留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

赣西北洞上铀矿床产铀花岗岩的时代、岩石地球化学特征及其地质意义

党飞鹏 吕川 唐湘生 张勇 肖志斌 李志鹏 汤君阳 张涛

党飞鹏,吕川,唐湘生,等,2023. 赣西北洞上铀矿床产铀花岗岩的时代、岩石地球化学特征及其地质意义[J]. 地质力学学报,29(6):898−914 doi: 10.12090/j.issn.1006-6616.2023028
引用本文: 党飞鹏,吕川,唐湘生,等,2023. 赣西北洞上铀矿床产铀花岗岩的时代、岩石地球化学特征及其地质意义[J]. 地质力学学报,29(6):898−914 doi: 10.12090/j.issn.1006-6616.2023028
DANG F P,LYU C,TANG X S,et al.,2023. Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance[J]. Journal of Geomechanics,29(6):898−914 doi: 10.12090/j.issn.1006-6616.2023028
Citation: DANG F P,LYU C,TANG X S,et al.,2023. Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance[J]. Journal of Geomechanics,29(6):898−914 doi: 10.12090/j.issn.1006-6616.2023028

赣西北洞上铀矿床产铀花岗岩的时代、岩石地球化学特征及其地质意义

doi: 10.12090/j.issn.1006-6616.2023028
基金项目: 国家自然科学基金项目(42062006,42273028); 核资源与环境国家重点实验室开放基金项目(2020NRE08);中国核工业地质局项目(202231,202028-2)
详细信息
    作者简介:

    党飞鹏(1986-),男,硕士,高级工程师,从事铀矿地质找矿勘查与研究。E-mail:feipengdang@163.com

    通讯作者:

    张勇(1983-),男,博士,副教授,从事铀矿地质教学与科研工作。E-mail:zhycy2004@163.com

  • 中图分类号: P58;P534.51

Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance

Funds: This research is financially supported by the National Natural Science Foundation of China (Grants No. 42062006 and 42273028), the Open-access Fund of the State Key Laboratory of Nuclear Resources and Environment(Grant No. 2020NRE08), and the Project of the China Nuclear Geology (Grants No. 202231 and 202028-2)
  • 摘要: 洞上铀矿床位于赣西北九岭岩基南部甘坊岩体内,产铀花岗岩以中粗粒斑状黑(二)云母花岗岩为主。通过锆石及独居石U–Pb年代学、岩相学和岩石地球化学研究,确定产铀花岗岩的形成时代、源区属性与岩石成因,探讨其铀成矿潜力。LA–ICP–MS分析结果显示,锆石U–Pb下交点年龄和加权平均年龄均为152±1 Ma,独居石U-Pb下交点年龄和加权平均年龄分别为151±1 Ma和151±2 Ma,表明产铀花岗岩形成于燕山早期。主量元素具有高硅(SiO2含量为72.1%~75.6%)、高碱(K2O+Na2O含量为7.26%~8.43%)、富钾贫钠(K2O/Na2O=1.07~1.42)、高铝(A/CNK=1.12~1.29)、低钛(TiO2含量为0.07%~0.17%)、贫铁镁(FeOT含量为0.75%~1.28%、MgO含量为0.19%~0.31%)特征,属高钾钙碱性系列过铝质花岗岩;微量元素Ba、Sr、Nb、Ti亏损,Rb、U、Pb、Ta富集,属典型的低Ba、Sr花岗岩;稀土总量较低(∑REE=21.6×10−6~50.7×10−6),配分曲线为右倾的轻稀土富集型,Eu负异常明显,属S型花岗岩。结合年代学和岩石地球化学特征,认为洞上产铀花岗岩形成于燕山早期同碰撞造山的主挤压阶段,是新元古界双桥山群安乐林组富白云母的变泥质岩部分熔融的产物。富铀、Rb/Sr比值高、Th/U比值小于3、锆石铀含量高等特征指示该花岗岩为产铀花岗岩,具有提供铀源的条件与潜力。

     

  • 图  1  九岭地区大地构造位置及铀矿地质简图

    1—第四系;2—古近系;3—上白垩统;4—奥陶系;5—寒武系;6—下南华统;7—新元古界双桥山群;8—晋宁期花岗岩;9—燕山早期第一阶段花岗岩;10—燕山早期第二阶段花岗岩;11—燕山晚期花岗岩;12—细晶岩脉、花岗斑岩脉;13—推滑覆断层、剥离断层;14—断裂构造;15—不整合界线;16—地质界线;17—岩相界线;18—铀矿床及名称a—大地构造位置简图(张勇,2018);b—铀矿地质简图

    Figure  1.  Geotectonic location map and uranium geological map of Jiuling area

    (a) Geotectonic location map (Zhang, 2018); (b) Uranium geological map 1–Quaternary; 2–Paleogene; 3–Upper Cretaceous; 4–Ordovician; 5–Cambrian; 6–Lower Nanhuan System; 7–Neoproterozoic Shuangqiaoshan Group; 8–Granite of Jinning Period; 9–Granite of first stage in Early Yanshanian; 10–Granite of second stage in Early Yanshanian; 11–Granite of Late Yanshanian; 12–fine-grain dike or ranite-porphyry vein; 13–nappe structure; 14–fault structure; 15–unconformity; 16–geological boundary; 17–lithologic interface; 18–uranium deposit

    图  2  洞上地区铀矿地质简图(据周建廷等,2011;秦程,2018修编)

    1—新元古界双桥山群;2—晋宁期花岗闪长岩;3—晋宁期二长花岗岩;4—燕山早期第一阶段花岗岩;5—燕山早期第二阶段花岗岩;6—燕山晚期第一阶段花岗岩;7—细晶岩脉、花岗斑岩脉;8—断裂构造;9—地质界线、岩相界线;10—铀矿床及名称;11—取样位置及编号

    Figure  2.  Uranium geological map of Dongshang deposit(modified after Zhou et al., 2011; Qin, 2018

    1–Neoproterozoic Shuangqiaoshan Group; 2–granodiorite of Jinning Period; 3–monzonitic granite of Jinning Period; 4–granite of first stage in Early Yanshanian; 5–granite of second stage in Early Yanshanian; 6–granite of Late Yanshanian; 7–fine-grain dike or ranite-porphyry vein; 8–fault structure; 9–geological boundary or lithologic interface; 10–uranium deposit; 11–sampling point and number

    图  3  洞上产铀花岗岩岩石学特征

    Qtz—石英;Pl—斜长石;Ms—白云母;Chl—绿泥石;Kfs—钾长石a—浅肉红色中粗粒斑状黑(二)云母花岗岩;b—似斑状结构,图中石英斑晶超出视域(+);c—斜长石被白云母交代,绿泥石呈黑云母假晶(+);d—绿泥石和白云母组成黑云母的假晶(+);e—野外露头,发育钾长石化、褐铁矿化;f—岩石手标本,见钾长石化、水云母化

    Figure  3.  Petrological characteristics of the U-bearing granite in Dongshang deposit

    (a) medium-coarse biotite granite; (b) orphyritic texture (+); (c) muscovitize (+); (d) chloritization and muscovitize (+); (e) K-alferation and ferritization of geological outcrop; (f) K-alferation and hydromicazation of hand specimens

    图  4  洞上产铀花岗岩CL图像、测点位置及206Pb/238U视年龄值

    Figure  4.  CL images,analysis point and 206Pb/238U apparent ages of the U-bearing granite in Dongshang deposit

    图  5  洞上产铀花岗岩锆石U–Pb谐和图和加权平均206Pb/238U年龄图

    Figure  5.  Concordia diagrams of the zircon U–Pb dating and weighted mean diagrams of 206Pb/238U apparent ages for the U-bearing granite in Dongshang deposit

    图  6  洞上产铀花岗岩独居石U–Pb谐和图和加权平均206Pb/238U年龄图

    Figure  6.  Concordia diagrams of the monazite U–Pb dating and weighted mean diagrams of 206Pb/238U apparent ages for the U-bearing granite in Dongshang deposit

    图  7  洞上产铀花岗岩主量元素图解

    JL数据为文中分析结果,GF数据引自王迪(2017)a—SiO2−(K2O+Na2O)图(Middlemost,1994);b—SiO2−K2O图(Peccerillo and Taylor,1976);c—A/CNK−ANK图(Maniar and Piccoli,1989);d—SiO2−P2O5

    Figure  7.  Main element diagrams of the U-bearing granite in Dongshang deposit

    (a) SiO2–(K2O+Na2O) diagram (Middlemost, 1994); (b)SiO2–K2O diagram (Peccerillo and Taylor, 1976); (c) A/CNK–ANK diagram (Maniar and Piccoli, 1989); (d) SiO2–P2O5 diagram The JL data was analyzed for this article; The GF data was quoted from Wang (2017).

    图  8  洞上产铀花岗岩微量元素原始地幔标准化蛛网图及稀土元素球粒陨石标准化配分曲线(标准化数值引自Sun and McDonough (1989))

    JL数据为此研究分析结果,GF数据引自王迪(2017)a—微量元素原始地幔标准化蛛网图;b—稀土元素球粒陨石标准化配分曲线

    Figure  8.  Primitive mantle-normalized trace element spider diagram and chondrite-normalized REE distribution pattern of the U-bearing granite in Dongshang deposit (normalized values after Sun and McDonough(1989))

    (a) Primitive mantle-normalized trace element spider diagram; (b) Chondrite-normalized REE distribution patternThe JL data was analyzed for this article; The GF data was quoted from Wang (2017).

    图  9  洞上产铀花岗岩岩石类型判别图解

    FG—酸性花岗岩;OGT—未发生分异花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—(Zr+Nb+Ce+Y)−((K2O+Na2O)/Ca2O)图解(底图引自Whalen et al.(1987));b—(Zr+Ce+Y)−(Rb/Ba)图解(底图引自Whalen et al.(1987)

    Figure  9.  Discrimination diagrams for the rock-type of the U-bearing granite in Dongshang deposit

    (a) (Zr+Nb+Ce+Y)–((K2O+Na2O)/Ca2O) diagram (Schema from Whalen et al.(1987)); (b) (Zr+Ce+Y)–(Rb/Ba) diagram (Schema from Whalen et al.(1987))

    图  10  洞上产铀花岗岩源区属性判别图解

    JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb/Sr−Rb/Ba图解(底图引自Sylvester(1998));b—NK/MFT−NKMFT图解(底图引自Lee et al.(2003)

    Figure  10.  Discrimination diagrams for the source characteristics of the U-bearing granite in Dongshang deposit

    (a) Rb/Sr–Rb/Ba diagram (Schema from Sylvester (1998)); (b) NK/MFT–NKMFT diagram (Schema from Lee et al. (2003))

    图  11  洞上产铀花岗岩构造环境判别图解

    syn-COLG—同碰撞花岗岩;WPG—板内花岗岩;post-COLG—后碰撞花岗岩;VAG—火山弧花岗岩;ORG—洋脊花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb–(Y+Nb)图解(底图引自Pearce(1996));b—Ta–Yb图解(底图引自Pearce(1996)

    Figure  11.  Discrimination diagrams for the tectonic environment of the U-bearing granite in Dongshang deposit

    (a) Rb–(Y+Nb) diagram (Schema from Pearce (1996)); (b)Ta–Yb diagram (Schema from Pearce (1996))

    图  12  花岗岩与源岩关系图

    图中源区划分引自Sylvester(1998);产铀、非产铀和过渡型花岗岩区划分引自兰鸿锋等(2016);JL数据为文中分析结果,GF数据引自王迪(2017),打鼓寨岩体数据引自徐勋胜等(2021),长江岩体数据引自田泽瑾(2014

    Figure  12.  Relation diagram of granite and source rock

    表  1  洞上产铀花岗岩锆石LA–ICP–MS U–Pb定年分析结果

    Table  1.   Data of LA–ICP–MS zircon U–Pb dating of the U-bearing granite in Dongshang deposit

    测点号含量/(×10−6同位素比值年龄/Ma
    PbThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
    JL2020-7-02162376910.05110.00100.17150.00350.02440.00022444016131551
    JL2020-7-033953158900.05070.00030.16760.00130.02400.00012271615711531
    JL2020-7-055879221400.05200.00050.17070.00250.02380.00032872216021522
    JL2020-7-08284345100.04990.00130.16420.00390.02390.00021925015431521
    JL2020-7-11127198037000.05640.00090.19100.00400.02450.00024703317731562
    JL2020-7-13152346320.04840.00210.16000.00700.02400.00051188515161533
    JL2020-7-15141927250.04880.00080.16010.00260.02380.00021393315121521
    JL2020-7-1680102233800.05310.00090.17760.00290.02430.00023323616631551
    JL2020-7-17222956070.04930.00090.16110.00310.02370.00021633815231511
    JL2020-7-18141322700.06600.00270.22400.00950.02460.00038058520581572
    JL2020-7-19121792250.05030.00160.16350.00490.02360.00032076015451502
    JL2020-7-2081111960.05140.00170.17000.00550.02400.00022606015951531
    JL2020-7-23263845230.04850.00140.15910.00460.02380.00021236015041521
    JL2020-7-253749446800.05230.00070.17250.00250.02390.00032983116221522
    JL2020-7-28101021350.06960.00320.23900.00900.02490.00089179521881595
    JL2020-7-31233103610.05770.00150.19500.00500.02450.00035205518141562
    JL2020-7-32284189090.04960.00080.16290.00270.02380.00021773415321521
    JL2020-7-33243087200.04980.00100.16410.00340.02390.00021874215431521
    JL2020-7-34213253600.05080.00170.16700.00550.02390.00032316515751522
    JL2020-7-35111253330.05170.00290.16800.00950.02360.000327312015891502
    JL2020-7-36112156034800.05620.00100.18830.00290.02430.00044613617531552
    JL2020-7-374345832600.05360.00280.17800.00950.02410.000735312016681544
    JL2020-7-39131671680.05440.00320.17700.01000.02360.000538612016591503
    JL2020-7-40161964920.05100.00170.16900.00550.02400.00032417015951532
    JL2020-7-43182767610.04910.00080.16170.00260.02390.00021513315221521
    JL2020-7-50263412290.05200.00260.17400.01000.02430.000428611016391553
    JL2020-7-514050415500.05900.00120.19810.00370.02440.00025674618431551
    JL2020-7-53282852470.06060.00370.20300.01200.02430.0006625125188101553
    JL2020-7-542026550500.05170.00070.17110.00310.02400.00032723116031532
    下载: 导出CSV

    表  2  洞上产铀花岗岩独居石LA–ICP–MS U–Pb定年分析结果

    Table  2.   Data of LA–ICP–MS monaite U–Pb dating of the U-bearing granite in Dongshang deposit

    测点号含量/(×10−6同位素比值年龄/Ma
    ThU207Pb/235U2σ206Pb/238U2σ207Pb/235U2σ206Pb/238U2σ
    JLD2020-7-01191064113050.15300.00950.02300.000714581475
    JLD2020-7-0317626778050.15920.00960.02440.000715081565
    JLD2020-7-0417980838330.17940.01760.02410.0008168151535
    JLD2020-7-0517909496680.15890.00950.02390.000715081525
    JLD2020-7-0721755438840.15910.01320.02360.0007150121515
    JLD2020-7-0918541078910.17330.01030.02400.000816291535
    JLD2020-7-1018551164570.15120.00860.02370.000714381515
    JLD2020-7-13187573104230.15920.00880.02330.000615081484
    JLD2020-7-1516167668010.15860.01230.02420.0007149111545
    JLD2020-7-1618139763350.16160.00960.02420.000715281545
    JLD2020-7-1788445123000.15500.00890.02350.000714681504
    JLD2020-7-1818258571280.16110.01040.02370.000615291514
    JLD2020-7-1918076259640.16890.01320.02400.0007158111535
    JLD2020-7-2118751291020.15720.00960.02350.000614881504
    JLD2020-7-24131495272310.14760.00690.02290.000714061464
    JLD2020-7-02104575137480.43020.03490.02730.0009363251746
    JLD2020-7-1123124023920.89410.11810.03140.0013649631998
    JLD2020-7-2017750352590.76700.11350.03040.0014578651939
    JLD2020-7-2217681248650.21690.01600.02460.0008199131565
    下载: 导出CSV

    表  3  洞上产铀花岗岩主量元素(%)、微量元素(×10−6)及稀土元素(×10−6)分析结果

    Table  3.   The analytical results major elements (%), trace elements (×10−6) and REEs (×10−6) of the U-bearing granite in Dongshang deposit

    样号JL2020-6JL2020-7JL2020-8GF8-1GF9-1GF10-1GF11-1
    元素中粗粒斑状黑(二)云母花岗岩粗粒白云母花岗岩
    SiO2 72.14 73.01 72.51 75.40 73.70 75.00 75.60
    TiO2 0.15 0.16 0.16 0.13 0.16 0.17 0.07
    Al2O3 15.17 14.93 14.97 13.50 14.30 14.00 13.60
    FeOT 1.28 1.13 1.27 0.85 1.02 1.20 0.75
    MnO 0.07 0.06 0.08 0.04 0.03 0.08 0.50
    MgO 0.27 0.23 0.25 0.25 0.31 0.30 0.19
    CaO 0.72 0.76 0.72 0.47 0.43 0.54 0.74
    Na2O 3.78 3.82 3.55 3.47 3.36 3.51 3.78
    K2O 4.65 4.44 4.49 4.01 4.77 3.75 4.25
    P2O5 0.23 0.25 0.24 0.25 0.26 0.28 0.26
    LOI 1.13 1.15 1.03 0.77 0.77 0.96 1.55
    总量 99.60 99.96 99.30 99.10 99.60 99.76 100.76
    K2O+Na2O 8.43 8.26 8.04 7.48 8.13 7.26 8.03
    K2O/Na2O 1.23 1.16 1.26 1.16 1.42 1.07 1.12
    CaO/Na2O 0.19 0.20 0.20 0.14 0.13 0.15 0.20
    Al2O3/TiO2 101.13 93.31 93.56 103.85 89.38 82.35 194.29
    A/CNK 1.21 1.20 1.25 1.24 1.25 1.29 1.12
    A/NK 1.35 1.35 1.40 1.34 1.34 1.42 1.26
    C/FM 0.47 0.56 0.47 0.43 0.32 0.36 0.79
    A/FM 9.81 10.96 9.84 12.27 10.75 9.33 14.47
    Rb 622.00 414.00 448.00 305.00 430.00 580.00 500.00
    Sr 37.60 33.40 37.90 23.40 55.20 55.40 31.30
    Y 8.50 8.58 8.37 4.30 9.63 11.40 4.73
    Zr 90.00 90.00 90.00 35.60 59.90 72.80 29.30
    Hf 2.01 2.12 2.21 1.07 1.69 2.08 1.11
    Nb 16.70 17.10 16.70 8.30 12.10 20.90 12.90
    Ta 7.41 7.39 7.51 3.07 2.09 6.07 6.03
    Ba 96.70 84.50 102.00 42.80 99.70 83.00 76.70
    Th 7.62 7.49 8.11 2.71 4.79 5.96 3.94
    U 30.80 35.90 27.20 9.20 13.90 18.00 8.44
    Pb 23.20 23.00 23.90 12.30 24.50 22.70 24.40
    Ti 930.00 940.00 940.00 779.00 959.00 1019.00 420.00
    P 999.00 1077.00 1038.00 1090.00 1134.00 1221.00 1134.00
    Rb/Sr 16.50 12.40 11.80 13.00 7.79 10.50 16.00
    Rb/Ba 6.43 4.90 4.39 7.13 4.31 6.99 6.52
    Rb/Nb 37.20 24.20 26.80 36.70 35.50 27.80 38.80
    Zr/Hf 44.80 42.50 40.70 33.30 35.40 35.00 26.40
    Th/U 0.25 0.21 0.30 0.29 0.34 0.33 0.47
    La 8.68 9.42 10.10 3.79 7.41 9.56 5.54
    Ce 18.30 19.92 21.24 9.79 17.20 22.50 10.14
    Pr 2.16 2.28 2.50 0.91 1.60 1.94 1.19
    Nd 7.78 8.34 8.94 3.42 6.03 7.31 4.14
    Sm 1.79 2.01 2.09 0.88 1.62 1.88 0.99
    Eu 0.23 0.21 0.23 0.10 0.21 0.22 0.15
    Gd 1.63 1.70 1.83 0.82 1.50 1.77 0.89
    Tb 0.28 0.28 0.29 0.15 0.30 0.34 0.15
    Dy 1.59 1.62 1.56 0.84 1.65 1.83 0.80
    Ho 0.26 0.26 0.26 0.13 0.25 0.28 0.12
    Er 0.67 0.68 0.69 0.36 0.64 0.74 0.35
    Tm 0.09 0.09 0.09 0.05 0.09 0.11 0.05
    Yb 0.61 0.61 0.81 0.32 0.54 0.70 0.33
    Lu 0.08 0.08 0.08 0.05 0.08 0.10 0.05
    ∑REE 44.16 47.49 50.69 21.61 39.12 49.28 24.85
    LREE/HREE 7.47 7.92 8.01 6.94 6.75 7.40 8.07
    δEu 0.41 0.34 0.35 0.35 0.40 0.36 0.48
    (La/Yb)N 10.21 11.13 8.90 8.50 9.84 9.80 12.04
    (La/Sm)N 3.13 3.03 3.12 2.78 2.95 3.28 3.61
    (Gd/Yb)N 2.21 2.32 1.86 2.12 2.30 2.09 2.23
    Zr+Nb+Ce+Y 739.00 523.00 558.00 419.00 532.00 676.00 706.00
    下载: 导出CSV

    表  4  洞上产铀花岗岩、长江岩体、打鼓寨岩体岩石地球化学组分对比表

    Table  4.   Comparison table of petrogeochemical components of Dongshang U-bearing granite, Changjiang granite and Daguzhai granite

    岩体SiO2/%K2O+Na2O/%K2O/Na2OCaO/Na2OA/CNK∑REE/(×10−6LREE/HREEδEu
    长江 74.00 8.22 1.81 0.31 1.11 197.0 7.38 0.21
    洞上 73.90 7.95 1.20 0.17 1.22 39.6 7.51 0.39
    打鼓寨 73.20 8.39 1.69 0.22 1.22 205.0 4.43 0.33
    岩体 (Zr+Nb+Ce+Y)/(×10−6 Zr/Hf Rb/Sr U/(×10−6 Th/U 锆石U/(×10−6 锆石Th/(×10−6 锆石Th/U
    长江 252.00 24.60 10.50 18.00 2.22 2453 1084 0.75
    洞上 107.00 36.90 12.60 20.50 0.31 2592 660 0.49
    打鼓寨 249.00 33.20 6.75 19.50 2.45 68348 33230 0.48
    注:打鼓寨岩体数据引自徐勋胜等(2021),长江岩体数据引自田泽瑾(2014
    下载: 导出CSV
  • [1] China National Nuclear Corporation, 1996. Prospecting guidebook on granite-related uranium deposits: EJ/T 996—1996 [S]. Beijing: Nuclear Industry Standardization Institute: 1-67. (in Chinese)
    [2] CHEN D, LUO P, ZENG Z F, et al. , 2022. Petrogenesis and implications of the Dupangling compound granite in southern Hunan Province, China: Constraints from mineralogical chemistry, zircon U-Pb age, geochemistry and Nd-Hf isotope[J]. Journal of Geomechanics, 28(4): 617-641. (in Chinese with English abstract)
    [3] CHEN Z Y, WANG D H, 2014. The significance of Th, U contents and Th/U ratios of zircons in distinguishing uranium-producing and non-uranium-producing granites[J]. Mineral Deposits, 33(S1): 1159-1160. (in Chinese) DONG S W, ZHANG Y Q, LONG C X, et al. , 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 81(11): 1449-1461. (in Chinese with English abstract)
    [4] DOU X P, 2004. Genetic types of granitoids in eastern China and their relationship to uranium metallogenesis[J]. Uranium Geology, 20(6): 330-336. (in Chinese with English abstract)
    [5] DOU X P, XIONG C, DU X S, et al. , 2015. Study on uranium contents and the characteristics of migration enrichment in some granitic plutons of East China[J]. World Nuclear Geoscience, 32(3): 145-151. (in Chinese with English abstract)
    [6] DUAN Z, LIAO S B, CHU P L, et al. , 2019. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. Geology in China, 46(3): 493-516. (in Chinese with English abstract)
    [7] GUO C L, CHEN Z Y, LOU F S, et al. , 2014. Geochemical characteristics and genetic types of the W-Sn bearing Late Jurassic granites in the Nanling region[J]. Geotectonica et Metallogenia, 38(2): 301-311. (in Chinese with English abstract)
    [8] GUO X F,WANG Q L,JING Y H,et al, 2022.Zircon U-Pb Geochronology and Hf Isotope Characteristics of the Xihuashan Granites in Southern Jiangxi Province and Their Geological Significance[J].Geology and Exploration, 58(3):585-597.(in Chinese with English abstract)
    [9] HARRIS N B W, INGER S, 1992. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46-56. doi: 10.1007/BF00310881
    [10] JIANG S Y, PENG N J, HUANG L C, et al. , 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province[J]. Acta Petrologica Sinica, 31(3): 639-655. (in Chinese with English abstract)
    [11] LAN H F, LING H F, SUN L Q, et al. , 2016. Study on petrogenesis and uranium mineralization potential of Taojindong granite in southern Zhuguangshan composite pluton[J]. Geological Journal of China Universities, 22(1): 12-29. (in Chinese with English abstract)
    [12] LEE S Y, BARNES C G, SNOKE A W, et al. , 2003. Petrogenesis of Mesozoic, Peraluminous granites in the Lamoille Canyon area, Ruby Mountains, Nevada, USA[J]. Journal of Petrology, 44(4): 713-732. doi: 10.1093/petrology/44.4.713
    [13] LING H F, SHEN W Z, SUN T, et al. , 2006. Genesis and source characteristics of 22 Yanshanian granites in Guangdong province: study of element and Nd-Sr isotopes[J]. Acta Petrologica Sinica, 22(11): 2687-2703. (in Chinese with English abstract)
    [14] LIU Y, 2019. The mineralogical characteristics of the rare-metal granites in Jiuling district, Jiangxi province and the implication for the various metallogenic mechanism[D]. Nanjing University. (in Chinese with English abstract)
    [15] LIU Y S, HU Z C, GAO S, et al. , 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [16] LIU Y S, GAO S, HU Z C, et al. , 2010. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
    [17] LUDWIG K R, 2003. Isoplot/Ex, Version 3.00: a geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.
    [18] MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    [19] MAO J W, XIE G Q, GUO C L, et al. , 2008. Spatial-temporal distribution of Mesozoic Ore Deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510-526. (in Chinese with English abstract)
    [20] MAO J W, CHEN M H, YUAN S D, et al. , 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 85(5): 636-658. (in Chinese with English abstract)
    [21] MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
    [22] PEARCE J, 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
    [23] PECCERILLO A, TAYLOR S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
    [24] QIN C, 2018. Preliminary study of mineralization potentiality of Shiziling muscovite granite, Jiangxi province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [25] SONG B, ZHANG Y H, WAN Y S, et al. , 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(S1): 26-30. (in Chinese with English abstract)
    [26] SUN J D,LI H L,LU F,et al, 2022.Geochemistry,Zircon U-Pb Ages,and Hf Isotopes of the Mengshan Rock Mass in Western Jiangxi Province and Their Geologic Implications[J].Geology and Exploration, 58(1):96-107. (in Chinese with English abstract)
    [27] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [28] SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
    [29] TAN J, WEI J H, LI Y J, et al. , 2007. Some reviews on diagenesis and metallogeny of the Mesozoic crustal remelting granitoids in the Nanling region[J]. Geological Review, 53(3): 349-362. (in Chinese with English abstract)
    [30] TIAN Z J, 2014. Uranium-bearing and barren granites from the Zhuguang mountain: geochronology, Element geochemistry, mineralogy comparison[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [31] WANG D, 2017. Formation of huge granitic batholiths in Jiuling area of North Jiangxi province[D]. Nanjing: Nanjing University. (in Chinese with English abstract)
    [32] WANG L J, WANG J B, WANG Y Z, et al. , 2013. Geological characteristics of host granite intrusions of the W-Sn-Nb-Ta deposit, Nanling area, China[J]. Minerl Exploration, 4(6): 598-608. (in Chinese with English abstract)
    [33] WANG T, GUO L, LI S, et al. , 2019. Some important issues in the study of granite tectonics[J]. Journal of Geomechanics, 25(5): 899-919. (in Chinese with English abstract)
    [34] WANG W L, TENG X J, LIU Y, et al. , 2017. Zircon U-Pb chronology and geochemical characteristics of the Wuheertu granite mass in Langshan, Inner Mongolia[J]. Journal of Geomechanics, 23(3): 382-396. (in Chinese with English abstract)
    [35] WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
    [36] WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122
    [37] XIANG X K, YIN Q Q, SUN K K, et al. , 2015a. Origin of the Dahutang syn-collisional granite-porphyry in the middle segment of the Jiangnan orogen: zircon U-Pb geochronologic, geochemical and Nd-Hf isotopic constraints[J]. Acta Petrologica et Mineralogica, 34(5): 581-600. (in Chinese with English abstract)
    [38] XIANG X K, YIN Q Q, FENG C Y, et al. , 2015b. Elements and fluids migration regularity of granodiorite alteration zones in the Shimensi tungsten polymetallic deposit in northern Jiangxi and their constrain on mineralization[J]. Acta Geologica Sinica, 89(7): 1273-1287. (in Chinese with English abstract)
    [39] XIAO Z B, WANG H C, KANG J L, et al. , 2017. U-Pb chronology, Hf isotope and geological implication of zircons from the Neoarchean quartzite in Changyi area, eastern Shandong[J]. Acta Petrologica Sinica, 33(9): 2925-2938. (in Chinese with English abstract)
    [40] XIE L, LIU Y, WANG R C, et al. , 2019. Li–Nb–Ta mineralization in the Jurassic Yifeng Granite-aplite intrusion within the Neoproterozoic Jiuling batholith, South China: a fluid-rich and Quenching Ore-forming process[J]. Journal of Asian Earth Sciences, 185(17): 104047.
    [41] XU X S, ZHANG H, WU Y, et al. , 2021. Disintegration of Daguzhai composite pluton in South Jiangxi and its geological implication[J]. Uranium Geology, 37(3): 398-405. (in Chinese with English abstract)
    [42] ZHANG D, LI F, HE X L, et al. , 2021. Mesozoic tectonic deformation and its rock / ore-control mechanism in the important metallogenic belts in South China[J]. Journal of Geomechanics, 27(4): 497-528. (in Chinese with English abstract)
    [43] ZHANG Y, PAN J Y, MA D S, et al. , 2017. Re-Os molybdenite age of Dawutang tungsten ore district of northwest Jiangxi and its geological significance[J]. Mineral Deposits, 36(3): 749-769. (in Chinese with English abstract)
    [44] ZHANG Y, 2018. Ore-forming fluid evolution and Sb-Au-W metallogenesis in the Central Hunan-northwestern Jiangxi, South China[D]. Nanjing: Nanjing University. (in Chinese with English abstract)
    [45] ZHANG Y, LIU N Q, PAN J Y, et al. , 2019. Multi-mineralization stages of the Shimengsi giant tungsten deposit of Northwest Jiangxi: the application of cumulative frequency distribution in tungsten ore genesis and ore prospecting[J]. Journal of East China University of Technology, 42(4): 334-341, 367. (in Chinese with English abstract)
    [46] ZHANG Y, PAN J Y, MA D S, et al. , 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: constraints from mineralogy and geochemistry of hydrothermal alteration[J]. Acta Geologica Sinica, 94(11): 3321-3342. (in Chinese with English abstract)
    [47] ZHANG Y Q, DONG S W, ZHAO Y, et al. , 2007. Jurassic tectonics of North China: a synthetic view[J]. Acta Geologica Sinica, 81(11): 1462-1480. (in Chinese with English abstract)
    [48] ZHAO F M, 2011. Research and evaluation of uranium deposits in China (volume IV): carbonaceous-siliceous-pelitic rock type uranium deposit[M]. Beijing: China Nuclear Geology. (in Chinese)
    [49] ZHAO Z H, 1992. Trace element geochemical[J]. Advances in Earth Science, 7(5): 65-66. (in Chinese)
    [50] ZHAO Z H, ZHOU L D, 1997. REE geochemistry of some alkali-rich intrusive rocks in China[J]. Science in China Series D: Earth Sciences, 40(2): 145-158. doi: 10.1007/BF02878373
    [51] ZHOU J T, WANG G B, HE S F, et al. , 2011. Diagenesis and mineralization of Ganfang rock in Yifeng, Jiangxi province[J]. Journal of East China Institute of Technology, 34(4): 345-351, 358. (in Chinese with English abstract)
    [52] 陈迪, 罗鹏, 曾志方, 等, 2022. 湘南都庞岭复式花岗岩成因及地质意义: 矿物化学、锆石U-Pb年代学、地球化学与Nd-Hf同位素制约[J]. 地质力学学报, 28(4): 617-641.
    [53] 陈振宇, 王登红, 2014. 锆石Th、U含量和Th/U比值对产铀、不产铀花岗岩体的判别意义[J]. 矿床地质, 33(S1): 1159-1160.
    [54] 董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449-1461.
    [55] 窦小平, 2004. 华东地区花岗岩类成因类型及其与铀成矿的关系[J]. 铀矿地质, 20(6): 330-336.
    [56] 窦小平, 熊超, 杜兴胜, 等, 2015. 华东地区部分花岗岩体铀含量及迁移富集特征研究[J]. 世界核地质科学, 32(3): 145-151.
    [57] 段政, 廖圣兵, 褚平利, 等, 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 46(3): 493-516.
    [58] 郭春丽, 陈振宇, 楼法生, 等, 2014. 南岭与钨锡矿床有关晚侏罗世花岗岩的成矿专属性研究[J]. 大地构造与成矿学, 38(2): 301-311.
    [59] 郭小飞,王庆龙,荆一洪,等, 2022.赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义[J].地质与勘探, 58(3):585-597.
    [60] 蒋少涌, 彭宁俊, 黄兰椿, 等, 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨[J]. 岩石学报, 31(3): 639-655.
    [61] 兰鸿锋, 凌洪飞, 孙立强, 等, 2016. 诸广山南体桃金洞花岗岩成因和铀成矿潜力探讨[J]. 高校地质学报, 22(1): 12-29.
    [62] 凌洪飞, 沈渭洲, 孙涛, 等, 2006. 广东省22个燕山期花岗岩的源区特征及成因: 元素及Nd-Sr同位素研究[J]. 岩石学报, 22(11): 2687-2703.
    [63] 刘莹, 2019. 江西九岭地区稀有金属花岗岩矿物学特征与成矿机制差异性研究[D]. 南京大学.
    [64] 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 14(4): 510-526.
    [65] 毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 85(5): 636-658.
    [66] 秦程, 2018. 江西宜丰狮子岭白云母花岗岩成矿潜力研究[D]. 北京: 中国地质大学(北京).
    [67] 宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26-30.
    [68] 孙建东, 李海立, 陆凡, 等, 2022.赣西蒙山岩体地球化学、锆石U-Pb年龄、Hf同位素特征及地质意义[J].地质与勘探, 58(1):96-107.
    [69] 谭俊, 魏俊浩, 李艳军, 等, 2007. 南岭中生代陆壳重熔型花岗岩类成岩成矿的有关问题[J]. 地质论评, 53(3): 349-362.
    [70] 田泽瑾, 2014. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究[D]. 北京: 中国地质大学(北京).
    [71] 王迪, 2017. 赣北九岭地区巨型复式花岗岩基的形成[D]. 南京: 南京大学.
    [72] 王莉娟, 王京彬, 王玉往, 等, 2013. 我国南岭地区钨锡铌钽矿床成矿花岗岩主要地质特征[J]. 矿产勘查, 4(6): 598-608.
    [73] 王涛, 郭磊, 李舢, 等, 2019. 花岗岩大地构造研究的若干重要问题[J]. 地质力学学报, 25(5): 899-919.
    [74] 王文龙, 滕学建, 刘洋, 等, 2017. 内蒙古狼山乌和尔图花岗岩岩体锆石U-Pb年代学及地球化学特征[J]. 地质力学学报, 23(3): 382-396.
    [75] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604.
    [76] 项新葵, 尹青青, 孙克克, 等, 2015a. 江南造山带中段大湖塘同构造花岗斑岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石矿物学杂志, 34(5): 581-600.
    [77] 项新葵, 尹青青, 丰成友, 等, 2015b. 赣北石门寺钨多金属矿床花岗闪长岩蚀变带元素、流体迁移规律及其对成矿作用的制约[J]. 地质学报, 89(7): 1273-1287.
    [78] 肖志斌, 王惠初, 康健丽, 等, 2017. 胶东昌邑地区新太古代石英岩的锆石U-Pb年代学和Hf同位素特征及其地质意义[J]. 岩石学报, 33(9): 2925-2938.
    [79] 徐勋胜, 张鸿, 吴勇, 等, 2021. 赣南打古寨复式花岗岩体的解体及其地质意义[J]. 铀矿地质, 37(3): 398-405.
    [80] 张达, 李芳, 贺晓龙, 等, 2021. 华南重要成矿区带中生代构造变形及其控岩控矿机理[J]. 地质力学学报, 27(4): 497-528.
    [81] 张勇, 潘家永, 马东升, 等, 2017. 赣西北大雾塘钨矿区地质特征及Re-Os同位素年代学研究[J]. 矿床地质, 36(3): 749-769.
    [82] 张勇, 2018. 湘中-赣西北成矿流体演化与Sb-Au-W成矿[D]. 南京: 南京大学.
    [83] 张勇, 刘南庆, 潘家永, 等, 2019. 赣西北石门寺超大型钨矿床多期成矿作用: 累积概率格纸在钨矿成因及找矿中的应用[J]. 东华理工大学学报(自然科学版), 42(4): 334-341, 367.
    [84] 张勇, 潘家永, 马东升, 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示[J]. 地质学报, 94(11): 3321-3342.
    [85] 张岳桥, 董树文, 赵越, 等, 2007. 华北侏罗纪大地构造: 综评与新认识[J]. 地质学报, 81(11): 1462-1480.
    [86] 赵凤民, 2011. 中国铀矿床研究评价(第四卷): 碳硅泥岩型铀矿床[M]. 北京: 中国核工业地质局.
    [87] 赵振华, 1992. 微量元素地球化学[J]. 地球科学进展, 7(5): 65-66.
    [88] 中国核工业总公司, 1996. 花岗岩型铀矿找矿指南: EJ/T 976—1996[S]. 北京: 核工业标准化研究所: 1-67.
    [89] 周建廷, 王国斌, 何淑芳, 等, 2011. 江西宜丰地区甘坊岩体成岩成矿作用分析[J]. 东华理工大学学报(自然科学版), 34(4): 345-351, 358.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  178
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 修回日期:  2023-09-26
  • 预出版日期:  2024-06-12

目录

    /

    返回文章
    返回