, 10(1): 73-83. doi: 10.1016/0022-5096(62)90030-3
    CAI H, SUN H R, ZHAO Q L, et al., 2012. Coseismic displacement field of continental area of China associated with the MW9.0 Japan earthquake in 2011 by GPS[J]. Geomatics and Information Science of Wuhan University, 37(8): 953-955, 1009. (in Chinese with English abstract)
    CHINNERY M A, 1961. The deformation of the ground around surface faults[J]. Bulletin of the Seismological Society of America, 51(3): 355-372. doi: 10.1785/BSSA0510030355
    CUI B W, YUE X Y WANG L H, 2021. Correlation between small earthquake activity in Beijing Area and significant earthquake in Beijing and surrounding area[J]. North China Earthquake Sciences, 39(4): 87-94. (in Chinese with English abstract)
    DAVIS P M, 1983. Surface deformation associated with a dipping hydrofracture[J]. Journal of Geophysical Research: Solid Earth, 88(B7): 5826-5834. doi: 10.1029/JB088iB07p05826
    FAN Y L, FENG C J, ZHANG P, et al., 2022. Impact of Tohoku-Oki 3.11 M9.0 earthquake on the fault slip potential of the active Quaternary faults in Beijing City: New insights from in situ stress monitoring data[J]. Sensors, 22(13): 4888. doi: 10.3390/s22134888
    FENG C J, ZHANG P, SUN W F, et al., 2013. A discussion on the impact of Japan MW 9.0 earthquake on the main active fault zone in north- and northeast-China continent and the seismic risk[J]. Earth Science Frontiers, 20(6): 123-140. (in Chinese with English abstract)
    FENG C J, YANG Y H, MA X D, et al., 2020. Local stress perturbations associated with the 2008 Wenchuan M 8.0 earthquake near the Longmenshan fault zone in the eastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 200: 104429. doi: 10.1016/j.jseaes.2020.104429
    GAO M L, GONG H L, CHEN B B, et al., 2016. InSAR time-series investigation of long-term ground displacement at Beijing Capital International Airport, China[J]. Tectonophysics, 691: 271-181. doi: 10.1016/j.tecto.2016.10.016
    GAO Z W, CHEN Q F, HUANG J L, et al., 2010. Velocity structure beneath the active faults in Beijing area and their seismo-tectonic characteristics[J]. Technology for Earthquake Disaster Prevention, 5(3): 271-280. (in Chinese with English abstract)
    GUAN H P, MA L, CHEN Q F, et al., 1997. Shunyi 4.0 earthquake swarm and the aftershock tendency analysis in the Capital area[J]. Earthquake, 17(4): 411-416. (in Chinese with English abstract)
    GUAN J H, GAO M L, GONG H L, 2021. Discussion on the causes of regional differential settlement of Beijing-capital international airport[J]. Science of Surveying and Mapping, 46(9): 67-75. (in Chinese with English abstract)
    GUO L Q, LI Y X, HUANG L R, et al., 2006. Characteristics of strain field variation in Beijing Area[J]. Journal of Geodesy and Geodynamics, 26(3): 46-52. (in Chinese with English abstract)
    HU P, LUO H C, MENG Y Q, et al., 2000. Analyses for activity of north section of the Shunyi-Liangxiang fault from the Shunyi ground rupture zone[J]. Seismology and Geology, 22(2): 123-128. (in Chinese with English abstract)
    HUANG J C, WAN Y G, 2015. Present tectonic stress field in the Capital Region of China determined from small and strong earthquake focal mechanisms[J]. Earthquake, 35(1): 17-27. (in Chinese with English abstract)
    JIA S M, GUO M, 2007. The relation between Huangzhuang-Gaoliying fault and by Gaoliying trench and earth fissure[J]. Geological Hazards, 2(4): 24-28. (in Chinese with English abstract)
    JIA S M, LIU M K, TIAN F, et al., 2011. The Classification of ground fissures and their prevention measures in Beijing area[J]. Urban Geology, 6(2): 4-7, 24. (in Chinese with English abstract)
    JIANG Y, WANG R, TIAN F, et al., 2014. Study on the relationship between land subsidence and ground fissures in Beijing[J]. Urban Geology, 9(4): 6-10. (in Chinese with English abstract)
    LEI X D, QI B S, GUAN W, et al., 2021. Research on the faults identification based on gravity anomaly in Beijing plain[J]. Chinese Journal of Geophysics, 64(4): 1253-1265. (in Chinese with English abstract)
    LIN C Y, CHEN X D, LUO H C, et al., 2006. Microscopic analysis of the trench across the Shunyi-Qianmen-Liangxiang fault at Shunyi, Beijing and its implications[J]. Seismology and Geology, 28(4): 561-578. (in Chinese with English abstract)
    LIU F C, QI S W, PENG J B, et al., 2016. Characters of the ground fissures developing in Beijing[J]. Journal of Engineering Geology, 24(6): 1269-1277. (in Chinese with English abstract)
    LIU M K, JIA S M, CHEN Z Z, et al., 2014. Study of the activity and impact of the Gaoliying ground fissure on the Beijing plain[J]. Shanghai Land & Resources, 35(4): 53-57. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1329.2014.04.012
    LIU Y Y, CHONG J J, NI S D, 2011. Near surface wave velocity structure in Chinese capital region based on borehole seismic records[J]. Acta Seismologica Sinica, 33(3): 342-350. (in Chinese with English abstract)
    LONG F, WEN X Z, XU X W, 2006. Empirical relationships between magnitude and rupture length, and rupture area, for seismogenic active faults in North China[J]. Seismology and Geology, 28(4): 511-535. (in Chinese with English abstract)
    LU Q Z, PENG J B, DENG Y H, et al., 2014. Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing[J]. Geotechnical Investigation & Surveying, 42(6): 5-11. (in Chinese with English abstract)
    LV J B, ZHENG G S, LI L J, et al., 2016. Primary establishment of stratigraphic section in plain area of Beijing: Archean crystalline basement and Proterozoic strata[J]. Geology in China, 43(3): 879-889. (in Chinese with English abstract)
    LV P L, WANG H M, LV M M, 1998. The background and implication of the 1996 Shunyi earthquake[J]. Seismological and Geomagnetic Observation and Research, 19(3): 16-21. (in Chinese with English abstract)
    MA X J, YANG X D, JIA G X, 2015. Genesis analysis of fault creep type ground fissures in the Hebei plain[J]. Geological Survey of China, 2(8): 48-54. (in Chinese with English abstract)
    MARUYAMA T, 1964. Statical elastic dislocations in an infinite and semi-infinite medium[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 42(2): 289-368.
    OKADA Y, 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154. doi: 10.1785/BSSA0750041135
    OKADA Y, 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018
    OZAWA S, NISHIMURA T, SUITO H, et al., 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 475(7356): 373-376. doi: 10.1038/nature10227
    PENG J B, FAN W, LI X A, et al., 2007. Some key questions in the formation of ground fissures in the Fen-Wei basin[J]. Journal of Engineering Geology, 15(4): 433-440. (in Chinese with English abstract)
    PENG J B, LAN H X, QIAN H, et al., 2020. Scientific research framework of livable Yellow River[J]. Journal of Engineering Geology, 28(2): 189-201. (in Chinese with English abstract)
    PRESS F, 1965. Displacements, strains, and tilts at teleseismic distances[J]. Journal of Geophysical Research, 70(10): 2395-2412. doi: 10.1029/JZ070i010p02395
    QI B S, PAN Z F, FENG C J, et al., 2020. Application of comprehensive geophysical-drilling exploration to detect the buried Shunyi active fault belt in Beijing[J]. Acta Geologica Sinica, 94(4): 1315-1329. (in Chinese with English abstract)
    QIAO J W, PENG J B, ZHENG J G, et al., 2020. Development rules and movement characteristics of earth fissures in China[J]. Journal of Engineering Geology, 28(5): 1016-1027. (in Chinese with English abstract)
    QIN X H, ZHANG P, FENG C J, et al., 2014. In-situ stress measurements and slip stability of major faults in Beijing region, China[J]. Chinese Journal of Geophysics, 57(7): 2165-2180. (in Chinese with English abstract)
    REN J J, ZHANG S M, TANG R Y, 2007. Activity characteristics of the ground fissure belt in Shunyi County, Beijing and measures for disaster reduction[J]. Urban Geology, 2(1): 33-38. (in Chinese with English abstract)
    SHEN W S, LUO Y, NI S D, et al., 2010. Resolving near surface S velocity structure in natural earthquake frequency band: A case study in Beijing region[J]. Acta Seismologica Sinica, 32(2): 137-146. (in Chinese with English abstract)
    STEKETEE J A, 1958. On Volterra's dislocations in a semi-Infinite elastic medium[J]. Canadian Journal of Physics, 36(2): 192-205. doi: 10.1139/p58-024
    SUN W K, OKUBO S, 1998. Surface potential and gravity changes due to internal dislocations in a spherical earth-Ⅱ. Application to a finite fault[J]. Geophysical Journal International, 132(1): 79-88.
    SUN Y J, DONG S W, FAN T Y, et al., 2013. The effect of Tohoku MW9.0 earthquake on the near-field seismic activity from the coseismic and postseismic deformation[J]. Progress in Geophysics, 28(3): 1131-1139. (in Chinese with English abstract)
    TAN C X, ZHANG P, FENG C J, et al., 2014. An approach to deep borehole crustal stress measuring and real-time monitoring and its application in seismogeology research in Capital Beijing region[J]. Acta Geologica Sinica, 88(8): 1436-1452. (in Chinese with English abstract)
    TAN C X, YANG W M, ZHANG C S, et al., 2020. Jingjinji xietong fazhanqu huodong gouzao yu quyu diqiao wendingxing yanjiu[M]. Beijing: Geological Publishing House. (in Chinese)
    TIAN M Z, ZHAO L, LUO Y, et al., 2019. On the development characteristics and genesis of Shunyi ground fissure (Airport segment)[J]. Urban Geology, 14(4): 17-21. (in Chinese with English abstract)
    WAN J W, LI B, TAN C X, et al., 2019. Characteristics and mechanism of earth fissures in China: A case study of Fenhe river-Weihe river basin, Hebei plain and Suzhou-Wuxi-Changzhou plain[J]. Geological Review, 65(6): 1383-1396. (in Chinese with English abstract)
    WAN J W, LI B, TAN C X, et al., 2021. Formation mechanism of pumping-induced earth fissures associated with a pre-existing normal fault, Beijing, China[J]. Engineering Geology, 294: 106361. doi: 10.1016/j.enggeo.2021.106361
    WAN J W, LI B, GAO Y, et al., 2022. Dynamic response of the inhomogeneous pavement structure containing a buried fault zone under the moving aircraft loads[J]. Bulletin of Engineering Geology and the Environment, 81(8): 301. doi: 10.1007/s10064-022-02770-4
    WAN Y G, JIN Z T, CUI H W, et al., 2017. Study on displacement of the peaks of the Himalaya generated by the 2015 Nepal earthquake sequence[J]. Seismology and Geology, 39(4): 699-711. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2017.04.006
    WANG H G, LIU M K, JIA S M, et al., 2013. Simulation of Gaoliying ground fissure based on FLAC3D[J]. South-to-North Water Transfers and Water Science & Technology, 11(5): 86-90. (in Chinese with English abstract)
    WANG H M, LV M M, LV P L, 1998. On temporal features of Shunyi earthquake sequence of Dec. 16, 1996 and its relation with the seismicity in neighbouring area[J]. Earthquake, 18(1): 41-48. (in Chinese with English abstract)
    WANG J M, 2000. Theory of ground fissures hazards and its application[M]. Xi'an: Shaanxi Science and Technology Press. (in Chinese)
    WANG L F, LIU J, ZHAO J G, et al., 2013. Coseismic slip and post-seismic relaxation of the 2011 M 9.0 Tohoku-Oki earthquake and its influence on China mainland[J]. Earthquake, 33(4): 238-247. (in Chinese with English abstract)
    WANG M, LI Q, WANG F, et al., 2011. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System[J]. Chinese Science Bulletin, 56(23): 2419-2424. doi: 10.1007/s11434-011-4588-7
    WANG R J, MARTIN F L, ROTH F, 2006. PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 32(4): 527-541.
    WANG S Z, 1990. Preduction of seisnigebic probabilities of potential hypocenters in Beijing Area by using the multi-criterion tectonophysical method[J]. Earthquake Research in China, 6(3): 11-19. (in Chinese with English abstract)
    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974
    WU M J, WU A X, XU P, et al., 2012. Comprehensive research on focal mechanism solutions in the Capital Area[J]. Earthquake Research in China, 28(4): 393-401. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4683.2012.04.006
    WU Q, GAO M T, 2018. A preliminary study on the correlativity of seismic hazard between Beijing Area and Xiong'an New Area[J]. Seismology and Geology, 40(4): 935-943. (in Chinese with English abstract)
    WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract)
    XU H, SUN Y J, WU Z H, 2016. The effect of 1668 Tancheng M8.5 earthquake on the Seismic activity of the vicinity from coseismic and postseismic deformation[J]. Journal of Geomechanics, 22(3): 568-576. (in Chinese with English abstract)
    XU X W, WANG Z G, XU C, et al., 2021. Natural disaster risk analysis and its countermeasures of major urban agglomerations in China[J]. City and Disaster Reduction(6): 1-6. (in Chinese)
    XUAN Y, 2011. Fault activity research and seismic risk analysis of Beijing district[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    YANG F, HUANG J L, 2013. High precision 3D P-wave velocity model of the upper crust under the Chinese capital region based on oil seismic stack velocity and deep seismic sounding[J]. Chinese Journal of Geophysics, 56(5): 1487-1496. (in Chinese with English abstract)
    YANG T, GONG H L, ZHAO W J, et al., 2010. Distribution characteristics and cause analysis of ground fissures in Shunyi district of Beijing[J]. Journal of Natural Disasters, 19(6): 100-106. (in Chinese with English abstract)
    YANG X X, HU D G, JIA L Y, et al., 2023. Quaternary activity characteristics of the Qionghua-Liantang fault belt in Hainan[J]. Journal of Geomechanics, 29(1): 127-137. (in Chinese with English abstract)
    YANG Y, ZHENG F D, LIU L C, et al., 2013. Study on the correlation between groundwater level and ground subsidence in Beijing plain areas[J]. Geotechnical Investigation & Surveying, 41(8): 44-48. (in Chinese with English abstract)
    ZHANG H Y, XIE F R, JIAO Q, et al., 2007. Cross-fault deformation observation and crustal stress field in Capital circle region[J]. Seismology and Geology, 29(4): 706-715. (in Chinese with English abstract)
    ZHANG L, HE F B, BAI L Y, et al., 2015. Astronomical cyclostratigraphy study of Quaternary activities in northern segment of the Shunyi fault, Beijing[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 54(5): 147-154. (in Chinese with English abstract)
    ZHANG L, ZHANG X L, BAI L Y, et al., 2017. Activity study and disaster effect analysis of the north section of Huangzhuang-Gaoliying fault in Beijing[J]. Journal of Geomechanics, 23(4): 548-557. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.04.006
    ZHANG S M, LIU X D, REN J J, et al., 2005. Quaternary activities of northern segment of the Shunyi-Liangxiang fault[J]. Earthquake Research in China, 21(1): 84-92. (in Chinese with English abstract)
    ZHAO L, LIU J R, WANG R, et al., 2017. Distribution characteristics and cause analysis of Songzhuang ground fissures in Beijing[J]. Shanghai Land & Resources, 38(2): 35-38. (in Chinese with English abstract)
    ZHAO L, LI Y M, CUI W J, et al., 2018. Disaster characteristics and influence factors for ground fissures at Songzhuang Village in Beijing[J]. Journal of Engineering Geology, 26(6): 1600-1610. (in Chinese with English abstract)
    ZHAO L, LUO Y, LI Y M, et al., 2019. Characteristics of disaster-affected bodies and influence factors for earth fissure in Beijing Plain[J]. Hydrogeology & Engineering Geology, 46(6): 156-164. (in Chinese with English abstract)
    ZHAO Z H, 2006. Discussion on the distributions characteristic and genetic type of the land crack in Beijing[J]. Journal of Geological Hazards and Environment Preservation, 17(3): 75-78. (in Chinese with English abstract)
    ZHU S B, CAI Y E, 2009. Dynamic mechanisms of the post-seismic deformation following large events: Case study of the 1999 Chi-Chi earthquake in Taiwan of China[J]. Science in China Series D: Earth Sciences, 52(11): 1813-1824. doi: 10.1007/s11430-009-0144-6
    白凌燕, 张磊, 蔡向民, 等, 2014. 磁性地层年代对北京平原顺义断裂第四纪活动性的约束[J]. 现代地质, 28(6): 1234-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201406013.htm
    蔡华, 孙汉荣, 赵齐乐, 等, 2012. GPS测定的2011年日本9.0级地震的中国大陆地区同震位移场[J]. 武汉大学学报·信息科学版, 37(8): 953-955, 1009. doi: 10.13203/j.whugis2012.08.020
    崔博闻, 岳晓媛, 王丽红, 2021. 北京地区小震活动与北京及周边地区显著地震相关性研究[J]. 华北地震科学, 39(4): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD202104016.htm
    丰成君, 张鹏, 孙炜锋, 等, 2013. 日本MW9.0级地震对中国华北-东北大陆主要活动断裂带的影响及地震危险性初步探讨[J]. 地学前缘, 20(6): 123-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306021.htm
    高战武, 陈棋福, 黄金莉, 等, 2010. 北京地区主要活动断裂深部速度结构特征及强震构造分析[J]. 震灾防御技术, 5(3): 271-280. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201003000.htm
    关华平, 马丽, 陈棋福, 等, 1997. 北京顺义4.0级地震和震后首都圈地震趋势分析[J]. 地震, 17(4): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN199704010.htm
    关金环, 高明亮, 宫辉力, 2021. 首都国际机场区域差异性沉降原因探讨[J]. 测绘科学, 46(9): 67-75. doi: 10.16251/j.cnki.1009-2307.2021.09.009
    郭良迁, 李延兴, 黄立人, 等, 2006. 北京地区近十年应变场变化特征[J]. 大地测量与地球动力学, 26(3): 46-52. doi: 10.14075/j.jgg.2006.03.008
    胡平, 罗华春, 孟勇琦, 等, 2000. 从顺义地表破裂带分析顺义-良乡断裂北段的活动性[J]. 地震地质, 22(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200002004.htm
    黄骥超, 万永革, 2015. 利用小震与强震震源机制解反演首都圈现今构造应力场[J]. 地震, 35(1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201501003.htm
    贾三满, 郭萌, 2007. 从高丽营探槽分析黄庄-高丽营断裂与地裂缝的关系[J]. 地质灾害, 2(4): 24-28. doi: 10.3969/j.issn.1003-8035.2007.04.006
    贾三满, 刘明坤, 田芳, 等, 2011. 北京地区地裂缝分类及防治措施[J]. 城市地质, 6(2): 4-7, 24. doi: 10.3969/j.issn.1007-1903.2011.02.002
    姜媛, 王荣, 田芳, 等, 2014. 北京地区地面沉降与地裂缝关系研究[J]. 城市地质, 9(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201404002.htm
    雷晓东, 戚帮申, 关伟, 等, 2021. 北京平原区断裂构造重力异常识别研究[J]. 地球物理学报, 64(4): 1253-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202104010.htm
    林传勇, 陈孝德, 罗华春, 等, 2006. 北京顺义-前门-良乡断裂探槽的微观分析及其启示[J]. 地震地质, 28(4): 561-578. doi: 10.3969/j.issn.0253-4967.2006.04.004
    刘方翠, 祁生文, 彭建兵, 等, 2016. 北京市地裂缝分布与发育规律[J]. 工程地质学报, 24(6): 1269-1277. doi: 10.13544/j.cnki.jeg.2016.06.029
    刘明坤, 贾三满, 陈柘舟, 等, 2014. 北京平原区高丽营地裂缝带活动性及灾害特征研究[J]. 上海国土资源, 35(4): 53-57. doi: 10.3969/j.issn.2095-1329.2014.04.012
    刘渊源, 崇加军, 倪四道, 2011. 基于井下摆天然地震数据测量首都圈近地表波速结构[J]. 地震学报, 33(3): 342-350. doi: 10.3969/j.issn.0253-3782.2011.03.007
    龙锋, 闻学泽, 徐锡伟, 2006. 华北地区地震活断层的震级-破裂长度、破裂面积的经验关系[J]. 地震地质, 28(4): 511-535. doi: 10.3969/j.issn.0253-4967.2006.04.001
    卢全中, 彭建兵, 邓亚虹, 等, 2014. 北京北七家-高丽营地裂缝破坏特征及影响带宽度[J]. 工程勘察, 42(6): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201406002.htm
    吕金波, 郑桂森, 李良景, 等, 2016. 北京平原区地质剖面的初步建立-太古宙结晶基底和元古宙地层[J]. 中国地质, 43(3): 879-889. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603013.htm
    吕培苓, 王慧敏, 吕梅梅, 1998. 1996年顺义地震的背景及其含义[J]. 地震地磁观测与研究, 19(3): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ803.002.htm
    马学军, 杨旭东, 贾国欣, 2015. 河北平原断层蠕滑地裂缝成因分析[J]. 中国地质调查, 2(8): 48-54. doi: 10.19388/j.zgdzdc.2015.08.008
    彭建兵, 范文, 李喜安, 等, 2007. 汾渭盆地地裂缝成因研究中的若干关键问题[J]. 工程地质学报, 15(4): 433-440. doi: 10.3969/j.issn.1004-9665.2007.04.001
    彭建兵, 兰恒星, 钱会, 等, 2020. 宜居黄河科学构想[J]. 工程地质学报, 28(2): 189-201. doi: 10.13544/j.cnki.jeg.2020-129
    戚帮申, 潘智锋, 丰成君, 等, 2020. 北京顺义断裂第四纪活动性地球物理及钻孔综合探测证据[J]. 地质学报, 94(4): 1315-1329. doi: 10.3969/j.issn.0001-5717.2020.04.020
    乔建伟, 彭建兵, 郑建国, 等, 2020. 中国地裂缝发育规律与运动特征研究[J]. 工程地质学报, 28(5): 1016-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005011.htm
    秦向辉, 张鹏, 丰成君, 等, 2014. 北京地区地应力测量与主要断裂稳定性分析[J]. 地球物理学报, 57(7): 2165-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407012.htm
    任俊杰, 张世民, 唐荣余, 2007. 北京顺义地裂缝带的活动特征及减灾措施[J]. 城市地质, 2(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ200701007.htm
    沈伟森, 罗艳, 倪四道, 等, 2010. 天然地震频率范围内首都圈地区近地表S波速度结构[J]. 地震学报, 32(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201002002.htm
    孙玉军, 董树文, 范桃园, 等, 2013. 从同震和震后形变分析日本东北MW9.0级大地震对近场地震活动性的影响[J]. 地球物理学进展, 28(3): 1131-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303003.htm
    谭成轩, 张鹏, 丰成君, 等, 2014. 探索首都圈地区深孔地应力测量与实时监测及其在地震地质研究中应用[J]. 地质学报, 88(8): 1436-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408006.htm
    谭成轩, 杨为民, 张春山, 等, 2020. 京津冀协同发展区活动构造与区域地壳稳定性研究[M]. 北京: 地质出版社.
    田苗壮, 赵龙, 罗勇, 等, 2019. 顺义地裂缝(机场段)发育特征与成因分析[J]. 城市地质, 14(4): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201904004.htm
    万佳威, 李滨, 谭成轩, 等, 2019. 中国地裂缝的发育特征及成因机制研究: 以汾渭盆地、河北平原、苏锡常平原为例[J]. 地质论评, 65(6): 1383-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906008.htm
    万永革, 靳志同, 崔华伟, 等, 2017. 2015年尼泊尔强震序列导致的喜马拉雅山峰位移场[J]. 地震地质, 39(4): 699-711. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201704006.htm
    王海刚, 刘明坤, 贾三满, 等, 2013. 基于FLAC3D的北京高丽营地裂缝模拟[J]. 南水北调与水利科技, 11(5): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201305020.htm
    王慧敏, 吕梅梅, 吕培苓, 1998. 1996年12月16日北京顺义地震时序特征及其与邻区地震活动的关系[J]. 地震, 18(1): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN199801006.htm
    王景明, 2000. 地裂缝及其灾害的理论与应用[M]. 西安: 陕西科学技术出版社.
    王丽凤, 刘杰, 赵金贵, 等, 2013. 2011年日本9.0级地震的同震位错以及震后应力松弛过程对中国大陆的影响[J]. 地震, 33(4): 238-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201304027.htm
    王敏, 李强, 王凡, 等, 2011. 全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移[J]. 科学通报, 56(20): 1593-1596. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201120003.htm
    王绳祖, 1990. 北京地区潜在震源区发震概率的多判据构造物理方法预测[J]. 中国地震, 6(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199003001.htm
    武敏捷, 武安绪, 徐平, 等, 2012. 首都圈地区震源机制解综合研究[J]. 中国地震, 28(4): 393-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201204006.htm
    吴清, 高孟潭, 2018. 北京地区与雄安新区地震危险性相关性初探[J]. 地震地质, 40(4): 935-943. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201804016.htm
    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206004.htm
    徐昊, 孙玉军, 吴中海, 2016. 从同震和震后形变分析1668年M8.5级郯城地震对周边地震活动性的影响[J]. 地质力学学报, 22(3): 568-576. doi: 10.3969/j.issn.1006-6616.2016.03.012
    徐锡伟, 王中根, 许冲, 等, 2021. 我国主要城市群自然灾害风险分析与防范对策[J]. 城市与减灾(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ202106002.htm
    玄月, 2011. 北京市断裂活动性研究及地震危险性分析[D]. 北京: 中国地质大学(北京).
    杨峰, 黄金莉, 2013. 首都圈上地壳高精度三维P波速度模型: 基于石油地震叠加速度和人工地震测深剖面[J]. 地球物理学报, 56(5): 1487-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305008.htm
    杨涛, 宫辉力, 赵文吉, 等, 2010. 北京顺义区地裂缝分布特征及成因分析[J]. 自然灾害学报, 19(6): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201006014.htm
    杨肖肖, 胡道功, 贾丽云, 等, 2023. 海南琼华-莲塘断裂带第四纪活动特征[J]. 地质力学学报, 29(1): 127-137. doi: 10.12090/j.issn.1006-6616.2022020
    杨勇, 郑凡东, 刘立才, 等, 2013. 北京平原区地下水水位与地面沉降关系研究[J]. 工程勘察, 41(8): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201308011.htm
    张红艳, 谢富仁, 焦青, 等, 2007. 首都圈地区跨断层形变观测与地壳应力场[J]. 地震地质, 29(4): 706-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200704001.htm
    张磊, 何付兵, 白凌燕, 等, 2015. 北京顺义断裂带北段第四纪活动的天文旋回地层学研究[J]. 中山大学学报(自然科学版), 54(5): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201505026.htm
    张磊, 张晓亮, 白凌燕, 等, 2017. 北京地区黄庄-高丽营断裂北段活动性研究与灾害效应分析[J]. 地质力学学报, 23(4): 548-557. https://journal.geomech.ac.cn/article/id/1ee6d45d-f158-42f7-8297-d97335afba69
    张世民, 刘旭东, 任俊杰, 等, 2005. 顺义地裂缝成因与顺义-良乡断裂北段第四纪活动性讨论[J]. 中国地震, 21(1): 84-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200501008.htm
    赵龙, 刘久荣, 王荣, 等, 2017. 北京宋庄地裂缝分布特征及成因分析[J]. 上海国土资源, 38(2): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201702010.htm
    赵龙, 李玉梅, 崔文君, 等, 2018. 北京宋庄地裂缝灾害特征及影响因素分析[J]. 工程地质学报, 26(6): 1600-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806022.htm
    赵龙, 罗勇, 李玉梅, 等, 2019. 北京平原区地裂缝受灾体形态特征及影响因素[J]. 水文地质工程地质, 46(6): 156-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906022.htm
    赵忠海, 2006. 北京地区地裂缝灾害的分布特征及其成因探讨[J]. 地质灾害与环境保护, 17(3): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB200603017.htm
    朱守彪, 蔡永恩, 2009. 强震后地表变形的动力学机制研究: 以1999年台湾集集地震为例[J]. 中国科学D辑: 地球科学, 39(9): 1209-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200909006.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  203
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-06-21
  • 录用日期:  2023-08-21

目录

    /

    返回文章
    返回