Late Pleistocene stratigraphic sequence and geologic significance of the Kaolao Tableland in the Yuncheng Basin
-
摘要:
古汾河改道是运城盆地新生代时期一次重要的地表巨变过程,对于古汾河改道时限目前仍存在着中更新世和晚更新世2种观点,尚未有统一的定论。研究以运城盆地栲栳塬晚更新世沉积序列为调查对象,在光释光测年的基础上,厘定了沉积序列转换的关键时限;结合碎屑锆石U-Pb同位素测年,分析了栲栳塬晚更新世沉积序列的成因及地质主控因素。研究认为:运城盆地栲栳塬晚更新世沉积序列具有双层结构的特点,下部为一套河流相砂体,上部为一套风成相黄土,二者之间的界限大约在7.6~6.3万年;碎屑锆石年龄序列对比分析认为,栲栳塬晚更新世早期的河流相沉积与运城盆地汾河古河道的沉积特征基本一致,晚更新世中期,由于峨眉台地的区域性抬升,古汾河发生改道进而退出运城盆地,栲栳塬早期的河流相沉积之上开始接受持续的风成相沉积;运城盆地晚更新世中期的构造抬升事件在鄂尔多斯盆地周缘均有响应,预示着青藏高原在该时期存在一期明显的构造隆升,其远程效应是造成汾河改道退出运城盆地的主要动力。该研究成果从沉积角度为运城盆地古汾河的改道时限提供了新的证据。
Abstract:The ancient Fen River diversion was a crucial earth's surface transformation in the Yuncheng Basin during the Cenozoic. The time frame for the diversion of the ancient Fen River is still characterized by two views: the middle Pleistocene and the late Pleistocene, which has yet to be finalized. This study investigated the late Pleistocene sedimentary sequence of the Kaolao Tableland in the Yuncheng Basin, and the critical time frame of the sedimentary sequence transition was determined based on optically stimulated luminescence (OSL) dating results. The causes of the late Pleistocene sedimentary sequence of the Kaolao Tableland and the geological factors that controlled the sequence were analyzed using detrital zircon U–Pb isotope dating. It is concluded that the late Pleistocene sedimentary sequence of the Kaolao Tableland in the Yuncheng Basin is characterized by a two-layer structure, with fluvial sands in the lower part and eolian loess in the upper part. Based on the OSL dating results, the formation time of the boundary between these two parts is between ~76–63 ka B.P. Comparative analysis of detrital zircon age sequences indicates that the early Pleistocene fluvial sands in the Kaolao Tableland and sediments in the ancient Fen River have similar age sequence characteristics. Therefore, it can be deduced that the regional tectonic uplift of the northeastern Emei Terrace in the middle of the late Pleistocene resulted in the diversion and exit of the ancient Fen River from the Yuncheng Basin and the sedimentary facies began to change from fluvial to eolian. The tectonic uplift in the middle of the late Pleistocene extensively developed around the Ordos Basin, and that indicates a significant tectonic uplift of the Tibet Plateau during this time, whose remote effect might be the major cause for the exit of the ancient Fen River from the Yuncheng Basin. This research provides new sedimentary evidence for the time frame of the ancient Fen River diversion in the Yuncheng Basin.
-
Key words:
- fluvial facies /
- eolian loess /
- ancient Fen River /
- late Pleistocene /
- Yuncheng Basin /
- Zircon U-Pb ages
-
0. 引言
Zdansky(1923)将山西省保德县冀家沟一套产三趾马化石的红土命名为“三趾马红土”,又称“保德红土”。全国地层委员会(1963)首次将“三趾马红土”称为保德阶。山西省区调队(1978)将“三趾马红土”之下的底砾层和“三趾马红土”下部重新厘定为保德组(邓涛等,2004)。保德组主要分布于山西地堑系的运城盆地、临汾盆地、太原盆地以及大同盆地,岩性主要由粗碎屑岩和黏土组成,不整合于前新生代地层之上(山西省地质矿产局,1989)。古地磁测年和哺乳动物化石研究表明,保德组的沉积时代为中新世晚期(张云翔等,1997;邓涛等,2004,2008):陕西省府谷县老高川剖面保德组古地磁年龄为7.4~5.3 Ma(张云翔等,1997),保德县冀家沟保德组古地磁年龄为10.0~5.3 Ma(邓涛等,2004),三门峡盆地“三趾马红土”保德组古地磁年龄为12.0~5.3 Ma(邓涛等,2008)。汾渭地堑系保德组含有丰富的哺乳动物化石(童永生等,1995;张云翔等,1997;邓涛等,2004),也表明其沉积时代为中新世晚期(童永生等,1995)。
区域地质资料研究表明,中新世保德组沉积时期是青藏高原向北东方向隆升扩展影响到鄂尔多斯周缘新生代盆地的关键时期,该期构造事件对河西走廊及鄂尔多斯周缘的古气候环境都产生了明显的影响(Li et al.,2011;索艳慧等,2017;李三忠等,2019;Shi et al.,2020)。保德组红黏土广泛分布于鄂尔多斯及周缘地区,黏土形成演化与青藏高原10~8 Ma的强烈隆升密切相关(邓涛等,2004;Molnar,2005)。河西走廊循化盆地与保德组沉积时代相当的地层中,孢粉组合以麻黄粉属−白刺粉属−藜粉属为主,古植被表现为灌丛草原,气候持续变冷变干,表明青藏高原向北东方向的隆升扩展已经影响到了该区域古气候环境的变化(徐增连,2015)。汾渭地堑系三门峡盆地保德组的孢粉组合中,以桑科−藜科−蒿属−禾本科孢粉为主,孢粉浓度低,植物种类单调,气候相对寒冷干旱(陈兴强,2017)。山西地堑系保德县芦子沟剖面保德组的孢粉组合中,乔木植物花粉含量已经较高,并且种类丰富,亚热带植物如芸香科、漆树科等较常见,仍含有一定量的耐旱的蒿属、藜科和禾本科等,表明气候环境与循化盆地、三门峡盆地相比要温暖湿润的多(Li et al.,2011)。
青藏高原中新世晚期向北东方向的隆升扩展引起了鄂尔多斯盆地的逆时针旋转,山西地堑系的运城盆地、临汾盆地、太原盆地、忻州盆地、大同盆地自南向北依次形成(Shi et al.,2020)。文章以山西地堑系最南段的运城盆地中的ZK301钻孔为研究对象,针对中新世保德组开展系统的孢粉分析,建立沉积孢粉和再沉积孢粉的演化序列,研究成果将为运城盆地中新世晚期的古气候和古构造背景研究提供新的依据。
1. 区域地质概况
运城盆地是山西地堑系南部的新生代断陷盆地,其南部为中条山,北部有孤峰山、稷王山,西部为渭河盆地。盆地南北界山地均以一系列阶梯状的活动断裂与盆地相连,主要包括中条山北缘断裂、鸣条岗南缘断裂、鸣条岗北缘断裂、峨眉台地南缘断裂和峨眉台地北缘断裂(图1)。这些阶梯状的断裂将运城盆地划分为涑水平原和峨眉台地两大主要构造单元。盆地南部中条山出露太古界涑水杂岩、古元古界中条群,均为变质岩系,其上为中元古界长城系石英岩、黑色页岩、含硅质条带白云岩、震旦系冰碛岩以及寒武系、奥陶系碳酸盐岩(李振宏等,2020;仇度伟等,2021)。盆地北部峨眉台地以孤峰山为中心,出露早白垩世花岗岩,两侧主要出露寒武系碳酸盐岩(齐玥等,2011,2016)。峨眉台地的其它地区主要出露中更新世离石黄土和上更新世马兰黄土,钻孔揭示其下主要为中新世—上新世的河湖相地层,以粉砂和黏土为主。夹持于中条山与峨眉台地之间的涑水平原为一套新生代河湖体系沉积,沉积厚度达3000 m,古近纪和新近纪地层在露头尺度上呈现明显的角度不整合接触关系。运城盆地古近纪的演化主要受控于东部的滨太平洋构造域,沉积中心仅仅局限于中条山北缘的盐湖一带,中新世时期受控于青藏高原向北东方向隆升扩展所引起的鄂尔多斯盆地逆时针旋转的远程效应,沉积中心在现今的峨眉台地一带(Shi et al.,2020)。早更新世时期,黄河贯通三门峡东流入海,峨眉台地形成(李振宏等,2020)。
ZK301钻孔位于峨眉台地北缘断裂的下降盘,地表出露晚更新世马兰黄土,完钻井深1327.00 m(图2)。自上而下钻遇的层位包括晚更新世马兰黄土、丁村组,中更新世匼河组,早更新世三门组,上新世静乐组,中新世保德组以及二叠纪石盒子组。晚更新世马兰黄土(0~8.20 m)主要为一套棕色黏土质粉砂岩、粉砂质黏土岩,上部偶见炭质团块,下部发育钙质结核。晚更新世丁村组(8.20~134.53 m),主要为一套河流相的粗砂岩、细砂岩、粉砂岩沉积,纵向上存在多个向上变细的旋回。中更新世匼河组(134.53~283.32 m),主要为一套河流相的浅棕黄色粗中砂岩、粗砂岩,中砂岩中可见泥砾和砂质团块,粗砂岩中偶见砾石,局部可见砂纹层理,层理中见可见铁锰质条纹。早更新世三门组(283.32~744.48 m),底部为一套杂色砾岩,砾石多呈次圆状,少量呈现棱角状,成分主要为砂岩和灰岩,向上逐步过渡为含砾粗砂岩、粗砂岩;中部为一套棕红色黏土岩、粉砂质黏土岩,水平层理发育;上部为一套厚层状棕黄色砂岩,可见小型交错层理,偶见铁锰质条纹和钙质结核。上新世静乐组(744.48~794.00 m),主要为一套红棕色黏土、黏土质细砂岩,含大量的钙质结核。中新世保德组(794.00~1288.80 m),上部为红棕色黏土岩,底部为一套厚层状砾石层,砾石成分主要为砂岩,少量紫红色泥岩,向上逐步过渡为含砾粗砂岩、黏土质细砂岩,局部可见水平层理,与下覆的二叠世石盒子组棕黄色、黄绿色泥岩角度不整合接触。ZK301钻孔未打穿二叠纪石盒子组。
2. 材料与方法
研究目的层位为运城盆地ZK301钻孔中新世保德组,钻孔深度为794.00~1288.80 m,共采集孢粉样品37个(图2)。孢粉样品前处理、鉴定和分析均在中国地质科学院地质力学研究所孢粉实验室完成。为了保证获取足够的孢粉数量,每个样品称100 g烘干,之后加入1片石松子孢子片(10300粒/片)。然后在样品中加入20 %的盐酸去除碳酸盐。样品洗至中性后,再加入40 %的氢氟酸去除硅酸盐。再洗至中性后,在超声波清洗器中先后过200 µm和7 µm筛布富集孢粉。最后,转移到1 ml的指形管中,加入甘油保存,在孢粉鉴定室进行制片并在显微镜下进行鉴定。
孢粉样品的鉴定在德国产Leica DM 2500 生物显微镜和日本产 Olympus BX-51 型光学显微镜下进行,照相采用Olympus DP25成像系统。鉴定过程中参考了《花粉分析》(坡克罗夫斯卡娅等,1956)、《中国植物花粉形态》(中国科学院植物研究所形态室孢粉组,1960)、《中国蕨类植物孢子形态》(中国科学院北京植物研究所古植物研究室孢粉组,1976)、《中国孢粉化石(第一卷):晚白垩世和第三纪孢粉》(宋之琛等,1999)等。最后,使用Tilia软件进行孢粉百分比计算和画图。再沉积孢粉是保存在老地层中的孢粉化石经过一系列的风化、剥蚀,搬运到新地层中继续保存下来的孢粉,常常与新形成的孢粉掺杂在一起。新生代沉积地层中再沉积孢粉和地层中新形成的孢粉以自身荧光进行区分。再沉积孢粉的镜下特点是深褐色至棕黑色,被压扁呈扁平或片状,外壁残破,保存不全或外壁纹饰不清,弱或无荧光。地层中新形成的孢粉一般是浅色的,自身荧光颜色为从黄色到橙色,通常在透射光下呈黄色—浅黄褐色。
3. 结果
37块孢粉样品中,23块样品的孢粉含量达到100粒以上,其余14块样品少于100粒。孢粉数量达到100粒以上的样品参加孢粉百分含量的计算。样品中的孢粉由地层沉积时新形成的孢粉化石和再沉积孢粉化石两部分组成,地层中新形成的孢粉类型分属24科28属,主要孢粉类型见图3;再沉积孢粉类型分属13科15属,主要孢粉类型见图4。根据孢粉统计结果,建立了主要和具有代表性的孢粉百分比含量图谱(图5)。孢粉百分比含量反映的是某种植物在当时当地植被中的相对丰富程度,孢粉浓度是指单位体积或单位质量的沉积物中所含的孢粉粒数。依据主要孢粉类型、百分比关系、木本植物、草本及灌木植物类型、再沉积孢粉及孢粉浓度特征等,自下而上将ZK301钻孔中保德组孢粉组合划分为2个组合带。
图 3 ZK301钻孔中新世晚期保德组主要孢粉类型(比例尺均为10 μm)1—蒿属;2—蓝刺头属;3—藜科;4—麻黄科;5—白刺属;6—白花丹科;7—禾本科;8—葎草属;9—蓼科;10—毛茛科;11—牻牛儿苗科;12—伞形科;13—莎草科;14—眼子菜科;15—槭树科;16—桦木科;17—胡桃科;18—柳属;19—椴树科;20—榆科;21—苏铁科;22—铁杉属;23—松属Figure 3. Photomicrographs of selected spore-pollen types from the late Miocene Baode Formation from Borehole ZK301 (The scale is 10 μm)(1) Artemisia; (2) Echinops; (3) Chenopodiaceae; (4) Ephedraceae; (5) Nitraria; (6) Plumbaginaceae; (7) Gramineae; (8) Humulus; (9) Polygonaceae; (10) Ranunculaceae; (11) Geraniaceae; (12) Apiaceae; (13) Cyperaceae; (14) Potamogetonaceae; (15) Aceraceae; (16) Betulaceae; (17) Juglandaceae; (18) Salix; (19) Tiliaceae; (20) Ulmaceae; (21) Cycadaceae; (22) Tsuga; (23) Pinus图 4 ZK301钻孔中新世晚期保德组主要再沉积孢粉类型(比例尺均为10 μm)1—里白科;2—凤尾蕨科;3—卷柏科;4—紫萁科;5—水蕨科;6—克拉梭粉属;7—胡桃科:山核桃属;8—胡桃科:黄杞属;9—藜科;10—胡颓子科;11—麻黄科:梭形麻黄粉;12—麻黄科:多肋麻黄粉;13—柏科;14—南洋杉科;15—铁杉属;16—松属;17—云杉属Figure 4. Photomicrographs of selected redeposited spore-pollen types of the late Miocene Baode Formation from Borehole ZK301 (The scale is 10 μm)(1) Gleicheniaceae; (2) Pteridaceae; (3) Selaginellaceae; (4) Osmundaceae; (5) Parkeriaceae; (6) Classopollis; (7) Juglandaceae: Carya; (8) Juglandaceae: Engelhardtia; (9) Chenopodiaceae; (10) Elaeagnaceae; (11) Ephedraceae: Ephedripites fusiformis; (12) Ephedraceae: Ephedripites multicotatus; (13) Cupressaceae; (14) Araucariaceae; (15) Tsuga; (16) Pinus; (17) Picea3.1 I 带:深度 990.20~1288.80 m,麻黄科−藜科−禾本科组合带
该孢粉组合带共分析样品23块,其中14块样品达到统计孢粉含量要求,总体孢粉浓度较高,最高达19980粒/克。该组合带的孢粉包括地层沉积时新形成的孢粉化石和再沉积孢粉化石,其中再沉积孢粉的数量比地层中新形成的孢粉多。该孢粉组合带草本和灌木花粉占绝对优势,约53.9%~92.4%,主要由麻黄科(11.4%~60.0%)、藜科(5.6%~59.8%)和禾本科(0~17.3%)组成,麻黄科再沉积花粉所占比例较大,藜科和禾本科再沉积花粉所占比例较小。地层沉积时新形成的草本和灌木植物孢粉化石以麻黄科、藜科和禾本科占优势,还含有一定量的蒿属(0.3%~19.1%)、白花丹科(0~5.9%)、白刺属(0~5.3%)和少量的紫苑属、蓝刺头属、唇形科、蓼科、毛茛科、蔷薇科、牻牛儿苗科、伞形科、莎草科、眼子菜科。木本植物花粉(6.4%~43.1%)包括云杉属(0~18.6%)、松属(0~14.8%)、柏科(0~10.6%)、桦木科(0~5.9%)、胡桃科(0~4.9%)和少量的铁杉属、南洋杉科、克拉梭粉属、苏铁科、槭树科、柳属、椴树科、榆科等。蕨类植物孢子(0~12.0%)包括卷柏科(0~4.2%)、凤尾蕨科(0~4.2%)、里白科(0~3.5%)、紫萁科和水蕨科。再沉积花粉包括大量的麻黄科,还有藜科、胡桃科、胡颓子科、松属、云杉属、铁杉属、南洋杉科、柏科、克拉梭粉属、卷柏科、里白科、紫萁科、水蕨科和凤尾蕨科等。
3.2 II带:深度794.00~990.20 m,蒿属−藜科−葎草属组合带
该孢粉组合带共分析样品14块,其中9块达到统计的孢粉含量要求,但总体孢粉浓度较低,未见再沉积孢粉。该组合带仍是草本和灌木花粉占绝对优势,约93.8%~98.7%,木本植物花粉含量少,仅占1.3%~5.5%,未见蕨类植物孢子。草本和灌木花粉以蒿属(75.9%~93.7%)和藜科(1.9%~19.8%)为主,出现葎草属(0~3.4%)花粉,还发现少量的禾本科(0~2.1%)、毛茛科(0~1.4%)、唇形科(0~0.9%)、菊科(0~0.9%)、白花丹科(0~0.8%)。与孢粉组合I带相比,蒿属花粉含量明显升高,藜科花粉含量显著降低。木本植物花粉(1.3%~5.5%)包括松属(0~2.1%)、胡桃科(0~2.1%)、桦木科(0~1.4%)、榆科(0~0.9%)和柳属(0~0.6%)等。
4. 讨论
4.1 古气候背景
ZK301钻孔的孢粉包括再沉积孢粉和新形成孢粉两部分。再沉积孢粉是由盆地周围及造山带老地层经过剥蚀、搬运和再沉积到新地层中富集的,并不能反映新地层本身的古植被和古环境。根据新形成孢粉组合带的特征, ZK301钻孔保德组孢粉组合大致可以分为以下2类植被与环境。
孢粉组合带I(990.20~1288.80 m),以草本植物占优势、木本植物次之、蕨类植物最少。该组合带孢粉浓度较高,但再沉积孢粉比地层沉积时新形成的孢粉含量高,地层沉积时新形成的孢粉浓度并不高。地层沉积时新形成的孢粉组合特征以麻黄科、藜科和禾本科花粉占优势。麻黄科的生长环境条件极差, 是一种极度耐旱的荒漠植物,生长在年降水量不足100 mm的干旱、荒漠地区,是草原或半荒漠植物的典型代表,常用来指示干旱环境(中国植被编辑委员会,1980)。藜科为旱生和超旱生草本植物,一般来讲,藜科与蒿属相比,生长条件更为干旱,生长在开阔的陆地环境,现代藜科花粉在荒漠环境中占优势(许清海等,2005)。高含量的藜科花粉分布在年均温−2~4 ℃之间,年降水量300 mm以下地区(李文漪,1998)。禾本科为相对喜湿的中生草本植物,具有代表性,不少种类是草地、草甸和草原的建群种或优势种,在草原及荒漠草原地区指示低温高湿环境(罗传秀等,2006),以年均温−2~6 ℃为宜,年降水量300~600 mm之间为宜(Schäbitz,1994)。菊科蒿属的生境条件比藜科好,多分布在水分条件较好的低山和冲洪积扇上(Minckley and Whitlock,2000)。白刺属和白花丹科生长在干旱环境下的盐碱土壤(Grubov,2001)中。草本植物还零星发现耐寒的紫苑属、蓝刺头属和中生的唇形科、毛茛科、蔷薇科、伞形科等,以及水生的莎草科和眼子菜科。眼子菜科是生长在水下的植物,莎草科通常生长在湿润或沼泽地区,反应湿冷的生态环境(Xu et al.,2007)。综上所述,该时期的古植被是以麻黄科−藜科−禾本科为主的荒漠草原,反映寒冷干燥的气候环境。
孢粉组合带II(794.00~990.20 m),与孢粉组合带I相比,孢粉浓度骤降,且未见再沉积孢粉。该孢粉组合带仍是草本和灌木花粉占绝对优势,木本植物花粉含量少,未见蕨类植物孢子。草本和灌木花粉以蒿属占绝对优势,其次是藜科花粉。蒿属和藜科植物属耐盐碱植物,也多生长在湖泊周围的河滩湿地,其往往与隐域性生境条件密切相关(Li et al.,2019)。干旱条件下藜科含量高,而半干旱条件下蒿含量高(闫顺,1991)。当蒿属和藜科植物成为绝对优势种群,则表现为荒漠景观,物种组成单调。组合带中出现葎草属花粉,葎草属常生长在沟边、荒地、废墟、林缘边。另外,还含有一些中生的草本植物禾本科、毛茛科和唇形科等,以及喜温湿的落叶阔叶植物花粉胡桃科、桦木科和榆科等。总体而言,该时期的古植被是以蒿属−藜科为主的荒漠草原,反映偏冷偏干的气候环境。
上述分析表明,运城盆地峨嵋台地ZK301钻孔中新世保德组的孢粉组合特征能够比较客观地反映当地及周围的古植被和古气候演化过程。中新世晚期以藜科−禾本科−麻黄科为主的荒漠草原发展为以蒿属−藜科为主的荒漠草原,对应的古气候背景由寒冷干燥逐渐过渡为偏冷偏干,寒冷程度自中新世保德组沉积初期至晚期寒冷程度有所减弱,气候逐渐变的温和。这种古气候环境的变化过程可能与青藏高原隆升扩展影响到了运城盆地引起区域古气候的变迁有关。在中新世保德组沉积初期,由于青藏高原的强烈隆升扩展的远程效应,中条山及相邻的运城盆地气候突然变得寒冷干燥,随着强烈隆升作用的逐步减弱,气候也随之变得偏冷偏干。中新世保德组沉积时期古气候背景由寒冷干燥转变为偏冷偏干的过程,较好地响应了区域隆升扩展远程效应由强变弱的过程,反应了构造与气候之间的相互耦合关系。
4.2 构造意义
山西峨眉台地ZK301钻孔保德组下部孢粉I带(990.20~1288.80 m)含有大量的再沉积孢粉,而保德组上部孢粉II带(794.00~990.20 m)未发现再沉积孢粉。保德组钻孔序列中再沉积孢粉含量自下而上的变化,使得该区域孢粉分布的控制因素变得更为复杂。
孢粉组合I带再沉积孢粉中,麻黄科含量最高,其次是松属、云杉属、柏科、藜科、胡桃科和蕨类植物孢子,还有少量的克拉梭粉属和胡颓子科等。克拉梭粉属开始出现于晚三叠世,繁盛于晚侏罗世—早白垩世,一直延续到古近纪(刘兆生,2000)。区域地质资料表明,运城盆地及中条山邻区均未发现晚三叠世、侏罗纪和白垩纪沉积,因此保德组中的再沉积克拉梭粉属应该来自于古近纪地层。受到区域隆升剥蚀以及盆地沉降的影响,中条山及邻区古近纪地层主要出露于中条山南缘平陆坡底、米汤沟一带,中条山北缘永济首阳一带也有局部分布。运城盐湖黑泥浴地热钻井中也钻遇到了该套地层,岩性组合与平陆坡底、米汤沟以及永济首阳一带的岩性组合特征基本一致,以紫红色泥岩、灰白色砂岩夹薄层石膏为典型特征(图1)。运城盆地ZK301钻孔保德组孢粉I带再沉积孢粉组合特征可与中条山南缘平陆坡底渐新世门里组和始新世高庙组相对比,古新世门里组孢粉的主要种属有:松属(23.2%)、麻黄科(12.0%)、罗汉松科(11.3%)、南洋杉科、雪松属、柏科、杉科、云杉属,以及被子植物胡桃科(6.2%)、栎属(6.2%)、柳属(1.9%)、漆树属和蕨类植物孢子;始新世高庙组的孢粉主要种属有:松属(22.1%)、麻黄科(20.4%)、柏科(5.5%)、杉科(4.6%),被子植物栎属(5.2%)、柳属(3.7%)、豆科、胡颓子科、桦木科、胡桃科、棕榈科、木兰科和一些蕨类植物孢子(山西省地质局二一四地质队,1982;陈兴强,2017)。在中条山北缘永济首阳一带出露始新统至渐新统部分地层,岩性为灰白色砂岩、紫红色泥岩局部夹薄层石膏层,与上覆保德组底部砾岩呈角度不整合接触。中条山北缘运城盐湖地热钻孔资料显示,保德组底部岩性组合特征与ZK301钻孔以及露头资料完全可以对比,均为一套厚层砾岩,砾石成分有来自于中条山的混合花岗岩以及与古近纪沉积特征较为一致的紫红色泥岩、灰白色砂岩。区域上保德组底部砾岩的砾石成分表明,保德组沉积初期,中条山处于快速隆升期,运城盆地随之沉降,早期古近纪位于中条山山前的沉积中心迁移至现今的峨眉台地一带,在二叠系石盒子组基底之上开始接受晚新生代沉积。随着中条山北缘隆起范围的不断扩大,早期沉积的古近纪地层开始遭受剥蚀,向位于盆地沉积中心的峨眉台地一带提供物源。结合区域露头及钻孔资料综合分析,ZK301钻孔保德组中下部含有大量的再沉积孢粉,应该来自于中条山北缘古近纪地层的剥蚀再沉积。随着区域隆升剥蚀的逐步减弱,物源区由早期的快速抬升逐步趋于稳定,再沉积孢粉由于沉积速率的下降而淋滤消失,因而在保德组上部地层中基本上不再含有剥蚀再沉积的孢粉,而是以代表盆地气候背景的新生沉积孢粉为主。
青藏高原自新生代以来经过多阶段快速隆升,向北东方向不断扩展,并在10~8 Ma期间影响到了青藏高原东北缘(方小敏,2017;Shi et al.,2020;寇琳琳等,2021),造成中新世以来鄂尔多斯盆地的逆时针旋转,进而使山西地堑系运城盆地峨眉台地、临汾盆地、太原盆地、大同盆地等一系列晚新生代盆地开始接受沉积(韩晓明等,2015;林向东等,2017;Shi et al.,2020; Chen et al.,2021;秦帮策等,2021;仲启蒙等,2022)。运城盆地峨眉台地上郭1井与ZK301钻孔保德组沉积序列完全可以对比,上郭1井保德组与下覆寒武系张夏组不整合接触,古地磁年龄限定保德组的底部沉积时代为9.1 Ma(闫纪元,2021)。通过与上郭1井沉积序列对比分析,ZK301钻孔的保德组底部年龄应该为9.1 Ma,也就是说运城盆地峨眉台地在该时期受到青藏高原隆升扩展的远程效应影响,开始接受沉积。中条山断裂自渐新世开始活动,晚中新世后构造活动显著增强,上盘强烈下沉和下盘相对隆升,造成中条山的隆升,也响应了该期构造运动(Su et al.,2021)。青藏高原在10~8 Ma期间隆升扩展的远程效应,在运城盆地沉积−气候方面都有较好的响应。中新世保德组沉积时期,运城盆地南缘中条山快速隆升,造成了中条山山麓河流加速下切,先期沉积在中条山北缘相对较高部位的古近纪地层被侵蚀、搬运、再沉积到了现今的峨眉台地区域,形成了中新世晚期的沉积中心,随着沉积中心不断扩展,汾渭地堑系最终形成(李振宏等,2020;仇度伟等,2021;图6)。运城盆地峨眉台地ZK301钻孔保德组与下覆二叠系石盒子组不整合接触,再沉积孢粉含量的变化正好响应了该期的隆升剥蚀、搬运到再沉积的过程。在古气候方面,运城盆地古近纪始新世至渐新世沉积时期总体上为温暖湿润的气候环境,但在中新世保德组沉积时期,气候变得寒冷干燥,正好响应了青藏高原隆升远程效应对气候变化的影响。随着隆升扩展程度的减弱,气候也逐渐变得相对温和,保德组上部偏冷偏干的气候背景也响应了该期构造活动逐渐减弱的过程。
5. 结论
(1)运城盆地ZK301钻孔中新世保德组孢粉具有新形成孢粉和再沉积孢粉两部分,二者分别反映了该沉积时期的古气候与古构造背景。
(2)ZK301钻孔保德组新形成孢粉组合特征表明,运城盆地中新世晚期从以麻黄科−藜科−禾本科为主的荒漠草原发展为以蒿属−藜科为主的荒漠草原,对应的古气候背景由寒冷干燥逐步变化为偏冷偏干,这种变化与青藏高原隆升扩展由强变弱的趋势之间具有很好的响应关系。
(3)ZK301钻孔保德组下部含较多的再沉积孢粉,上部几乎不含再沉积孢粉,这种变化响应了中条山及邻区中新世晚期的隆升由强逐渐减弱的过程,再沉积孢粉主要来自于古地形较高部位古近纪地层的剥蚀−搬运−再沉积,随着隆升强度的减弱,再沉积孢粉经过长期淋滤而消失。
-
图 3 运城盆地第四系典型剖面特征
a、b—栲栳塬尊村晚更新世剖面;c—涑水平原王过村晚更新世剖面;d—涑水平原北杨姚村晚更新世剖面;e—峨眉台地孤山山前离石−马兰黄土剖面;f—峨眉台地大荔离石−马兰黄土剖面
Figure 3. Typical Quaternary sections in the Yuncheng Basin
(a and b)Late Pleistocene stratigraphic sequence in the Zuncun section of the Kaolao Tableland; (c) Late Pleistocene stratigraphic sequence in the Wangguocun section of the Sushui Plain; (d) Late Pleistocene stratigraphic sequence in the Beiyangyaocun section of the Sushui Plain; (e) Lishi–Malan loess stratigraphic sequence at the front of Gushan Mountain in the Emei Terrace; (f) Lishi–Malan loess stratigraphic sequence in the Dali section in the Emei Terrace
表 1 光释光样品年龄测试结果
Table 1. Optically stimulated luminescence ages
序号 野外编号 U/ Th/ K/ 测试粒径/ 测试方法 环境剂量率/ 等效剂量/ 年龄/ (μg/g) (μg/g) % μm (Gy/ka) Gy ka 1 ZC-OSL-1 1.61 6.90 1.87 4~11 SMAR 2.92±0.22 323.51±31.98 110.63±13.65 2 ZC-OSL-2 2.52 10.80 1.83 4~11 SMAR 3.55±0.25 270.25±31.45 76.22±10.40 3 ZC-OSL-3 2.46 11.50 1.66 4~11 SMAR 3.46±0.24 220.04±16.64 63.69±6.57 4 YC03-OSL 2.76 12.30 1.60 4~11 SMAR 4.15±0.25 179.36±14.76 43.26±5.60 5 YC01-OSL 1.93 9.71 1.86 4~11 SMAR 3.82±0.23 300.26±28.10 78.54±10.76 6 SG05-OSL 11.00 12.40 1.86 4~11 SMAR 7.53±0.22 508.89±0.58 67.57±7.88 7 SG08-OSL 1.90 7.09 2.09 4~11 SMAR 3.77±0.21 467.56±48.60 124.09±17.90 表 2 ZC-Zr-1样品碎屑锆石年龄测试结果
Table 2. U-Pb ages of detrital zircons from the sample ZC-Zr-1
测试点号 含量/×10−6 同位素比值 年龄/Ma Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ ZC-Zr-1 178.0 222.0 199 11.0402 0.1939 0.4822 0.0049 2509 29 2537 21 ZC-Zr-3 31.1 268.0 638 0.2821 0.0071 0.0386 0.0003 320 57 244 2 ZC-Zr-4 19.6 115.0 226 0.5196 0.0144 0.0678 0.0006 435 63 423 4 ZC-Zr-5 8.5 64.1 111 0.3331 0.0159 0.0442 0.0006 433 145 279 4 ZC-Zr-6 7.0 62.8 103 0.2817 0.0168 0.0404 0.0006 250 139 255 4 ZC-Zr-7 160.0 155.0 247 9.1073 0.1536 0.4299 0.0035 2383 29 2305 16 ZC-Zr-8 6.9 75.3 114 0.3095 0.0172 0.0426 0.0005 328 119 269 3 ZC-Zr-9 54.9 14.1 102 10.4488 0.1983 0.4628 0.0043 2492 31 2452 19 ZC-Zr-10 13.2 68.4 132 0.5638 0.0219 0.0741 0.0008 413 83 461 5 ZC-Zr-11 55.5 31.7 139 5.9408 0.1088 0.3519 0.0031 1990 38 1944 15 ZC-Zr-12 215.5 54.2 670 5.1155 0.0827 0.3243 0.0030 1866 27 1810 15 ZC-Zr-13 6.0 69.8 93 0.3093 0.0184 0.0443 0.0007 300 147 279 4 ZC-Zr-14 27.1 24.4 67 5.1031 0.1029 0.3287 0.0030 1843 38 1832 14 ZC-Zr-15 55.0 92.1 99 5.0927 0.1013 0.3252 0.0030 1854 41 1815 14 ZC-Zr-16 232.0 601.0 275 4.8464 0.0892 0.3108 0.0024 1842 33 1745 12 ZC-Zr-17 42.5 34.2 108 5.2593 0.0967 0.3294 0.0027 1890 35 1835 13 ZC-Zr-18 69.9 119.0 410 1.5147 0.0254 0.1545 0.0012 954 35 926 6 ZC-Zr-19 87.5 154.0 166 4.5015 0.0811 0.3013 0.0027 1769 33 1698 14 ZC-Zr-20 250.0 202.0 415 9.2668 0.1540 0.4139 0.0044 2474 24 2233 20 ZC-Zr-21 87.9 84.1 132 9.0100 0.1552 0.4541 0.0051 2272 27 2414 22 ZC-Zr-22 33.0 34.5 64 6.4872 0.1475 0.3737 0.0041 2037 39 2047 19 ZC-Zr-23 271.0 52.5 590 8.8208 0.1462 0.4171 0.0037 2379 28 2247 17 ZC-Zr-24 242.0 148.0 389 10.4343 0.1845 0.4769 0.0044 2437 30 2514 19 ZC-Zr-25 51.9 51.9 72 9.4711 0.1963 0.4489 0.0047 2377 35 2390 21 ZC-Zr-26 145.5 72.3 251 10.4246 0.1710 0.4677 0.0041 2466 28 2474 18 ZC-Zr-27 106.8 146.0 150 7.7183 0.1212 0.3885 0.0032 2272 27 2116 15 ZC-Zr-28 151.0 190.0 160 10.9927 0.1621 0.4756 0.0038 2529 25 2508 17 ZC-Zr-29 117.6 123.0 147 10.5719 0.1535 0.4671 0.0041 2495 26 2471 18 ZC-Zr-30 104.2 97.9 246 5.3593 0.0908 0.3345 0.0032 1892 30 1860 15 ZC-Zr-31 94.4 126.0 111 9.4867 0.1727 0.4453 0.0042 2391 31 2374 19 ZC-Zr-33 30.0 40.9 60 4.8823 0.1041 0.3259 0.0029 1768 39 1818 14 ZC-Zr-34 89.3 111.0 117 8.7490 0.1420 0.4248 0.0032 2332 29 2282 14 ZC-Zr-35 79.6 69.0 182 5.9436 0.1270 0.3477 0.0051 2006 30 1924 24 ZC-Zr-36 149.0 203.0 301 5.0792 0.0822 0.3330 0.0028 1811 28 1853 13 ZC-Zr-37 118.0 86.5 209 8.6450 0.1388 0.4113 0.0030 2365 27 2221 14 ZC-Zr-38 305.0 170.0 519 9.8174 0.1598 0.4553 0.0041 2409 27 2419 18 ZC-Zr-39 16.8 165.0 226 0.3800 0.0130 0.0499 0.0006 428 80 314 4 ZC-Zr-40 88.7 49.1 144 10.6158 0.2174 0.4693 0.0047 2490 33 2481 21 ZC-Zr-42 23.1 327.0 339 0.2811 0.0087 0.0398 0.0004 254 68 252 3 ZC-Zr-43 72.4 65.8 176 5.1621 0.0965 0.3275 0.0030 1862 34 1826 14 ZC-Zr-44 68.6 45.6 215 4.3364 0.0796 0.2955 0.0028 1732 33 1669 14 ZC-Zr-45 42.5 63.0 82 4.9999 0.1002 0.3271 0.0030 1806 35 1824 15 ZC-Zr-46 81.1 49.9 263 4.8733 0.1316 0.2961 0.0056 1931 31 1672 28 ZC-Zr-48 20.8 176.0 368 0.3247 0.0107 0.0434 0.0004 372 74 274 2 ZC-Zr-49 352.0 220.0 855 5.7795 0.0953 0.3542 0.0029 1926 30 1955 14 ZC-Zr-50 205.0 161.0 317 10.3477 0.1869 0.4496 0.0042 2522 29 2393 19 ZC-Zr-51 45.2 91.0 61 5.8441 0.1351 0.3509 0.0036 1973 41 1939 17 ZC-Zr-52 150.0 130.0 357 5.7726 0.0950 0.3524 0.0032 1936 26 1946 15 ZC-Zr-53 59.9 77.4 69 10.3819 0.2011 0.4559 0.0048 2508 31 2421 21 ZC-Zr-54 173.5 114.0 440 5.5781 0.0857 0.3453 0.0026 1910 26 1912 12 ZC-Zr-55 256.0 217.0 611 5.8320 0.0968 0.3474 0.0030 1989 28 1922 14 ZC-Zr-56 122.5 117.0 174 9.7395 0.1684 0.4618 0.0043 2376 27 2447 19 ZC-Zr-57 54.8 41.8 99 8.7842 0.1904 0.4025 0.0044 2433 39 2181 20 ZC-Zr-58 210.0 258.0 692 3.7252 0.0818 0.2509 0.0032 1754 33 1443 16 ZC-Zr-59 109.9 71.9 310 4.9964 0.0911 0.3158 0.0028 1873 33 1769 14 ZC-Zr-60 159.4 52.4 455 5.8807 0.1222 0.3431 0.0043 2009 25 1902 21 ZC-Zr-61 63.2 118.0 92 5.8926 0.1198 0.3513 0.0032 1974 35 1941 15 ZC-Zr-62 7.4 68.9 143 0.3139 0.0156 0.0427 0.0006 350 113 270 3 ZC-Zr-63 22.9 47.4 40 4.3841 0.1139 0.3076 0.0033 1688 51 1729 16 ZC-Zr-64 41.5 66.9 80 5.1611 0.1066 0.3291 0.0030 1857 39 1834 15 ZC-Zr-65 83.4 125.0 95 9.2125 0.1785 0.4353 0.0037 2377 34 2329 16 ZC-Zr-66 9.5 75.8 186 0.3220 0.0133 0.0421 0.0005 428 88 266 3 ZC-Zr-68 5.0 62.4 58 0.3527 0.0229 0.0461 0.0007 487 156 290 5 ZC-Zr-69 77.4 118.0 157 5.1547 0.1026 0.3174 0.0038 1915 34 1777 19 ZC-Zr-70 36.3 4.9 86 7.6336 0.1864 0.3970 0.0047 2206 39 2155 22 ZC-Zr-71 31.4 446.0 357 0.3435 0.0122 0.0463 0.0005 339 78 292 3 ZC-Zr-72 35.2 61.8 67 5.2428 0.1118 0.3185 0.0028 1943 40 1782 14 ZC-Zr-73 208.0 194.0 304 9.8833 0.1682 0.4546 0.0040 2433 31 2416 18 ZC-Zr-74 196.3 109.0 357 9.3918 0.1663 0.4410 0.0038 2387 31 2355 17 ZC-Zr-75 154.1 77.1 419 5.4923 0.0902 0.3406 0.0030 1902 31 1890 14 ZC-Zr-76 59.6 181.0 35 5.1197 0.1492 0.3317 0.0042 1828 53 1847 20 ZC-Zr-77 180.0 164.0 231 11.3982 0.1651 0.4871 0.0045 2547 25 2558 20 ZC-Zr-78 100.3 143.0 189 5.5238 0.0798 0.3460 0.0028 1881 26 1916 13 ZC-Zr-79 66.7 97.2 131 5.1919 0.0913 0.3367 0.0031 1817 30 1871 15 ZC-Zr-80 148.0 256.0 249 5.3470 0.0685 0.3361 0.0026 1872 20 1868 13 ZC-Zr-81 261.8 44.0 502 10.8036 0.0939 0.4687 0.0028 2517 12 2478 12 ZC-Zr-82 91.2 56.7 172 8.6002 0.1040 0.4248 0.0031 2298 17 2282 14 ZC-Zr-83 75.2 101.0 137 5.9456 0.0797 0.3577 0.0030 1955 22 1971 14 ZC-Zr-84 33.8 52.4 64 5.1114 0.0910 0.3308 0.0034 1833 34 1842 17 ZC-Zr-85 28.2 130.0 120 1.1959 0.0293 0.1327 0.0012 787 54 803 7 ZC-Zr-86 52.5 78.4 51 10.1950 0.1988 0.4567 0.0049 2473 33 2425 22 ZC-Zr-87 49.1 36.2 126 5.3148 0.0934 0.3371 0.0028 1865 33 1873 14 ZC-Zr-88 58.5 76.5 64 10.3817 0.1800 0.4674 0.0041 2465 30 2472 18 ZC-Zr-89 152.1 43.4 600 3.6819 0.0564 0.2603 0.0019 1665 28 1492 10 ZC-Zr-90 81.2 88.8 175 5.6034 0.1152 0.3492 0.0039 1896 35 1931 19 ZC-Zr-91 172.2 42.8 548 4.9117 0.1059 0.3012 0.0035 1924 35 1697 17 ZC-Zr-92 114.9 86.5 188 9.4665 0.1569 0.4502 0.0039 2372 28 2396 17 ZC-Zr-93 7.6 207.0 249 0.1381 0.0077 0.0198 0.0003 256 131 126 2 ZC-Zr-94 14.3 124.0 271 0.3047 0.0118 0.0434 0.0005 254 88 274 3 ZC-Zr-95 9.5 95.8 103 0.4088 0.0210 0.0574 0.0008 287 122 360 5 ZC-Zr-96 44.0 48.1 105 4.8837 0.0924 0.3297 0.0031 1755 35 1837 15 ZC-Zr-97 89.4 37.5 221 6.2711 0.1077 0.3753 0.0038 1972 62 2054 18 ZC-Zr-98 42.4 65.1 108 4.0810 0.0914 0.2842 0.0037 1694 37 1612 19 ZC-Zr-99 84.8 111.0 184 5.1797 0.0918 0.3282 0.0026 1866 31 1830 13 ZC-Zr-100 13.4 85.8 165 0.4931 0.0197 0.0646 0.0007 443 93 403 4 ZC-Zr-101 10.5 126.0 160 0.3281 0.0156 0.0425 0.0006 461 107 269 4 ZC-Zr-102 16.9 131.0 298 0.3390 0.0128 0.0477 0.0006 333 89 301 4 -
[1] AN Z S, LIU X D, 2000. History and variability of monsoon climate in East Asia[J]. Chinese Science Bulletin, 45(3): 238-249. (in Chinese) doi: 10.1360/csb2000-45-3-238 [2] CHEN X Q, SHI W, HU J M, et al. , 2016. Sedimentation of the Pliocene-Pleistocene Chaizhuang section in the central of Linfen Basin, North China and its tectonic significance[J]. Journal of Geomechanics, 22(4): 984-993. (in Chinese with English abstract) [3] CUI J W, LI Z H, LIU F, et al. , 2018. Redefinition of the sedimentary time of the Salawusu Formation in the Hongsibu Basin, Ningxia and its significance[J]. Journal of Geomechanics, 24(2): 283-292. (in Chinese with English abstract) [4] CUI X F, XIE F R, LI R S, et al. , 2010. Heterogeneous features of state of tectonic stress filed in north china and deep stress in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 29(S1): 2755-2761. (in Chinese with English abstract) [5] DONG X P, LI Z H, CUI J W, et al. , 2022. Discovery of periglacial phenomena in the late stage of Last Glacial Maximum at the upper to middle reaches of Qingshuihe River, Ningxia, China[J]. Journal of Earth Sciences and Environment, 44(3): 524-534. (in Chinese with English abstract) [6] DONG X P, CUI J W, JIANG X H et al. , 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt in the northeastern Tibet Plateau[OL/J]. Journal of Geomechanics, DOI: 10.12090/j.issn.1006-6616.2023048. (in Chinese with English abstract) [7] GUO L Z, XUE Y Q, 1958. The pleistocene sediments of the lower reaches of the Fenho and the Sushui: their origin and bearings on the geomorphological evolution of these two rivers[J]. Quaternary Sciences, 1(1): 107-117. (in Chinese) [8] HAN H Y, MI F S, LIU H Y, 2001. Geomorphological structure in the Weihe Basin and neotectonic movement[J]. Journal of Seismological Research, 24(3): 251-257. (in Chinese with English abstract) [9] HAN H Y, ZHANG Y, YUAN Z X, 2002. The evolution of Weihe down-faulted basin and the movement of the fault blocks[J]. Journal of Seismological Research, 25(4): 362-368. (in Chinese with English abstract) [10] HAN X M, LIU F, ZHANG W T, et al. , 2015. Analyzing the variation characteristics of stress field in Hetao seismic belt using focal mechanism data[J]. Seismology and Geology, 37(4): 1030-1042. (in Chinese with English abstract) [11] HU J M, YAN J Y, CHENG Y, et al. , 2022. Geological records of late Cenozoic tectono-sedimentary-paleoclimatic events in China[J]. Geology and Resources, 31(3): 303-330. (in Chinese with English abstract) [12] HU X M, 1997. The change of fromer Fen river on EMEI platform[J]. Journal of Anhui Normal University (Natural Science), 20(2): 154-158. (in Chinese with English abstract) [13] HU X M, YANG J C, 2001. The evolution and its contributing factors of Linfen Basin since middle Quaternary[J]. Journal of Shanghai Teachers University (Natural Sciences), 30(3): 72-76. (in Chinese with English abstract) [14] HU X M, GUO J X, HU X Y, 2010. The development of Morpho-sediment of Quaternary in Fenhe River graben basins and the neotectonic movement[J]. Acta Geographica Sinica, 65(1): 73-81. (in Chinese with English abstract) [15] HU X M, CHEN M J, WANG D T, et al. , 2012. The Sequence difference in the times in the geomorphic-sedimentary evolution in the Fenwei graben basins during the middle-late Quaternary and its tectonic significance[J]. Quaternary Sciences, 32(5): 849-858. (in Chinese with English abstract) [16] HUANG T, LI Z H, LIU F, et al. , 2018. The current situation of desertification in the Hongsibu Basin, Ningxia, and its main geological controlling factors[J]. Journal of Geomechanics, 24(4): 505-514. (in Chinese with English abstract) [17] JIA L Y, ZHANG X J, YE P S, et al. , 2016. Development of the alluvial and lacustrine terraces on the northern margin of the Hetao Basin, Inner Mongolia, China: implications for the evolution of the Yellow River in the Hetao area since the late pleistocene[J]. Geomorphology, 263: 87-98. doi: 10.1016/j.geomorph.2016.03.034 [18] JIA L Y, HU D G, WU H H, et al. , 2017. Yellow River terrace sequences of the Gonghe-Guide section in the northeastern Qinghai-Tibet: implications for plateau uplift[J]. Geomorphology, 295: 323-336. doi: 10.1016/j.geomorph.2017.06.007 [19] JIANG F C, FU J L, WANG S B, et al. , 2007. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 175(1): 62-70. doi: 10.1016/j.quaint.2007.03.022 [20] JIN H L, LI M Q, SU Z Z, et al. , 2006. Climatic change reflected by Stratigraphical magnetic susceptibility in Salawusu River basin, North China since 220 ka BP[J]. Journal of Desert Research, 26(5): 680-686. (in Chinese with English abstract) [21] JIN H L, LI M Q, SU Z Z, et al. , 2007. Sedimentary age of strata in the Salawusu River Basin and climatic changing[J]. Acta Geologica Sinica, 81(3): 307-315. (in Chinese with English abstract) [22] LI S Z, YU S, ZHAO S J, et al. , 2013. Tectonic transition and plate reconstructions of the east Asian continental magin[J]. Marine Geology & Quaternary Geology, 33(3): 65-94. (in Chinese with English abstract) [23] LI S Z, CAO X Z, WANG G Z, et al. , 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract) [24] LI Y L, YANG J C, 1994. Environmental evolution of Yuncheng daline lake (Shanxi, China)[J]. Geographical Research, 13(1): 70-74. (in Chinese with English abstract) [25] LI Y L, YANG J C, SU Z Z, 1994. Neotectonic movement and palaeochannel evolution in Yuncheng Basin[J]. Earthquake Research in Shanxi(1): 3-6. (in Chinese with English abstract) [26] LI Z C, LI W H, LI Y X, et al. , 2015. Sedimentary facies of the Cenozoic in Weihe Basin[J]. Journal of Palaeogeography, 17(4): 529-540. (in Chinese with English abstract) [27] LI Z C, LI W H, LI Y X, et al. , 2016. Cenozoic stratigraphy and Paleoenvironments in the Weihe area, Shaanxi Province[J]. Journal of Stratigraphy, 40(2): 168-178. (in Chinese with English abstract) [28] LI Z H, JIANG B Y, DONG X P, et al. , 2020a. Collapses of loess at the front of the Emei tableland in the Yuncheng basin and their major geological controlling factors[J]. Coal Geology & Exploration, 48(2): 171-178. (in Chinese with English abstract) [29] LI Z H, CUI J W, LI C Z, et al. , 2020b. Late Pleistocene sedimentary features and the palaeoclimatic background in Hongsibao Basin[J]. Coal Geology & Exploration, 48(6): 233-242. (in Chinese with English abstract) [30] LI Z Y, LI Y X, LI W H, et al. , 2021. Sedimentary characteristics of Paleogene-Neogene in Fenwei Basin[J]. Chinese Journal of Geology, 56(4): 1120-1133. (in Chinese with English abstract) [31] LIN X D, YUAN H Y, XU P, et al. , 2017. Zonational characteristics of earthquake focal mechanism solutions in North China[J]. Chinese Journal of Geophysics, 60(12): 4589-4622. (in Chinese with English abstract) [32] LIU B H, WU F, ZHANG X J, et al., 2023. Late Pleistocene element geochemistry and its implications for environmental change in Hongsibu Basin, northeastern margin of Qinghai-Tibet Plateau[J/OL].Geological Bulletin of China: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html. (in Chinese with English abstract) [33] LIU S D, LI G K, LI Y X, et al. , 1988. Discussion on the formation and evolution of the Yellow River from the characteristics of Quaternary sediments in the eastern plain of Henan Province[J]. Henan Geology, 6(2): 20-24. (in Chinese) [34] LIU Y S, HU Z C, GAO S, et al. , 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [35] LIU Y S, GAO S, HU Z C, et al. , 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [36] LIU Y S, HU Z C, ZONG K Q, et al. , 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [37] LUDWIG K R, 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[M]. Berkeley, California: Berkeley Geochronology Center: 39. [38] MA Z Y, DONG X P, ZHANG Q, et al. , 2020. Sedimentary response to the uplift of the Liupan Shan since the Late Pleistocene and its environmental effects[J]. Coal Geology & Exploration, 48(5): 152-164. (in Chinese with English abstract) [39] PAN B T, WANG J P, GAO H S, et al. , 2005. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges[J]. Chinese Science Bulletin, 50(7): 657-664. doi: 10.1360/03wd0290 [40] QI Y, XU H B, ZHANG J X, et al. , 2011. Geochemistry, geochronology and geological significance of Gufengshan granodiorite in Linfen Grabben basin[J]. Geological Review, 57(4): 565-573. (in Chinese with English abstract) [41] QI Y, LUO J H, WU J D, et al. , 2016. Geochemical and Sr-Nd-Pb isotopic composition of the Canfang and Gufengshan granodiorite plutons in central-southern North China[J]. Acta Petrologica Sinica, 32(7): 2015-2028. (in Chinese with English abstract) [42] QIN B C, FANG W X, ZHANG J G, et al. , 2021. Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe Rift Valley[J]. Journal of Geomechanics, 27 (6): 1035-1050. (in Chinese with English abstract) [43] QIU D W, GONG W B, YAN J Y, et al. , 2021. Geological environment changes during the late Pleistocene-Holocene on the E'mei tableland in the northern Yuncheng basin, Shanxi Province: implications for the distribution of human settlements[J]. Journal of Geomechanics, 27(2): 326-338. (in Chinese with English abstract) [44] SHANG Y, PRINS M A, BEETS C J, et al. , 2018. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra[J]. Quaternary Science Reviews, 182: 131-143. doi: 10.1016/j.quascirev.2018.01.001 [45] SUN J M, XU L L, 2007. River terraces in the Fenwei Graben, Central China, and the relation with the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Sciences, 27(1): 20-26. (in Chinese with English abstract) [46] SUO Y H, LI S Z, DAI L M, et al. , 2012. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 28(8): 2602-2618. (in Chinese with English abstract) [47] SUO Y H, LI S Z, CAO X Z, et al. , 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249-267. (in Chinese with English abstract) [48] WANG Q, LI C G, TIAN G Q, et al. , 2000. Great changes of surface system and tectonic setting of salt lake formation in Yuncheng Basin since 7.1 Ma[J]. Science in China (Series D), 30(4): 420-428. (in Chinese) [49] WIEDENBECK M, ALLÉ P, CORFU F, et al. , 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x [50] WU M J, LIN X D, XU P, 2011. Analysis of focal mechnism and tectonic stress field features in northern part of north China[J]. Journal of Geodesy and Geodynamics, 31(5): 39-43. (in Chinese with English abstract) [51] WU X H, JIANG F C, WANG S M, et al. , 1998. On problem of the Yellow River passing through the Sanmen Gorge and flowing east into sea[J]. Quaternary Sciences, 18(2): 188. (in Chinese with English abstract) [52] XING Z Y, ZHAO B, TU M Y, et al. , 2005. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 12(2): 247-262. (in Chinese with English abstract) [53] XU H L, WANG C D, 2010. Preliminary study on the relationship between the Fluvial geomorphology and the Neotectonic movement in Yellow River in Zhengzhou prehistoric times[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 31(6): 101-106. (in Chinese with English abstract) [54] YAN J Y, 2021. Late Cenozoic tectonic-sedimenatary, uplifting and denudational process of the Yuncheng Basin and northern Gushan Mountain[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract) [55] YAN J Y, HU J M, WANG D M, et al. , 2021. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic[J]. Geological Bulletin of China, 40(5): 623-648. (in Chinese with English abstract) [56] YANG S Y, CAI J G, LI C X, et al. , 2001. New discussion about the run-through time of the Yellow River[J]. Marine Geology & Quaternary Geology, 21(2): 15-20. (in Chinese with English abstract) [57] YAO W B, JI X Q, ZHAO Z, 2004. Sedimental features of loess in Yuncheng basin[J]. Shanxi Architecture, 30(9): 23-24. (in Chinese with English abstract) [58] ZHANG L, LIU J Q, QIN X G, 2018. The environmental effects and mechanism of the Yellow River flooding into the Huaibei Plain during Quaternary: a brief review[J]. Quaternary Sciences, 38(2): 441-453. (in Chinese with English abstract) [59] ZHONG Q M, SHAO B, HOU G T, 2022. Numerical simulation and analysis of lithospheric stress field in Fenwei graben[J]. Progress in Geophysics, 37(1): 152-163. (in Chinese with English abstract) [60] ZHOU Q S, ZHANG X J, YE P S, et al. , 2017. The distribution and period division of Holocene palaeo channels of the Yellow River in Hetao area[J]. Journal of Geomechanics, 23(3): 339-347. (in Chinese with English abstract) [61] 安芷生, 刘晓东, 2000. 东亚季风气候的历史与变率[J]. 科学通报, 45(3): 238-249. doi: 10.3321/j.issn:0023-074X.2000.03.002 [62] 陈兴强, 施炜, 胡健民, 等, 2016. 华北临汾盆地中部柴庄上新世-更新世剖面沉积学特征及其构造意义[J]. 地质力学学报, 22(4): 984-993. [63] 崔加伟, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地萨拉乌苏组地层时代重新厘定及意义[J]. 地质力学学报, 24(2): 283-292. [64] 崔效锋, 谢富仁, 李瑞莎, 等, 2010. 华北地区构造应力场非均匀特征与煤田深部应力状态[J]. 岩石力学与工程学报, 29(S1): 2755-2761. [65] 董晓朋, 李振宏, 崔加伟, 等, 2022. 宁夏清水河中上游发现末次冰期最盛期冰缘遗迹群[J]. 地球科学与环境学报, 44(3): 524-534. [66] 董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列特征及年代学研究进展[OL/J]. 地质力学学报,DOI: 10.12090/j.issn.1006-6616.2023048 [67] 郭令智, 薛禹群, 1958. 从第四纪沉积物讨论山西汾河与涑水在地貌演化上的关系[J]. 第四纪研究, 1(1): 107-117. [68] 韩恒悦, 米丰收, 刘海云, 2001. 渭河盆地带地貌结构与新构造运动[J]. 地震研究, 24(3): 251-257. [69] 韩恒悦, 张逸, 袁志祥, 2002. 渭河断陷盆地带的形成演化及断块运动[J]. 地震研究, 25(4): 362-368. [70] 韩晓明, 刘芳, 张文韬, 等, 2015. 基于震源机制资料分析河套地震带的应力场变化特征[J]. 地震地质, 37(4): 1030-1042. doi: 10.3969/j.issn.0253-4967.2015.04.008 [71] 胡健民, 闫纪元, 程瑜, 等, 2022. 中国晚新生代构造-沉积-古气候事件的地质记录[J]. 地质与资源, 31(3): 303-330. [72] 胡晓猛, 1997. 古汾河在峨嵋台地上的变迁[J]. 安徽师范大学学报(自然科学版), 20(2): 154-158. [73] 胡小猛, 杨景春, 2001. 临汾盆地中更新世中晚期以来的演化历史及成因分析[J]. 上海师范大学学报(自然科学版), 30(3): 72-76. [74] 胡小猛, 郭家秀, 胡向阳, 2010. 汾河地堑湖盆第四纪地貌-沉积特征的构造控制[J]. 地理学报, 65(1): 73-81. [75] 胡小猛, 陈美君, 王杜涛, 等, 2012. 汾渭地堑系列湖盆第四纪中晚期地貌与沉积阶段性演化的时间序次差异及其构造指示意义[J]. 第四纪研究, 32(5): 849-858. [76] 黄婷, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地地表沙漠化现状及其地质主控因素[J]. 地质力学学报, 24(4): 505-514. [77] 靳鹤龄, 李明启, 苏志珠, 等, 2006. 220 ka 以来萨拉乌苏河流域地层磁化率与气候变化[J]. 中国沙漠, 26(5): 680-686. [78] 靳鹤龄, 李明启, 苏志珠, 等, 2007. 萨拉乌苏河流域地层沉积时代及其反映的气候变化[J]. 地质学报, 81(3): 307-315. [79] 李三忠, 余珊, 赵淑娟, 等, 2013. 东亚大陆边缘的板块重建与构造转换[J]. 海洋地质与第四纪地质, 33(3): 65-94. [80] 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060 [81] 李有利, 杨景春, 1994. 运城盐湖沉积环境演化[J]. 地理研究, 13(1): 70-74. [82] 李有利, 杨景春, 苏宗正, 1994. 运城盆地新构造运动与古河道演变[J]. 山西地震(1): 3-6. [83] 李智超, 李文厚, 李永项, 等, 2015. 渭河盆地新生代沉积相研究[J]. 古地理学报, 17(4): 529-540. [84] 李智超, 李文厚, 李永项, 等, 2016. 陕西渭河地区新生代地层及沉积环境演化[J]. 地层学杂志, 40(2): 168-178. [85] 李兆雨, 李永项, 李文厚, 等, 2021. 汾渭盆地古近系-新近系沉积特征[J]. 地质科学, 56(4): 1120-1133. [86] 李振宏, 姜博宇, 董晓朋, 等, 2020a. 运城盆地峨眉台地前缘黄土塌陷现状及地质主控因素[J]. 煤田地质与勘探, 48(2): 171-178. [87] 李振宏, 崔加伟, 李朝柱, 等, 2020b. 红寺堡盆地晚更新世沉积特征及古气候背景[J]. 煤田地质与勘探, 48(6): 233-242. [88] 林向东, 袁怀玉, 徐平, 等, 2017. 华北地区地震震源机制分区特征[J]. 地球物理学报, 60(12): 4589-4622. [89] 刘博华, 吴芳, 张绪教, 等, 2023. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义[J/OL]. 地质通报: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html. [90] 刘书丹, 李广坤, 李玉信, 等, 1988. 从河南东部平原第四纪沉积物特征探讨黄河的形成与演变[J]. 河南地质, 6(2): 20-24. [91] 马兆颖, 董晓朋, 张庆, 等, 2020. 六盘山晚更新世以来抬升过程沉积响应及环境效应[J]. 煤田地质与勘探, 48(5): 152-164. [92] 潘保田, 王均平, 高红山, 等, 2005. 河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示[J]. 科学通报, 50(3): 255-261. [93] 齐玥, 徐鸿博, 张竞雄, 等, 2011. 临汾断陷盆地孤峰山花岗闪长岩的地球化学和年代学及其地质意义[J]. 地质论评, 57(4): 565-573. [94] 齐玥, 罗金海, 巫嘉德, 等, 2016. 华北中南部蚕坊和孤峰山花岗闪长岩体的地球化学特征和Sr-Nd-Pb同位素组成[J]. 岩石学报, 32(7): 2015-2028 [95] 秦帮策, 方维萱, 张建国, 等, 2021. 汾河裂谷晋中盆地内第四纪沉积序列与沉积环境恢复[J]. 地质力学学报, 27 (6): 1035-1050. [96] 仇度伟, 公王斌, 闫纪元, 等, 2021. 山西运城盆地北部峨嵋台地晚更新世-全新世地质环境变化及其对人类聚落分布的影响[J]. 地质力学学报, 27(2): 326-338. [97] 孙继敏, 许立亮, 2007. 汾渭地堑的河流阶地对第四纪时期印度-欧亚板块碰撞带的构造响应[J]. 第四纪研究, 27(1): 20-26. doi: 10.3321/j.issn:1001-7410.2007.01.003 [98] 索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化[J]. 岩石学报, 28(8): 2602-2618. [99] 索艳慧, 李三忠, 曹现志, 等, 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249-267. [100] 王强, 李彩光, 田国强, 等, 2000. 7.1Ma以来运城盆地地表系统巨变及盐湖形成的构造背景[J]. 中国科学(D辑), 30(4): 420-428. [101] 武敏捷, 林向东, 徐平, 2011. 华北北部地区震源机制解及构造应力场特征分析[J]. 大地测量与地球动力学, 31(5): 39-43. [102] 吴锡浩, 蒋复初, 王苏民, 等, 1998. 关于黄河贯通三门峡东流入海问题[J]. 第四纪研究, 18(2): 188. [103] 邢作云, 赵斌, 涂美义, 等, 2005. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 12(2): 247-262. [104] 徐海亮, 王朝栋, 2010. 史前郑州地区黄河河流地貌与新构造活动关系初探[J]. 华北水利水电学院学报, 31(6): 101-106. [105] 闫纪元, 2021. 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究[D]. 北京: 中国地质科学院. [106] 闫纪元, 胡健民, 王东明, 等, 2021. 黄淮海平原晚新生代重大地质事件[J]. 地质通报, 40(5): 623-648. [107] 杨守业, 蔡进功, 李从先, 等, 2001. 黄河贯通时间的新探索[J]. 海洋地质与第四纪地质, 21(2): 15-20. doi: 10.16562/j.cnki.0256-1492.2001.02.003 [108] 姚文兵, 季秀卿, 赵政, 2004. 运城盆地黄土沉积特征[J]. 山西建筑, 30(9): 23-24. doi: 10.3969/j.issn.1009-6825.2004.09.016 [109] 张磊, 刘嘉麒, 秦小光, 2018. 第四纪黄河入淮成因机制与环境效应的研究现状及存在问题[J]. 第四纪研究, 38(2): 441-453. doi: 10.11928/j.issn.1001-7410.2018.02.15 [110] 仲启蒙, 邵博, 侯贵廷, 2022. 汾渭地堑岩石圈的应力场数值模拟与分析[J]. 地球物理学进展, 37(1): 152-163. [111] 周青硕, 张绪教, 叶培盛, 等, 2017. 河套地区全新世黄河古河道的分布及期次划分[J]. 地质力学学报, 23(3): 339-347. doi: 10.3969/j.issn.1006-6616.2017.03.002 -