留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化

崔润泽 魏春景

崔润泽, 魏春景, 2023. 华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化. 地质力学学报, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049
引用本文: 崔润泽, 魏春景, 2023. 华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化. 地质力学学报, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049
CUI Runze, WEI Chunjing, 2023. Evolution of metamorphic processes in the Neoarchean mafic granulites of the Qingyuan Terrane in northern Liaoning, North China Craton. Journal of Geomechanics, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049
Citation: CUI Runze, WEI Chunjing, 2023. Evolution of metamorphic processes in the Neoarchean mafic granulites of the Qingyuan Terrane in northern Liaoning, North China Craton. Journal of Geomechanics, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049

华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化

doi: 10.12090/j.issn.1006-6616.2023049
基金项目: 

国家自然科学基金项目 41872057

国家自然科学基金项目 418930834

详细信息
    作者简介:

    崔润泽(1996-), 男, 在读博士, 主要从事变质作用与相平衡模拟研究。E-mail: rzcui@pku.edu.cn

  • 中图分类号: P583

Evolution of metamorphic processes in the Neoarchean mafic granulites of the Qingyuan Terrane in northern Liaoning, North China Craton

Funds: 

the Funds of the National Natural Science Foundation of China 41872057

the Funds of the National Natural Science Foundation of China 418930834

  • 摘要:

    对华北克拉通新太古代的构造演化模式有多种不同的认识, 需要进行更加深入的变质作用研究。通过对辽北清原地体基性麻粒岩进行系统的岩相学观察、矿物化学分析、相平衡模拟和锆石定年研究, 以阐明其变质演化过程和大地构造意义。研究选择的基性麻粒岩样品分为含石榴石域(19DJ07-GD)和不含石榴石域(19DJ07-NGD)两类, 含石榴石的区域呈条带状且分布不均匀。两种区域都发育两期麻粒岩相组合。在含石榴石域, 第一期变质矿物组合为石榴石+单斜辉石+斜方辉石+角闪石+黑云母+斜长石+石英。其中, 第一期斜长石(Pl1)发育复杂成分环带, 钙长石摩尔分数(xAn)从核部到幔部升高, 然后再向边部降低; 第一期角闪石(Amp1)的Ti成分环带同样为从核部到幔部升高再向边部降低。通过矿物组合和相应的成分环带推测第一期麻粒岩相变质作用具有逆时针型P-T轨迹, 包含峰期前升温升压阶段以及峰后降温降压阶段。通过相平衡模拟约束峰期温压条件为0.8~0.9 GPa/900~950 ℃, 达到高温—超高温(high-ultrahigh temperature)变质条件。锆石定年结果表明变质作用峰后冷却时间为2498±6.9 Ma(MSWD=0.39)。综合区域上的"穹隆-龙骨"构造、逆时针的变质轨迹以及和TTG岩浆活动晚期脉冲几乎一致的表壳岩变质时间, 表壳岩超高温麻粒岩相变质作用被认为受太古宙特有的垂向构造/沉落(sagduction)构造体制控制。第二期变质组合以局部生长的石榴石+石英±单斜辉石的后成合晶/冠状体为特征, 代表一期与古元古代造山事件有关的高压麻粒岩相变质作用。

     

  • 图  1  华北克拉通构造分区图及清原地体地质简图

    a—华北克拉通构造分区(据Zhao et al., 2005修改);b—清原地体地质简图(据万渝生等,2005bPeng et al., 2015Li and Wei, 2017修改)

    Figure  1.  Tectonic subdivision of the North China Craton and geological sketch map of the Qingyuan Terrane

    (a) Tectonic subdivision of the North China Craton (modified from Zhao et al., 2005); (b) Geological sketch map of the Qingyuan Terrane (modified from Wan et al., 2005b; Peng et al., 2015; Li and Wei, 2017)

    图  2  显示岩性分布和样品采集点的清原地区地质图(据Duan et al., 2019修改)

    Figure  2.  Geological sketch map of the Qingyuan area showing lithological distribution and sample localities (modified from Duan et al., 2019)

    图  3  表壳岩的露头照片、基性麻粒岩19DJ07的野外露头及显微照片

    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英
    下标数字:0—包裹体状态的第一期矿物;1—第一期矿物;2—第二期矿物
    a、b标记的线条对应图 4中的矿物成分剖面
    a—基性麻粒岩(含石榴石域和无石榴石域)和富铁沉积物互层,露头见部分熔融产生的浅色脉体;b—含石榴石细带的样品19DJ07露头照片;c—样品薄片的扫描照片,岩石分为石榴石域(19DJ07-GD)和无石榴石域(19DJ07-NGD);d、e—两期石榴石显微照片对比,其中Grt2和Qz构成冠状后成合晶,发育两期斜方辉石(Opx1、Opx2)、三期角闪石(包裹体Amp0、岩石主体矿物之一Amp1呈变晶结构、Amp2粒度细且生长在辉石周围;f—岩石局部叠加变质组合显微特征,发育Grt2+Qz+Cpx2的后成合晶和两期斜长石(Pl1、Pl2);g—两期单斜辉石(Cpx1、Cpx2)的显微特征;h—岩石近粒变晶结构显微特征,发育被辉石包裹的Amp0和两期斜长石(Pl1、Pl2)

    Figure  3.  Outcrop photo of supracrustal rock, and field outcrop photo and microphotographs of mafic granulite 19DJ07

    (a) Interbedding of mafic granulite (containing garnet-bearing and non-garnet-bearing domains) with iron-rich metasediments, with outcrops displaying light-colored veins formed by partial melting; (b) Outcrop photo of sample 19DJ07, which contains fine bands of garnet; (c) Scanned photos of sample thin-section, categorizing the rocks into garnet-bearing domain (19DJ07-GD) and non garnet-bearing domain (19DJ07-NGD); (d and e) Comparative microphotographs of two generations of garnet, where Grt2 and Qz form coronal symplectites, and two generations of orthopyroxene (Opx1/2) and three types of amphibole (Amp0/1/2) are developed; Amp0 occurs as inclusions, Amp1 as one of the main minerals of rock exhibits blastic texture, and Amp2 is fine-grained and grows around pyroxene; (f) Microscopic characteristics of locally superimposed metamorphic combinations in rocks, showing the development of symplectites of Grt2+Qz+Cpx2 and two generations of plagioclase (Pl1/2); (g) Microscopic characteristics of two generations of clinopyroxene(Cpx1/2); (h) Homeoblast texture in 19DJ07-NGD, with Amp0 enclosed by pyroxene and two generations of plagioclase (Pl1/2)
    The lines labeled with a and b corresponds to the composition zoning profile in Fig. 4; mineral abbreviations are according to Whitney and Evans, 2010; Warr (2021): Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz

    图  4  样品19DJ07中代表性矿物的成分特征图

    a—19DJ07-GD的Grt1的成分剖面(xAlm=Fe2+/(Fe2++Mn+Mg+Ca), xSpsxPyxGrs依此类推);b、c—典型角闪石的Ti成分环带(b—19DJ07-GD的Amp1,c—19DJ07-NGD的Amp1);d、e—典型斜长石的的xAn成分剖面图,xAn=Ca/(Ca+Na+K)(d—19DJ07-GD的Pl1,e—19DJ07-NGD的Pl1)

    Figure  4.  Composition diagrams of representative minerals in Sample 19DJ07

    (a) Grt1 chemical zoning profiles in 19DJ07-GD (xAlm=Fe2+/(Fe2++Mn+Mg+Ca); xSps, xPy, and xGrs follow this pattern, respectively); (b and c) Typical composition zoning of Ti for Amp1 in 19DJ07-GD (b) and 19DJ07-NGD (c); (d) Typical composition zoning of xAn(=Ca/(Ca+Na+K)) for Pl1 in 19DJ07-GD (d) and 19DJ07-NGD (e)

    图  5  样品19DJ07-GD在NCKFMASHTO体系下的P-T视剖面图及P-T轨迹

    计算P-T视剖面图所使用的有效全岩成分见表 1
    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英;L—熔体

    Figure  5.  P-T pseudosection with proposed P-T vectors for 19DJ07-GD in the NCKFMASHTO system

    The effective bulk-rock compositions used to calculate the P-T pseudosection are shown in Table 1.
    Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz; L-melt

    图  6  样品19DJ07-NGD在NCKFMASHTO体系下的P-T视剖面图及P-T轨迹

    计算P-T视剖面图所使用的有效全岩成分见表 1
    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英;Mt—磁铁矿;L—熔体

    Figure  6.  P-T pseudosection with proposed P-T vectors for 19DJ07-NGD in the NCKFMASHTO system

    The effective bulk-rock compositions used to calculate the P-T pseudosection are shown in Table 1.
    Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz; Mt-magnetite; L-melt

    图  7  石榴二辉麻粒岩样品19DJ07的锆石分析结果

    a—代表性锆石颗粒的阴极发光图像,显示其内部结构和分析位置,编号详情见表 4;b—通过LA-ICP-MS分析结果计算的U-Pb同位素谐和图、加权平均年龄图和U-Pb年龄分布图;c—球粒陨石标准化的稀土配分模式图(根据Sun and McDonough, 1989进行标准化)

    Figure  7.  Analytical results of zircons from mafic granulite 19DJ07

    (a) Cathodoluminescence images of selected zircon grains showing the inner structures and analyzed locations with the identification numbers as in Table 4; (b) U-Pb isotopic concordia, weighted mean age diagram, and U-Pb age distribution diagram showing the LA-ICP-MS analytical results; (c) Chondrite-normalized REE patterns of zircons (normalized according to Sun and McDonough, 1989)

    图  8  清原地区各类岩石的年龄汇总图

    图中展示了其他角闪岩相-麻粒岩相表壳岩的年龄(万渝生等, 2005b; 白翔等, 2014; Peng et al., 2015; Wang et al., 2016a; Wu et al., 2016; Li and Wei, 2017; Wu and Wei, 2021)、TTG质-花岗质片麻岩的结晶年龄(万渝生等, 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016a, 2016b; Wu et al., 2016; 王康等, 2018; Li et al., 2020; 袁玲玲等, 2020)以及研究样品19DJ07的年龄

    Figure  8.  Age summary chart of different rock types from the Qingyuan Terrane

    The ages of other amphibolite-granulite facies supracrustal rocks (Wan et al., 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016; Wu et al., 2016; Li and Wei, 2017; Wu and Wei, 2021) and the crystallization ages of TTG-granitic gneiss (Wan et al., 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016a, 2016b; Wu et al., 2016; Wang et al., 2018; Li et al., 2020; Yuan et al., 2020) are shown in the diagram. The age data for the investigated samples 19DJ07 are presented for comparison with other research data

    图  9  清原地区和冀东地区新太古代表壳岩的P-T-t轨迹总结

    清原地区:19DJ07为文中研究样品;Wu21a为Wu and Wei (2021)报道的新太古代石榴角闪岩。冀东地区:LW18和LW20为Liu and Wei (2018, 2020)报道的新太古代麻粒岩相表壳岩;Liu20为Liu et al. (2020)报道的新太古代角闪岩相表壳岩。基性岩的湿固相线(WS)来自Lambert and Wyllie (1972)。角闪石的消失线:Amp-out-a来自Wyllie and Wolf (1993),Amp-out-b来自Sen and Dunn (1994);石榴石生成线:Grt-in-a来自Winther and Newton (1991),Grt-in-b来自Liu et al. (1996)。变质相界线来自魏春景等(2017),特别指出麻粒岩相包括正常麻粒岩亚相(< 900 ℃)和超高温麻粒岩亚相(>900 ℃)(Brown, 2007)

    Figure  9.  A summary of the P-T-t paths for Neoarchean supracrustal rocks from the Qingyuan Terrane with comparison to those from the Eastern Hebei Terrane

    For the Qingyuan terrane: 19DJ07, the investigated sample of this study; Wu21a, Neoarchean garnet amphibolite in Wu and Wei (2021); LW18 and LW20, granulite facies supracrustal rocks in Liu and Wei (2018, 2020); Liu20, amphibolite facies supracrustal rock in Liu et al. (2020). The wet solidus of mafic rocks (WS) is after Lambert and Wyllie (1972); the amphibole-out curves: Amp-out-a is from Wyllie and Wolf (1993), and Amp-out-b is from Sen and Dunn (1994); the garnet-in curves: Gtr-in-a is from Winther and Newton (1991), and Gtr-in-b from Liu et al. (1996). The distributions of metamorphic facies are from Wei et al. (2017) It is pointed out that the granulite facies include normal granulite subfacies (< 900 ℃) and UHT granulite subfacies (>900 ℃)

    表  1  清原地区基性麻粒岩的全岩成分以及相平衡模拟用的有效全岩成分

    Table  1.   Bulk-rock compositions and effective bulk-rock compositions of samples from Qingyuan terrane

    样品 ICP-OES分析得到的全岩成分含量/% A/CNK Mg#
    SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI
    19DJ07 50.20 1.46 12.86 15.15 0.21 5.32 10.41 3.10 0.59 0.18 0.17 0.53 0.41
    样品 用于相平衡模拟的标准化全岩成分摩尔分数/% Mg# A/CNK 图幅
    H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O
    19DJ07-GD 2.07 52.89 8.45 11.38 7.23 12.87 0.38 3.12 1.17 0.44 0.36 0.57 图 5
    19DJ07-NGD 2.68 51.83 8.79 11.22 9.22 10.64 0.41 3.41 0.99 0.79 0.46 0.58 图 6
    注:Fe2O3全铁;LOI烧失量;Mg#=MgO/(MgO+FeOtotal);A/CNK=Al2O3/(CaO+Na2O+K2O)
    下载: 导出CSV

    表  2  清原地体基性麻粒岩19DJ07-GD中代表性矿物的探针分析

    Table  2.   Selected microprobe analyses for mafic granulite 19DJ07-GD from the Qingyuan terrane

    矿物 Grt1-C Grt1-R Grt2 Cpx1 Cpx2 Opx1 Opx2 Amp0 Amp1-C Amp1-M Amp1-R Amp2 Bt1 Bt2 Pl1-C Pl1-M Pl1-R1 Pl1-R2 Pl2
    SiO2 36.47 38.05 37.48 51.53 52.25 49.84 50.33 41.82 42.17 39.74 41.17 42.18 35.94 35.92 58.93 58.24 60.15 63.24 63.89
    TiO2 0.10 0.11 - 0.07 0.08 0.02 0.05 2.39 1.83 2.10 1.57 1.66 4.77 4.70 0.02 0.03 - - -
    Al2O3 20.08 19.57 20.46 1.14 1.34 0.43 0.45 11.72 11.01 11.48 11.18 10.77 13.65 13.70 26.37 25.67 25.44 23.85 23.00
    Cr2O3 0.05 0.02 0.02 0.06 0.03 - - - 0.07 0.08 0.07 0.06 0.06 - - 0.01 0.02 - -
    FeO 29.78 31.34 30.58 13.42 13.58 34.57 33.77 19.44 20.46 20.43 20.92 19.78 22.03 20.70 0.08 0.05 0.04 0.39 0.50
    MnO 1.06 1.24 1.28 0.15 0.21 0.44 0.41 0.10 - - - 0.10 - - - - - - -
    MgO 2.90 2.83 2.95 11.05 11.02 14.08 14.71 7.56 8.03 7.62 7.55 8.30 10.00 9.84 - - - - -
    CaO 8.82 7.48 7.46 22.93 22.81 0.62 0.42 11.73 11.75 11.80 11.68 11.85 - - 8.90 8.56 7.29 5.44 4.62
    Na2O 0.13 0.06 0.16 0.46 0.71 0.05 - 1.75 1.64 1.39 1.60 1.51 0.16 - 6.67 5.77 7.21 8.19 8.80
    K2O - - - - - - - 1.34 1.41 1.20 1.30 1.18 9.51 9.37 0.10 0.07 0.14 0.12 0.03
    Total 99.47 100.71 100.40 100.81 102.02 100.04 100.16 97.85 98.44 95.92 97.12 97.39 96.14 94.23 101.09 98.40 100.31 101.23 100.87
    O 12.000 12.000 12.000 6.000 6.000 6.000 6.000 23.000 23.000 23.000 23.000 23.000 11.000 11.000 8.000 8.000 8.000 8.000 8.000
    Si 2.912 3.018 2.969 1.940 1.941 1.966 1.976 6.383 6.412 6.199 6.357 6.452 2.768 2.800 2.609 2.635 2.669 2.765 2.799
    Ti 0.006 0.007 - 0.002 0.002 0.001 0.001 0.274 0.209 0.246 0.182 0.191 0.276 0.276 0.001 0.001 - - -
    Al 1.890 1.830 1.911 0.051 0.059 0.020 0.021 2.109 1.974 2.111 2.035 1.942 1.239 1.259 1.376 1.369 1.331 1.229 1.188
    Cr - - - - - - - - - - - - - - - - - - -
    Fe3+ 0.299 0.130 0.175 0.097 0.106 0.050 0.024 - 0.120 0.360 0.216 0.150 - - - - - - -
    Fe2+ 1.690 1.949 1.850 0.325 0.316 1.090 1.085 2.481 2.481 2.305 2.485 2.381 1.419 1.350 - - - - -
    Mn 0.072 0.083 0.086 - - 0.015 0.014 0.013 - 0.011 0.010 - - - - - - - -
    Mg 0.345 0.335 0.348 0.620 0.610 0.828 0.861 1.720 1.820 1.771 1.737 1.892 1.148 1.143 - - - - -
    Ca 0.755 0.636 0.633 0.925 0.908 0.026 0.018 1.918 1.914 1.972 1.932 1.942 - - 0.422 0.415 0.347 0.255 0.217
    Na 0.020 - 0.025 0.034 0.051 0.004 - 0.518 0.484 0.420 0.479 0.448 0.024 - 0.573 0.506 0.620 0.694 0.748
    K - - - - - - - 0.261 0.274 0.239 0.256 0.230 0.934 0.932 - - - - -
    x(矿物) 0.26 0.21 0.22 0.66 0.66 0.43 0.44 0.41 0.42 0.43 0.41 0.44 0.45 0.46 0.42 0.45 0.36 0.27 0.22
    y(矿物) 0.12 0.11 0.12 0.01 0.00 0.01 0.01 0.00
    注: x(Grt)=xGr=Ca/(Fe2++Mg+Ca+Mn);y(Grt)=xPy=Mg/(Fe2++Mg+Ca+Mn);x(Cpx)=Mg/(Fe2++Mg);x(Opx)=Mg/(Fe2++Mg);x(Amp)=Mg/(Fe2++Mg);x(Bt)=Mg/(Fe2++Mg+Mn);x(Pl)=xAn=Ca/(Ca+Na+K);y(Pl)=xOr=K/(Ca+Na+K)。后缀含义:-C,核部;-M,幔部;-R,边部;斜长石,-R1为内边、-R2为外边。矿物分子式采用AX程序计算。“-”指示该含量低于检测线。2~12行的单位为%,13~24行的单位为p.f.u.,25、26行的单位为%。
    下载: 导出CSV

    表  3  清原地体基性麻粒岩样品19DJ07-NGD中代表性矿物的探针分析

    Table  3.   Selected microprobe analyses for mafic granulite 19DJ07-NGD from the Qingyuan terrane

    矿物 Cpx1 Opx1 Amp0 Amp1-C Amp1-M Amp1-R Amp2 Bt1 Pl1-C Pl1-M Pl1-R1 Pl1-R2 Pl2
    SiO2 52.38 50.88 41.82 43.01 42.78 42.28 42.86 36.81 59.73 59.53 59.67 63.35 63.18
    TiO2 0.07 - 2.39 1.55 2.18 1.63 1.40 4.70 - - - - -
    Al2O3 1.23 0.39 11.72 10.57 11.37 11.53 11.48 13.48 25.94 26.61 25.77 23.45 23.67
    Cr2O3 0.06 0.03 - 0.03 0.07 0.04 0.04 0.06 0.03 0.04 0.03 0.01 0.04
    FeO 14.21 35.60 19.44 20.67 20.25 19.18 19.86 22.74 0.08 0.08 0.04 0.06 0.36
    MnO 0.20 0.53 0.10 0.11 - - - - - - - - -
    MgO 10.20 13.75 7.56 8.65 8.03 8.71 8.71 9.27 - - - - -
    CaO 22.29 0.47 11.73 11.92 11.65 11.99 11.77 0.13 8.49 9.02 7.50 5.03 5.56
    Na2O 0.50 - 1.75 1.37 1.61 1.62 1.46 0.08 6.67 6.01 6.61 8.36 8.11
    K2O - - 1.34 1.31 1.23 1.25 1.31 9.52 0.14 0.16 0.17 0.19 0.23
    Total 101.16 101.67 97.85 99.19 99.24 98.31 98.93 96.84 101.15 101.46 99.81 100.50 101.18
    O 6.000 6.000 23.000 23.000 23.000 23.000 23.000 11.000 8.000 8.000 8.000 8.000 8.000
    Si 1.976 1.984 6.383 6.451 6.421 6.388 6.422 2.816 2.637 2.619 2.658 2.786 2.766
    Ti - - 0.274 0.175 0.246 0.185 0.158 0.270 - - - - -
    Al 0.055 0.018 2.109 1.869 2.012 2.054 2.028 1.216 1.350 1.380 1.353 1.216 1.222
    Cr - - - 0.004 0.008 0.005 0.005 0.004 - - - - -
    Fe3+ 0.024 0.014 - 0.316 0.123 0.142 0.252 - - - - - 0.013
    Fe2+ 0.424 1.147 2.481 2.277 2.420 2.282 2.236 1.455 - - - - -
    Mn - 0.018 0.013 0.014 - 0.010 - - - - - - -
    Mg 0.573 0.799 1.720 1.934 1.796 1.961 1.945 1.057 - - - - -
    Ca 0.901 0.020 1.918 1.916 1.874 1.941 1.890 0.011 0.402 0.425 0.358 0.237 0.261
    Na 0.037 - 0.518 0.398 0.469 0.475 0.424 0.012 0.571 0.513 0.571 0.713 0.689
    K - - 0.261 0.251 0.236 0.241 0.250 0.929 - - 0.010 0.011 0.013
    x(矿物) 0.57 0.41 0.41 0.46 0.43 0.46 0.47 0.42 0.41 0.45 0.38 0.25 0.27
    y(矿物) 0.01 0.01 0.01 0.01 0.01
    注: x(Grt)=xGr=Ca/(Fe2++Mg+Ca+Mn);y(Grt)=xPy=Mg/(Fe2++Mg+Ca+Mn);x(Cpx)=Mg/(Fe2++Mg);x(Opx)=Mg/(Fe2++Mg);x(Amp)=Mg/(Fe2++Mg);x(Bt)=Mg/(Fe2++Mg+Mn);x(Pl)=xAn=Ca/(Ca+Na+K);y(Pl)=xOr=K/(Ca+Na+K)。后缀含义:-C,核部;-M,幔部;-R,边部;斜长石,-R1为内边、-R2为外边。矿物分子式采用AX程序计算。“-”指示该含量低于检测线。2~12行的单位为%,13~24行的单位为p.f.u.,25、26行的单位为%。
    下载: 导出CSV

    表  4  清原地体基性麻粒岩样品19DJ07的锆石U-Pb同位素数据

    Table  4.   U-Pb isotopic data for zircon of mafic granulite 19DJ07 from the Qingyuan terrane

    232Th/×10-6 238U/×10-6 Th/U 校正后的同位素比值 校正后的年龄/Ma
    207Pb/235Pb 1σ 206Pb/238U 1σ 207Pb/206U 1σ 207Pb/235Pb 1σ 206Pb/238U 1σ 207Pb/206U 1σ
    19DJ07-02 101.76 412.86 0.25 10.65807 0.13565 0.47126 0.00469 0.16398 0.00215 2494 12 2489 21 2497 10
    19DJ07-03 51.98 196.22 0.26 10.71738 0.13947 0.47578 0.00477 0.16333 0.00219 2499 12 2509 21 2490 10
    19DJ07-04 48.30 139.87 0.35 10.99687 0.14640 0.48107 0.00487 0.16575 0.00228 2523 12 2532 21 2515 10
    19DJ07-05 53.26 325.75 0.16 10.94539 0.14137 0.48217 0.00482 0.16459 0.00219 2519 12 2537 21 2503 10
    19DJ07-06 128.79 844.01 0.15 10.79254 0.13826 0.48447 0.00482 0.16152 0.00213 2505 12 2547 21 2472 10
    19DJ07-07 40.22 299.79 0.13 10.02721 0.13068 0.44111 0.00442 0.16482 0.00221 2437 12 2356 20 2506 10
    19DJ07-08 65.81 378.36 0.17 10.56486 0.13723 0.46878 0.00469 0.16341 0.00219 2486 12 2478 21 2491 10
    19DJ07-09 130.96 600.06 0.22 10.41049 0.13488 0.46489 0.00464 0.16237 0.00217 2472 12 2461 20 2480 10
    19DJ07-10 73.42 402.44 0.18 10.73260 0.14078 0.47718 0.00478 0.16308 0.00220 2500 12 2515 21 2488 10
    19DJ07-11 66.82 356.87 0.19 9.28255 0.13476 0.41464 0.00432 0.16232 0.00243 2366 13 2236 20 2480 12
    19DJ07-12 113.78 578.19 0.20 10.29161 0.13614 0.45722 0.00458 0.16320 0.00222 2461 12 2427 20 2489 10
    19DJ07-13 111.41 737.56 0.15 9.23818 0.12275 0.41160 0.00413 0.16274 0.00222 2362 12 2222 19 2484 11
    19DJ07-14 203.43 816.71 0.25 9.01265 0.12004 0.41360 0.00415 0.15799 0.00216 2339 12 2231 19 2434 11
    19DJ07-15 63.08 385.86 0.16 10.64258 0.14333 0.47371 0.00477 0.16289 0.00225 2492 13 2500 21 2486 11
    19DJ07-16 206.75 1201.80 0.17 10.52492 0.14108 0.47749 0.00479 0.15981 0.00220 2482 12 2516 21 2454 11
    19DJ07-17 72.53 658.48 0.11 10.17297 0.13737 0.45181 0.00454 0.16325 0.00226 2451 12 2403 20 2490 11
    19DJ07-18 64.62 505.23 0.13 9.92018 0.13627 0.43789 0.00443 0.16425 0.00232 2427 13 2341 20 2500 11
    19DJ07-19 187.81 605.52 0.31 10.36092 0.14190 0.45673 0.00461 0.16447 0.00231 2468 13 2425 20 2502 11
    19DJ07-20 149.38 794.16 0.19 10.48069 0.14522 0.46511 0.00471 0.16338 0.00232 2478 13 2462 21 2491 11
    19DJ07-21 84.37 195.32 0.43 11.03961 0.15985 0.48406 0.00497 0.16535 0.00245 2526 13 2545 22 2511 12
    19DJ07-22 42.54 105.08 0.40 11.30560 0.16854 0.49434 0.00513 0.16581 0.00253 2549 14 2589 22 2516 12
    19DJ07-23 182.24 738.27 0.25 10.49468 0.14943 0.46203 0.00469 0.16468 0.00240 2479 13 2449 21 2504 12
    19DJ07-24 244.23 1085.32 0.23 10.65064 0.15172 0.47204 0.00479 0.16358 0.00239 2493 13 2493 21 2493 12
    19DJ07-25 64.29 368.52 0.17 11.16502 0.16189 0.49423 0.00505 0.16378 0.00243 2537 14 2589 22 2495 12
    19DJ07-26 23.78 90.03 0.26 10.84158 0.16602 0.47499 0.00496 0.16548 0.00260 2510 14 2505 22 2512 13
    19DJ07-27 118.49 469.57 0.25 10.82470 0.15872 0.47761 0.00488 0.16431 0.00246 2508 14 2517 21 2501 12
    19DJ07-28 189.31 415.74 0.46 10.75754 0.15893 0.47502 0.00486 0.16418 0.00248 2502 14 2506 21 2499 12
    19DJ07-30 110.41 481.92 0.23 11.37164 0.16921 0.50097 0.00513 0.16456 0.00250 2554 14 2618 22 2503 12
    19DJ07-31 61.79 367.00 0.17 10.98146 0.16769 0.48513 0.00500 0.16410 0.00256 2522 14 2550 22 2498 13
    19DJ07-32 67.73 402.17 0.17 10.84644 0.16660 0.47944 0.00495 0.16401 0.00257 2510 14 2525 22 2497 13
    19DJ07-33 67.66 392.51 0.17 10.09102 0.15580 0.45204 0.00467 0.16183 0.00255 2443 14 2404 21 2475 13
    19DJ07-34 65.52 378.32 0.17 10.81767 0.16843 0.47610 0.00493 0.16472 0.00262 2508 14 2510 22 2505 13
    19DJ07-35 84.03 436.80 0.19 10.84746 0.16919 0.47914 0.00496 0.16412 0.00261 2510 15 2524 22 2499 13
    19DJ07-36 34.40 165.27 0.21 11.82197 0.18984 0.52046 0.00545 0.16467 0.00270 2590 15 2701 23 2504 14
    19DJ07-37 93.49 513.01 0.18 10.45095 0.16536 0.46574 0.00483 0.16267 0.00262 2476 15 2465 21 2484 14
    19DJ07-38 236.83 533.72 0.44 11.00081 0.17540 0.48221 0.00501 0.16538 0.00269 2523 15 2537 22 2511 14
    19DJ07-39 62.63 397.06 0.16 10.76432 0.17279 0.47288 0.00492 0.16502 0.00270 2503 15 2496 22 2508 14
    19DJ07-40 133.93 631.49 0.21 10.78947 0.17337 0.47623 0.00495 0.16424 0.00269 2505 15 2511 22 2500 14
    19DJ07-41 119.66 453.45 0.26 9.96767 0.16727 0.43971 0.00462 0.16432 0.00281 2432 15 2349 21 2501 15
    19DJ07-42 38.24 322.60 0.12 8.54360 0.15262 0.39138 0.00420 0.15832 0.00330 2291 16 2129 19 2438 36
    19DJ07-43 109.38 638.11 0.17 9.70541 0.16596 0.42941 0.00454 0.16384 0.00285 2407 16 2303 20 2496 15
    19DJ07-44 54.78 318.28 0.17 11.09025 0.18957 0.48858 0.00516 0.16454 0.00286 2531 16 2565 22 2503 15
    19DJ07-45 166.15 718.67 0.23 10.62991 0.18102 0.47511 0.00499 0.16218 0.00281 2491 16 2506 22 2479 15
    19DJ07-46 41.68 224.75 0.19 10.17533 0.17866 0.45097 0.00480 0.16355 0.00292 2451 16 2400 21 2493 16
    19DJ07-47 80.44 469.36 0.17 11.09185 0.19323 0.48948 0.00518 0.16426 0.00291 2531 16 2568 22 2500 16
    19DJ07-48 59.47 356.07 0.17 10.89295 0.19184 0.47708 0.00507 0.16550 0.00296 2514 16 2515 22 2513 16
    19DJ07-49 193.31 1136.34 0.17 11.10746 0.19455 0.48858 0.00516 0.16479 0.00293 2532 16 2565 22 2505 16
    19DJ07-50 75.63 196.47 0.38 10.99443 0.19778 0.47885 0.00513 0.16642 0.00304 2523 17 2522 22 2522 16
    19DJ07-51 77.89 429.49 0.18 10.69287 0.19419 0.47206 0.00504 0.16418 0.00302 2497 17 2493 22 2499 17
    19DJ07-52 217.58 772.49 0.28 10.96441 0.19950 0.48128 0.00513 0.16513 0.00304 2520 17 2533 22 2509 17
    19DJ07-53 85.53 491.85 0.17 11.16913 0.20522 0.48972 0.00524 0.16531 0.00308 2537 17 2569 23 2511 17
    19DJ07-54 47.44 259.81 0.18 9.94901 0.18611 0.44208 0.00473 0.16322 0.00352 2430 17 2360 21 2489 37
    19DJ07-55 70.21 391.66 0.18 10.15480 0.18917 0.45024 0.00479 0.16358 0.00351 2449 17 2396 21 2493 37
    19DJ07-56 41.09 112.69 0.36 10.93995 0.21216 0.48010 0.00528 0.16515 0.00325 2518 18 2528 23 2509 18
    19DJ07-57 16.18 52.24 0.31 11.38073 0.22959 0.49261 0.00555 0.16745 0.00343 2555 19 2582 24 2532 19
    19DJ07-59 94.50 524.18 0.18 10.73346 0.20448 0.47358 0.00511 0.16427 0.00317 2500 18 2499 22 2500 18
    19DJ07-60 123.63 631.05 0.20 11.23814 0.21513 0.49341 0.00533 0.16508 0.00320 2543 18 2585 23 2508 18
    下载: 导出CSV
  • ANHAEUSSER C R, 2014. Archaean greenstone belts and associated granitic rocks-a review[J]. Journal of African Earth Sciences, 100: 684-732. doi: 10.1016/j.jafrearsci.2014.07.019
    BAI X, LIU S W, YAN M, et al., 2014. Geological event series of Early Precambrian metamorphic complex in South Fushun area, Liaoning province[J]. Acta Petrologica Sinica, 30(10): 2905-2924. (in Chinese with English abstract)
    BROWN M, 2007. Metamorphic conditions in orogenic belts: a record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193
    BROWN M, JOHNSON T, 2018. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 103(2): 181-196. doi: 10.2138/am-2018-6166
    CAO Y, SONG S G, NIU Y L, et al., 2011. Variation of mineral composition, fabric and oxygen fugacity from massive to foliated eclogites during exhumation of subducted ocean crust in the North Qilian suture zone, NW China[J]. Journal of Metamorphic Geology, 29(7): 699-720. doi: 10.1111/j.1525-1314.2011.00937.x
    COLLINS W J, VAN KRANENDONK M J, TEYSSIER C, 1998. Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications[J]. Journal of Structural Geology, 20(9-10): 1405-1424. doi: 10.1016/S0191-8141(98)00073-X
    CONDIE K C, 1981. Archean greenstone belts[M]. Amsterdam: Elsevier.
    CORFU F, HANCHAR J M, HOSKIN P W O, et al., 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469
    DOS SANTOS T M B, MUNHÁ J M U, TASSINARI C C G, et al., 2011. P-T-fluid evolution and graphite deposition during retrograde metamorphism in Ribeira fold belt, SE Brazil: oxygen fugacity, fluid inclusions and C-O-H isotopic evidence[J]. Journal of South American Earth Sciences, 31(1): 93-109. doi: 10.1016/j.jsames.2010.02.002
    DUAN Z Z, WEI C J, REHMAN H U, 2017. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: insights into the regional Archean P-T-t history[J]. Precambrian Research, 292: 240-257. doi: 10.1016/j.precamres.2017.02.008
    DUAN Z Z, WEI C J, LI Z, 2019. Metamorphic P-T paths and zircon u-pb ages of Paleoproterozoic metabasic dykes in eastern Hebei and northern Liaoning: Implications for the tectonic evolution of the North China Craton[J]. Precambrian Research, 326: 124-141. doi: 10.1016/j.precamres.2017.11.001
    FRANÇOIS C, PHILIPPOT P, REY P, et al., 2014. Burial and exhumation during Archean sagduction in the East Pilbara granite-greenstone terrane[J]. Earth and Planetary Science Letters, 396: 235-251. doi: 10.1016/j.epsl.2014.04.025
    GENG Y S, LIU F L, YANG C H, 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication[J]. Acta Geologica Sinica, 80(6): 819-833. doi: 10.1111/j.1755-6724.2006.tb00305.x
    GREEN E C R, WHITE R W, DIENER J F A, et al., 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks[J]. Journal of Metamorphic Geology, 34(9): 845-869. doi: 10.1111/jmg.12211
    HAWTHORNE F C, OBERTI R, HARLOW G E, et al., 2012. Nomenclature of the amphibole supergroup[J]. American Mineralogist, 97(11-12): 2031-2048. doi: 10.2138/am.2012.4276
    HICKMAN A H, 2004. Two contrasting granite- greenstone terranes in the Pilbara Craton, Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma[J]. Precambrian Research, 131(3-4): 153-172. doi: 10.1016/j.precamres.2003.12.009
    HOLLAND T, POWELL R, 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 145(4): 492-501. doi: 10.1007/s00410-003-0464-z
    HOLLAND T J B, POWELL R, 1998. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x
    HOLLAND T J B, POWELL R, 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 29(3): 333-383. doi: 10.1111/j.1525-1314.2010.00923.x
    JAYANANDA M, BANERJEE M, PANT NC, et al., 2012. 2.62 Ga high-temperature metamorphism in the central part of the Eastern Dharwar Craton: implications for late Archaean tectonothermal history[J]. Geological Journal, 47(2-3): 213-236. doi: 10.1002/gj.1308
    KELSEY D E, POWELL R, 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system[J]. Journal of Metamorphic Geology, 29(1): 151-166. doi: 10.1111/j.1525-1314.2010.00910.x
    KORHONEN F J, POWELL R, STOUT J H, 2012. Stability of sapphirine + quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO[J]. Journal of Metamorphic Geology, 30(1): 21-36. doi: 10.1111/j.1525-1314.2011.00954.x
    KORHONEN F J, BROWN M, CLARK C, et al., 2013. Osumilite-melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Province, India[J]. Journal of Metamorphic Geology, 31(8): 881-907. doi: 10.1111/jmg.12049
    KUSKY T M, LI J H, 2003. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 22(4): 383-397. doi: 10.1016/S1367-9120(03)00071-3
    KUSKY T M, POLAT A, WINDLEY B F, et al., 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 162: 387-432. doi: 10.1016/j.earscirev.2016.09.002
    KWAN L C J, ZHAO G C, YIN C Q, et al., 2016. Metamorphic P-T path of mafic granulites from Eastern Hebei: implications for the Neoarchean tectonics of the Eastern Block, North China Craton[J]. Gondwana Research, 37: 20-38. doi: 10.1016/j.gr.2016.05.004
    LAMBERT I B, WYLLIE P J, 1972. Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications[J]. The Journal of Geology, 80(6): 693-708. doi: 10.1086/627795
    LI Z, WEI C J, 2017. Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 292: 175-193. doi: 10.1016/j.precamres.2017.01.014
    LI Z, WEI C J, CHEN B, et al., 2020. Late Neoarchean reworking of the Mesoarchean crustal remnant in northern Liaoning, North China Craton: a U-Pb-Hf-O-Nd perspective[J]. Gondwana Research, 80: 350-369. doi: 10.1016/j.gr.2019.10.020
    LIN S F, BEAKHOUSE G P, 2013. Synchronous vertical and horizontal tectonism at late stages of Archean cratonization and genesis of Hemlo gold deposit, Superior craton, Ontario, Canada[J]. Geology, 41(3): 359-362. doi: 10.1130/G33887.1
    LIU J, BOHLEN S R, ERNST W G, 1996. Stability of hydrous phases in subducting oceanic crust[J]. Earth and Planetary Science Letters, 143(1-4): 161-171. doi: 10.1016/0012-821X(96)00130-6
    LIU T, WEI C J, 2018. Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from the western margin of Qian'an gneiss dome, eastern Hebei Province, North China Craton: insights into the Archean tectonic regime[J]. Precambrian Research, 318: 170-187. doi: 10.1016/j.precamres.2018.10.007
    LIU T, WEI C J, 2020. Metamorphic P-T paths and Zircon U-Pb ages of Archean ultra-high temperature paragneisses from the Qian'an gneiss dome, East Hebei terrane, North China Craton[J]. Journal of Metamorphic Geology, 38(4): 329-356. doi: 10.1111/jmg.12524
    LIU T, WEI C J, KRÖNER A, et al., 2020. Metamorphic P-T paths for the Archean Caozhuang supracrustal sequence, eastern Hebei Province, North China Craton: implications for a sagduction regime[J]. Precambrian Research, 340: 105346. doi: 10.1016/j.precamres.2019.105346
    LIU T, WEI C J, JOHNSON T E, et al., 2022a. Newly-discovered ultra-high temperature granulites from the East Hebei terrane, North China Craton[J]. Science Bulletin, 67(7): 670-673. doi: 10.1016/j.scib.2021.12.023
    LIU T, LI Z, WEI C J, 2022b. Metamorphic evolution of the archean supracrustal rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: constrained using phase equilibrium modeling and monazite dating[J]. Minerals, 12(9): 1079. doi: 10.3390/min12091079
    LU H S, WEI C J, 2020. Late Neoarchean or late Paleoproterozoic high-pressure granulite facies metamorphism from the East Hebei terrane, North China Craton? [J]. Journal of Asian Earth Sciences, 190: 104195. doi: 10.1016/j.jseaes.2019.104195
    MEZGER K, BOHLEN S R, HANSON G N, 1990. Metamorphic history of the Archean Pikwitonei granulite domain and the Cross Lake Subprovince, Superior Province, Manitoba, Canada[J]. Journal of Petrology, 31(2): 483-517. doi: 10.1093/petrology/31.2.483
    MORIMOTO N, 1988. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 39(1): 55-76. doi: 10.1007/BF01226262
    NEMCHIN A A, GIANNINI L M, BODORKOS S, et al., 2001. Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis: theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalara Metamorphics, northwestern Australia[J]. Geochimica et Cosmochimica Acta, 65(16): 2771-2788. doi: 10.1016/S0016-7037(01)00622-6
    PENG P, WANG C, WANG X P, et al., 2015. Qingyuan high-grade granite-greenstone terrain in the eastern North China Craton: root of a Neoarchaean arc[J]. Tectonophysics, 662: 7-21. doi: 10.1016/j.tecto.2015.04.013
    ROBERTS M P, FINGER F, 1997. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? [J]. Geology, 25(4): 319-322. doi: 10.1130/0091-7613(1997)025<0319:DUPZAF>2.3.CO;2
    RUBATTO D, 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2
    SAJEEV K, OSANAI Y, KON Y, et al., 2009. Stability of pargasite during ultrahigh-temperature metamorphism: A consequence of titanium and REE partitioning? [J]. American Mineralogist, 94(4): 535-545. doi: 10.2138/am.2009.2815
    SEN C, DUNN T, 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 117(4): 394-409. doi: 10.1007/BF00307273
    SLÁMA J, KOŠLER J, CONDON D J, et al., 2008. Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    VAVRA G, SCHMID R, GEBAUER D, 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 134(4): 380-404. doi: 10.1007/s004100050492
    WAN Y S, SONG B, GENG Y S, et al., 2005a. Geochemical characteristics of Archaean basement in the Fushun-Qingyuan area, Northern Liaoning Province and its geological significance[J]. Geological Review, 51(2): 128-137. (in Chinese with English abstract)
    WAN Y S, SONG B, YANG C, et al., 2005b. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance[J]. Acta Geologica Sinica, 79(1): 78-87. (in Chinese with English abstract)
    WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the late Mesoarchean-early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906, doi: 10.12090/j.issn.1006-6616.20222817. (in Chinese with English abstract)
    WANG K, LIU S W, WANG M J, et al., 2018. Formation ages, petrogenesis and geological implications of the archean granitoid rocks in the Xinbin-Weiziyu Area, northern Liaoning province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 54(1): 61-79. (in Chinese with English abstract)
    WANG M J, LIU S W, WANG W, et al., 2016a. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China[J]. Journal of Asian Earth Sciences, 131: 12-39. doi: 10.1016/j.jseaes.2016.09.012
    WANG W, LIU S W, CAWOOD P A, et al., 2016b. Late Neoarchean subduction-related crustal growth in the Northern Liaoning region of the North China Craton: evidence from ~2.55 to 2.50 Ga granitoid gneisses[J]. Precambrian Research, 281: 200-223. doi: 10.1016/j.precamres.2016.05.018
    WARR L N, 2021. IMA-CNMNC approved mineral symbols[J]. Mineralogical Magazine, 85(3): 291-320. doi: 10.1180/mgm.2021.43
    WATSON E B, HARRISON T M, 1984. Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches[J]. Physics of the Earth and Planetary Interiors, 35(1-3): 19-30. doi: 10.1016/0031-9201(84)90031-1
    WEI C J, QIAN J H, ZHOU X W, 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China craton[J]. Geoscience Frontiers, 5(4): 485-497. doi: 10.1016/j.gsf.2014.02.008
    WEI C J, GUAN X, DONG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)
    WHITE R W, POWELL R, HOLLAND T J B, et al., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3[J]. Journal of Metamorphic Geology, 18(5): 497-511. doi: 10.1046/j.1525-1314.2000.00269.x
    WHITE R W, POWELL R, HOLLAND T J B, 2007. Progress relating to calculation of partial melting equilibria for metapelites[J]. Journal of Metamorphic Geology, 25(5): 511-527. doi: 10.1111/j.1525-1314.2007.00711.x
    WHITE R W, POWELL R, HOLLAND T J B, et al., 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 32(3): 261-286. doi: 10.1111/jmg.12071
    WHITNEY D L, EVANS B W, 2010. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 95(1): 185-187. doi: 10.2138/am.2010.3371
    WIEDENBECK M, ALLÉ P, CORFU F, et al., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
    WINTHER K T, NEWTON R C, 1991. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons[J]. Bulletin of the Geological Society of Denmark, 39: 213-228. doi: 10.37570/bgsd-1991-39-10
    WU D, WEI C J, 2021. Metamorphic evolution of two types of garnet amphibolite from the Qingyuan terrane, North China Craton: insights from phase equilibria modelling and zircon dating[J]. Precambrian Research, 355: 106091. doi: 10.1016/j.precamres.2021.106091
    WU K K, ZHAO G C, SUN M, et al., 2013. Metamorphism of the northern Liaoning Complex: implications for the tectonic evolution of Neoarchean basement of the Eastern Block, North China Craton[J]. Geoscience Frontiers, 4(3): 305-320. doi: 10.1016/j.gsf.2012.11.005
    WU M L, LIN S F, WAN Y S, et al., 2016. Crustal evolution of the Eastern Block in the North China Craton: constraints from zircon U-Pb geochronology and Lu-Hf isotopes of the northern Liaoning Complex[J]. Precambrian Research, 275: 35-47. doi: 10.1016/j.precamres.2015.12.013
    WYLLIE P J, WOLF M B, 1993. Amphibolite dehydration-melting: sorting out the solidus[J]. Geological Society, London, Special Publications, 76(1): 405-416. doi: 10.1144/GSL.SP.1993.076.01.20
    YANG C, WEI C J., 2017. Two phases of granulite facies metamorphism during Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: records from mafic granulites[J]. Precambrian Research, 2017(301).
    YAKYMCHUK C, BROWN M, 2014. Behaviour of zircon and monazite during crustal melting[J]. Journal of the Geological Society, 171(4): 465-479. doi: 10.1144/jgs2013-115
    YAKYMCHUK C, CLARK C, WHITE R W, 2017. Phase relations, reaction sequences and petrochronology[J]. Reviews in Mineralogy and Geochemistry, 83(1): 13-53. doi: 10.2138/rmg.2017.83.2
    YU C Y, YANG T, ZHANG J, et al., 2022. Coexisting diverse P-T-t paths during Neoarchean Sagduction: Insights from numerical modeling and applications to the eastern North China Craton[J]. Earth and Planetary Science Letters, 586: 117529. doi: 10.1016/j.epsl.2022.117529
    YUAN L L, LIU J, ZHANG X H, et al., 2020. Late Neoarchean magmatism and crustal growth in northern Liaoning: Evidence from zircon U-Pb geochronology and petro-geochemistry of the Qingyuan trondhjemites[J]. Acta Petrologica Sinica, 36(2): 333-355. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.02.02
    ZHAI M G, YANG R Y, LU W J, et al., 1985. Geochemistry and evolution of the Qingyuan Archaean granite-greenstone terrain, NE China[J]. Precambrian Research, 27(1-3): 37-62. doi: 10.1016/0301-9268(85)90005-1
    ZHAI M G, BIAN A G, ZHAO T P, 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China Series D: Earth Sciences, 43(1): 219-232.
    ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018
    ZHAI M G, SANTOSH M, 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(10): 6-25.
    ZHAI M G, SANTOSH M, 2013. Metallogeny of the North China Craton: link with secular changes in the evolving Earth[J]. Gondwana Research, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007
    ZHAI M G, 2019. Tectonic evolution of the north China craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract)
    ZHANG H C G, LIU J H, CHEN Y C, et al., 2019. Neoarchean metamorphic evolution and geochronology of the Miyun metamorphic complex, North China Craton[J]. Precambrian Research, 320: 78-92. doi: 10.1016/j.precamres.2018.10.015
    ZHANG Y H, WEI C J, TIAN W, et al., 2013. Reinterpretation of metamorphic age of the Hengshan complex, North China Craton[J]. Chinese Science Bulletin, 58(34): 4300-4307. doi: 10.1007/s11434-013-5993-x
    ZHANG Y Y, WEI C, CHU H, 2020. Paleoproterozoic oceanic subduction in the North China Craton: Insights from the metamorphic P-T-t paths of the Chicheng Mélange in the Hongqiyingzi Complex[J]. Precambrian Research, 342: 105671. doi: 10.1016/j.precamres.2020.105671
    ZHANG Y Y, WEI C J, CHU H, 2021. Multi-phase metamorphism in the northern margin of the North China Craton: Records from metapelite in the Hongqiyingzi Complex[J]. Gondwana Research, 98: 289-308. doi: 10.1016/j.gr.2021.06.012
    ZHAO G, 1995. Metamorphic P-T-t paths of the eastern Hebei, western Shandong, Fuping, Wutai and Hengshan domains, North China Craton[J]. Tectonothermal Evolution of the Basement Rocks in the North China Craton, 11-48.
    ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
    ZHAO G C, CAWOOD P A, LI S Z, et al., 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76.
    ZHENG J P, 2020. Internal and external factors in continental lithosphere mantle replacement in eastern China[J]. Journal of Geomechanics, 26(5): 742-758, doi: 10.12090/j.issn.1006-6616.2020.26.05.061. (in Chinese with English abstract)
    白翔, 刘树文, 阎明, 等, 2014. 抚顺南部早前寒武纪变质岩的地质事件序列[J]. 岩石学报, 30(10): 2905-2924.
    万渝生, 宋彪, 耿元生, 等, 2005a. 辽北抚顺—清原地区太古宙基底地球化学组成特征及其地质意义[J]. 地质论评, 51(2): 128-137. doi: 10.16509/j.georeview.2005.02.003
    万渝生, 宋彪, 杨淳, 等, 2005b. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U—Pb年代学及其地质意义[J]. 地质学报, 79(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501009.htm
    万渝生, 董春艳, 颉颃强, 等, 2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生: 综述[J]. 地质力学学报, 28(5): 866-906, doi: 10.12090/j.issn.1006-6616.20222817.
    王康, 刘树文, 王茂江, 等, 2018. 辽北新宾-苇子峪地区太古宙花岗质岩石的形成年代、成因及其地质意义[J]. 北京大学学报(自然科学版), 54(1): 61-79. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201801007.htm
    魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705002.htm
    袁玲玲, 刘洁, 张晓晖, 等, 2020. 辽北新太古代晚期岩浆热事件与陆壳生长: 来自清原奥长花岗岩的锆石U-Pb年代学和岩石地球化学证据[J]. 岩石学报, 36(2): 333-355. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002002.htm
    翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
    郑建平, 2020. 中国东部大陆岩石圈地幔置换作用的内外原因[J]. 地质力学学报, 26(5): 742-758, doi: 10.12090/j.issn.1006-6616.2020.26.05.061.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  210
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-05-16
  • 录用日期:  2023-05-18

目录

    /

    返回文章
    返回