Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance
-
摘要: 洞上铀矿床位于赣西北九岭岩基南部甘坊岩体内,产铀花岗岩以中粗粒斑状黑(二)云母花岗岩为主。通过锆石及独居石U–Pb年代学、岩相学和岩石地球化学研究,确定产铀花岗岩的形成时代、源区属性与岩石成因,探讨其铀成矿潜力。LA–ICP–MS分析结果显示,锆石U–Pb下交点年龄和加权平均年龄均为152±1 Ma,独居石U-Pb下交点年龄和加权平均年龄分别为151±1 Ma和151±2 Ma,表明产铀花岗岩形成于燕山早期。主量元素具有高硅(SiO2含量为72.1%~75.6%)、高碱(K2O+Na2O含量为7.26%~8.43%)、富钾贫钠(K2O/Na2O=1.07~1.42)、高铝(A/CNK=1.12~1.29)、低钛(TiO2含量为0.07%~0.17%)、贫铁镁(FeOT含量为0.75%~1.28%、MgO含量为0.19%~0.31%)特征,属高钾钙碱性系列过铝质花岗岩;微量元素Ba、Sr、Nb、Ti亏损,Rb、U、Pb、Ta富集,属典型的低Ba、Sr花岗岩;稀土总量较低(∑REE=21.6×10−6~50.7×10−6),配分曲线为右倾的轻稀土富集型,Eu负异常明显,属S型花岗岩。结合年代学和岩石地球化学特征,认为洞上产铀花岗岩形成于燕山早期同碰撞造山的主挤压阶段,是新元古界双桥山群安乐林组富白云母的变泥质岩部分熔融的产物。富铀、Rb/Sr比值高、Th/U比值小于3、锆石铀含量高等特征指示该花岗岩为产铀花岗岩,具有提供铀源的条件与潜力。Abstract: The Dongshang Uranium Deposit is situated in the southern section of the Ganfang Pluton in the Jiuling Orogenic Belt of northwestern Jiangxi Province. The U-bearing granites consist mainly of medium- to coarse-grained, porphyritic biotite(binary) granite. Through zircon and monazite U-Pb geochronology, petrology, and rock geochemistry studies, the U-bearing granites' age, source characteristics, and rock genesis were determined, and their uranium metallogenic potential was also discussed. The LA-ICP-MS analysis showed that the zircon U-Pb intercept and weighted average ages are both 152±1 Ma, and the monazite U-Pb intercept and weighted average ages are 151±1 Ma and 151±2 Ma, respectively, indicating the formation of the U-bearing granites during the early Yanshan period. The major elements exhibit the characteristic of high silica content (SiO2 ranging from 72.1% to 75.6%), high alkalis content (K2O+Na2O ranging from 7.26% to 8.43%), potassium-rich and sodium-poor (K2O/Na2O=1.07 to 1.42), high aluminum (A/CNK=1.12 to 1.29), low titanium content (TiO2 ranging from 0.07% to 0.17%), and iron-poor magnesium (FeOT ranging from 0.75% to 1.28%, MgO ranging from 0.19% to 0.31%), classifying the U-bearing granites as high potassium calcalkaline peraluminous granites. Trace elements Ba, Sr, Nb, and Ti are depleted, while Rb, U, Pb, and Ta are enriched, representing a typical low Ba, Sr granite. The total rare earth elements (ΣREE) are relatively low (∑REE=21.6×10−6 to 50.7×10−6), exhibiting a right-dipping light rare earth enrichment pattern with a prominent negative Eu anomaly, which belongs to S-type granites. Based on geochronology and rock geochemical features, it's suggested that the Dongshang U-bearing granites were formed during the syn-collision compressional setting, resulting from the partial melting of the muscovite-rich metapelites of the Anlelin Formation in the Neoproterozoic Shuangqiaoshan Group. High uranium content, high Rb/Sr ratios, Th/U ratios less than 3, and high zircon uranium contents indicate the potential for uranium ore-forming conditions within these granites.
-
0. 引言
九岭地区位于九岭−鄣公山钨锡多金属成矿带的西段,是江西省重要的W–Sn–Cu–Mo–Li–Nb–Ta–U矿集区,已探明有色金属、稀有金属、贵金属和放射性矿产200余处。九岭地区的铀矿找矿工作成果丰硕,该区北部落实了修水铀矿化集中区,发现了董坑、保峰源、大椿、白土、洞下等铀矿床,矿化类型为碳硅泥岩型(赵凤民,2011);南部宜丰—奉新一带开展了放射性伽玛测量和铀矿普查,仅发现了洞上铀矿床和茅坪、东槽铀矿化点,矿化类型为花岗岩型硅质脉亚型,均分布在燕山期甘坊岩体内。已有研究集中在洞上铀矿床地质特征、矿化特征、矿化富集规律及控矿因素等方面,认为铀矿体定位在北北东向甘坊−兰溪硅化断裂内及其上下盘,赋矿围岩为中粗粒斑状黑(二)云母花岗岩(窦小平,2004;窦小平等,2015),但产铀花岗岩的形成时代及成因尚不清楚。为此,文章在野外地质调查的基础上,对洞上铀矿床产铀花岗岩进行岩相学、年代学及岩石地球化学系统分析,并结合区域构造演化,探讨产铀花岗岩形成的构造背景与产铀潜力。
1. 研究区地质特征
九岭地区位于扬子板块东南缘江南造山带中段,基底地层为新元古界双桥山群浅变质岩,盖层为南华纪和震旦纪—中三叠世的海相沉积地层、白垩纪—古近纪陆相地层(王迪,2017;段政等,2019;图1)。其中,双桥山群()广泛出露于九岭地区北部、西部和南部,是断陷环境中形成的海相泥砂质碎屑岩−火山碎屑岩−喷发熔岩组合(蒋少涌等,2015;项新葵等,2015a,2015b)。南华系(Nh1)—奥陶系(O)分布于北部(图1b),为一套连续的碳酸盐岩−硅质岩沉积组合,是海相沉积盖层。上三叠统(T3)为海陆交互相的含煤建造,下中侏罗统(J1-2)为河湖相沉积,上白垩统(K2)—新近系(N)为红色岩系,分布在西部和南部,是陆相沉积盖层。基底地层发生了褶皱作用,形成了九岭复式紧密线型褶皱,轴线呈近东西(北东东)向。断裂构造以近东西(北东东)向压扭性断裂和北东、北北东向走滑断裂为主,次为北西向、近南北向硅化断裂。岩浆岩以晋宁期中—酸性侵入岩和燕山期酸性侵入岩套、岩枝、岩脉为主,前者侵位于双桥山群中,形成了巨大的九岭岩基,整体呈近东西向展布,出露面积大于4000 km2,是华南最大的花岗质岩基之一,也是钨多金属矿化的赋矿围岩;后者侵位于九岭岩基或双桥山群中,规模大小不一,与北部钨−锡−铜矿化及南部铀−铌−钽−锂等金属成矿作用关系密切(蒋少涌等,2015;张勇等,2017,2019,2020;张勇,2018;张达等,2021)。
图 1 九岭地区大地构造位置及铀矿地质简图1—第四系;2—古近系;3—上白垩统;4—奥陶系;5—寒武系;6—下南华统;7—新元古界双桥山群;8—晋宁期花岗岩;9—燕山早期第一阶段花岗岩;10—燕山早期第二阶段花岗岩;11—燕山晚期花岗岩;12—细晶岩脉、花岗斑岩脉;13—推滑覆断层、剥离断层;14—断裂构造;15—不整合界线;16—地质界线;17—岩相界线;18—铀矿床及名称a—大地构造位置简图(张勇,2018);b—铀矿地质简图Figure 1. Geotectonic location map and uranium geological map of Jiuling area(a) Geotectonic location map (Zhang, 2018); (b) Uranium geological map 1–Quaternary; 2–Paleogene; 3–Upper Cretaceous; 4–Ordovician; 5–Cambrian; 6–Lower Nanhuan System; 7–Neoproterozoic Shuangqiaoshan Group; 8–Granite of Jinning Period; 9–Granite of first stage in Early Yanshanian; 10–Granite of second stage in Early Yanshanian; 11–Granite of Late Yanshanian; 12–fine-grain dike or ranite-porphyry vein; 13–nappe structure; 14–fault structure; 15–unconformity; 16–geological boundary; 17–lithologic interface; 18–uranium deposit洞上铀矿床位于九岭地区南部燕山期甘坊岩体中部,主要受北北东向兰溪−甘坊硅化断裂控制(图1,图2)。矿床内主要出露燕山早期中粗粒斑状黑云母花岗岩、中粗粒二云母花岗岩和燕山晚期细晶岩、细粒白云母花岗岩。兰溪−甘坊断裂斜贯该区,带内常见灰色—红褐色硅质−玉髓脉、硅化角砾岩、硅化碎裂岩等,上下盘次一级硅化断裂(裂隙)发育,多呈带组状。北北东向断裂控制着铀矿体的产状、规模、形态等。铀矿化产于中粗粒斑状黑(二)云母花岗岩中,硅化、赤铁矿化、黄铁矿化、萤石化等热液蚀变发育,地表常见钙铀云母、铜铀云母。铀矿石以沥青铀矿−硫化物型和沥青铀矿−萤石型为主。
图 2 洞上地区铀矿地质简图(据周建廷等,2011;秦程,2018修编)1—新元古界双桥山群;2—晋宁期花岗闪长岩;3—晋宁期二长花岗岩;4—燕山早期第一阶段花岗岩;5—燕山早期第二阶段花岗岩;6—燕山晚期第一阶段花岗岩;7—细晶岩脉、花岗斑岩脉;8—断裂构造;9—地质界线、岩相界线;10—铀矿床及名称;11—取样位置及编号1–Neoproterozoic Shuangqiaoshan Group; 2–granodiorite of Jinning Period; 3–monzonitic granite of Jinning Period; 4–granite of first stage in Early Yanshanian; 5–granite of second stage in Early Yanshanian; 6–granite of Late Yanshanian; 7–fine-grain dike or ranite-porphyry vein; 8–fault structure; 9–geological boundary or lithologic interface; 10–uranium deposit; 11–sampling point and number2. 样品和分析方法
洞上产铀花岗岩采样位置见图2。LA–ICP–MS锆石和独居石U–Pb定年样品选自JL2020-7样品。在岩石学观察的基础上,选取新鲜样品(JL2020-6、JL2020-7、JL2020-8)进行全岩主微量元素及稀土元素分析。
2.1 岩相学特征
中粗粒斑状黑(二)云母花岗岩,呈灰白色至浅肉红色(图3a),似斑状结构,块状构造。矿物组成含量分别为石英(30%~35%)、钾长石(20%~35%)、斜长石(15%~30%)、黑云母(5%~15%)和白云母(0%~10%),副矿物有磷灰石、锆石、独居石等。镜下观察,具似斑状结构,斑晶为钾长石和石英。钾长石含量为10%~15%,呈宽板状,卡氏双晶及净边结构,大小(4~6)mm×(6~12)mm,以条纹长石、正长石为主;石英粒径为5 mm,部分可见裂纹(图3b)。基质为斜长石、微斜长石、石英、黑云母及白云母。斜长石呈半自形—自形柱状,以更 −钠长石为主,部分被白云母交代(图3c)。石英呈他形粒状,具有波状消光。黑云母呈板状,弱绿泥石化;白云母分为板状和细小针状、蠕虫状两期,可见绿泥石和白云母组成的黑云母假晶(图3d)。铀矿化部位常见赤铁矿化、硅化、水云母化、萤石化等热液蚀变(图3e、3f)。
图 3 洞上产铀花岗岩岩石学特征Qtz—石英;Pl—斜长石;Ms—白云母;Chl—绿泥石;Kfs—钾长石a—浅肉红色中粗粒斑状黑(二)云母花岗岩;b—似斑状结构,图中石英斑晶超出视域(+);c—斜长石被白云母交代,绿泥石呈黑云母假晶(+);d—绿泥石和白云母组成黑云母的假晶(+);e—野外露头,发育钾长石化、褐铁矿化;f—岩石手标本,见钾长石化、水云母化Figure 3. Petrological characteristics of the U-bearing granite in Dongshang deposit(a) medium-coarse biotite granite; (b) orphyritic texture (+); (c) muscovitize (+); (d) chloritization and muscovitize (+); (e) K-alferation and ferritization of geological outcrop; (f) K-alferation and hydromicazation of hand specimens2.2 主微量元素及稀土元素分析
主量元素检测采用四硼酸锂−偏硼酸锂混合熔剂,与样品混匀后在1150~1250℃下熔融并铸成玻璃熔片,借助岛津X荧光光谱仪进行测定。X光管最大电压40 kV,最大电流95 mA,利用康普顿射线为内标校正基体效应。各元素含量测量范围介于0.002%~99%之间。微量及稀土元素采用电感耦合等离子体质谱法测定,样品前处理方式为封闭溶矿,用氢氟酸、高氯酸、硝酸、盐酸等处理,检测仪器为美国PerkinElmer公司NexION2000B型电感耦合等离子体质谱仪,选择不同质核比的离子检测某个离子的强度,计算某种元素的含量。仪器主要性能(Li(7)≤3% RSD,Y(89)≤3% RSD,Tl(204)≤3% RSD),雾化气流量0.98 L/min,等离子体气流1.2 L/min,射频功率1200 W,用内标法进行校正。
2.3 锆石U–Pb年龄分析
锆石制靶方法见宋彪等(2002)。锆石阴极发光图像拍摄和LA–ICP–MS锆石U–Pb同位素测定均在中国地质调查局铀矿地质重点实验室完成。借助New Wave 193 nm激光剥蚀系统和Thermo Fisher Neptune多接收等离子体质谱仪进行LA–ICP–MS分析,剥蚀孔径35 μm,剥蚀频率8 Hz,输出能量5 mJ,年龄外标为锆石GJ-1,元素含量外标为NIST610(肖志斌等,2017)。定年数据处理采用ICPMSDataCal 11.0(Liu et al.,2008,2010)进行。样品U-Pb年龄谐和图绘制和年龄加权平均计算通过Isoplot /Ex_ver3(Ludwig,2003)完成。
2.4 独居石U–Pb年龄分析
独居石U–Pb年龄分析在东华理工大学核资源与环境国家重点实验室完成,借助GeoLasHD 193 nm激光剥蚀系统和7900 ICP–MS电感耦合等离子体质谱仪进行LA–ICP–MS分析,剥蚀孔径16 μm,剥蚀频率3 Hz,输出能量3 mJ,年龄外标为国际独居石TS-Mnz,元素含量外标为玻璃标准物质NIST610。定年数据处理采用ICPMSDataCal 11.0(Liu et al.,2008,2010)进行。样品U-Pb年龄谐和图绘制和年龄加权平均计算通过Isoplot /Ex_ver3(Ludwig,2003)完成。
3. 分析结果
3.1 锆石U–Pb年龄
洞上产铀花岗岩样品(JL2020-7)中锆石呈无色透明或浅黄色,大部分晶型较好,短柱至长柱状,长90~285 μm,宽45~90 μm,长/宽比1∶2~1∶3,CL图像显示锆石韵律环带清晰(图4),具有核−边结构,为典型的岩浆结晶锆石(吴元保和郑永飞,2004)。
文章对样品(JL2020-7)中28颗锆石进行了29个测点分析,结果列于表1。锆石中U含量为135×10−6~5890×10−6,Th含量为102×10−6~1980×10−6,Th/U=0.05~1.49(平均值0.53>0.3),属岩浆结晶锆石(吴元保和郑永飞,2004)。在206Pb/238U−207Pb/235U谐和图中,数据点大都落在谐和线上或靠近谐和线,下交点年龄为152±1 Ma(图5a)。其中19个206Pb/238U视年龄值介于154~150 Ma之间的测点加权平均年龄为152±1 Ma(MSWD=1.3;图5b),表明洞上产铀花岗岩形成于燕山早期(晚侏罗世)。
表 1 洞上产铀花岗岩锆石LA–ICP–MS U–Pb定年分析结果Table 1. Data of LA–ICP–MS zircon U–Pb dating of the U-bearing granite in Dongshang deposit测点号 含量/(×10−6) 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ JL2020-7-02 16 237 691 0.0511 0.0010 0.1715 0.0035 0.0244 0.0002 244 40 161 3 155 1 JL2020-7-03 39 531 5890 0.0507 0.0003 0.1676 0.0013 0.0240 0.0001 227 16 157 1 153 1 JL2020-7-05 58 792 2140 0.0520 0.0005 0.1707 0.0025 0.0238 0.0003 287 22 160 2 152 2 JL2020-7-08 28 434 510 0.0499 0.0013 0.1642 0.0039 0.0239 0.0002 192 50 154 3 152 1 JL2020-7-11 127 1980 3700 0.0564 0.0009 0.1910 0.0040 0.0245 0.0002 470 33 177 3 156 2 JL2020-7-13 15 234 632 0.0484 0.0021 0.1600 0.0070 0.0240 0.0005 118 85 151 6 153 3 JL2020-7-15 14 192 725 0.0488 0.0008 0.1601 0.0026 0.0238 0.0002 139 33 151 2 152 1 JL2020-7-16 80 1022 3380 0.0531 0.0009 0.1776 0.0029 0.0243 0.0002 332 36 166 3 155 1 JL2020-7-17 22 295 607 0.0493 0.0009 0.1611 0.0031 0.0237 0.0002 163 38 152 3 151 1 JL2020-7-18 14 132 270 0.0660 0.0027 0.2240 0.0095 0.0246 0.0003 805 85 205 8 157 2 JL2020-7-19 12 179 225 0.0503 0.0016 0.1635 0.0049 0.0236 0.0003 207 60 154 5 150 2 JL2020-7-20 8 111 196 0.0514 0.0017 0.1700 0.0055 0.0240 0.0002 260 60 159 5 153 1 JL2020-7-23 26 384 523 0.0485 0.0014 0.1591 0.0046 0.0238 0.0002 123 60 150 4 152 1 JL2020-7-25 37 494 4680 0.0523 0.0007 0.1725 0.0025 0.0239 0.0003 298 31 162 2 152 2 JL2020-7-28 10 102 135 0.0696 0.0032 0.2390 0.0090 0.0249 0.0008 917 95 218 8 159 5 JL2020-7-31 23 310 361 0.0577 0.0015 0.1950 0.0050 0.0245 0.0003 520 55 181 4 156 2 JL2020-7-32 28 418 909 0.0496 0.0008 0.1629 0.0027 0.0238 0.0002 177 34 153 2 152 1 JL2020-7-33 24 308 720 0.0498 0.0010 0.1641 0.0034 0.0239 0.0002 187 42 154 3 152 1 JL2020-7-34 21 325 360 0.0508 0.0017 0.1670 0.0055 0.0239 0.0003 231 65 157 5 152 2 JL2020-7-35 11 125 333 0.0517 0.0029 0.1680 0.0095 0.0236 0.0003 273 120 158 9 150 2 JL2020-7-36 112 1560 3480 0.0562 0.0010 0.1883 0.0029 0.0243 0.0004 461 36 175 3 155 2 JL2020-7-37 43 458 3260 0.0536 0.0028 0.1780 0.0095 0.0241 0.0007 353 120 166 8 154 4 JL2020-7-39 13 167 168 0.0544 0.0032 0.1770 0.0100 0.0236 0.0005 386 120 165 9 150 3 JL2020-7-40 16 196 492 0.0510 0.0017 0.1690 0.0055 0.0240 0.0003 241 70 159 5 153 2 JL2020-7-43 18 276 761 0.0491 0.0008 0.1617 0.0026 0.0239 0.0002 151 33 152 2 152 1 JL2020-7-50 26 341 229 0.0520 0.0026 0.1740 0.0100 0.0243 0.0004 286 110 163 9 155 3 JL2020-7-51 40 504 1550 0.0590 0.0012 0.1981 0.0037 0.0244 0.0002 567 46 184 3 155 1 JL2020-7-53 28 285 247 0.0606 0.0037 0.2030 0.0120 0.0243 0.0006 625 125 188 10 155 3 JL2020-7-54 20 265 5050 0.0517 0.0007 0.1711 0.0031 0.0240 0.0003 272 31 160 3 153 2 3.2 独居石U–Pb年龄
洞上产铀花岗岩样品(JL2020-7)中独居石呈浅黄色、透明,为半自形—自形短柱状、粒状,粒径40~180 μm。背散射(BSE)图像中独居石内部结构均匀,部分边部出现晶棱圆化、港湾状结构,无明显环带。独居石U–Pb同位素测定结果见表2。对19颗独居石进行U–Pb同位素测年,共获得19个有效点,208Pb/232Th年龄值大多分布于谐和曲线上或附近(图6a),下交点年龄151±1 Ma(MSWD=1.16);对其中15个谐和测点的206Pb/238U年龄进行加权平均,结果为151±2 Ma(MSWD=1.6;图6b),表明洞上产铀花岗岩形成于燕山早期(晚侏罗世)。
表 2 洞上产铀花岗岩独居石LA–ICP–MS U–Pb定年分析结果Table 2. Data of LA–ICP–MS monaite U–Pb dating of the U-bearing granite in Dongshang deposit测点号 含量/(×10−6) 同位素比值 年龄/Ma Th U 207Pb/235U 2σ 206Pb/238U 2σ 207Pb/235U 2σ 206Pb/238U 2σ JLD2020-7-01 191064 11305 0.1530 0.0095 0.0230 0.0007 145 8 147 5 JLD2020-7-03 176267 7805 0.1592 0.0096 0.0244 0.0007 150 8 156 5 JLD2020-7-04 179808 3833 0.1794 0.0176 0.0241 0.0008 168 15 153 5 JLD2020-7-05 179094 9668 0.1589 0.0095 0.0239 0.0007 150 8 152 5 JLD2020-7-07 217554 3884 0.1591 0.0132 0.0236 0.0007 150 12 151 5 JLD2020-7-09 185410 7891 0.1733 0.0103 0.0240 0.0008 162 9 153 5 JLD2020-7-10 185511 6457 0.1512 0.0086 0.0237 0.0007 143 8 151 5 JLD2020-7-13 187573 10423 0.1592 0.0088 0.0233 0.0006 150 8 148 4 JLD2020-7-15 161676 6801 0.1586 0.0123 0.0242 0.0007 149 11 154 5 JLD2020-7-16 181397 6335 0.1616 0.0096 0.0242 0.0007 152 8 154 5 JLD2020-7-17 88445 12300 0.1550 0.0089 0.0235 0.0007 146 8 150 4 JLD2020-7-18 182585 7128 0.1611 0.0104 0.0237 0.0006 152 9 151 4 JLD2020-7-19 180762 5964 0.1689 0.0132 0.0240 0.0007 158 11 153 5 JLD2020-7-21 187512 9102 0.1572 0.0096 0.0235 0.0006 148 8 150 4 JLD2020-7-24 131495 27231 0.1476 0.0069 0.0229 0.0007 140 6 146 4 JLD2020-7-02 104575 13748 0.4302 0.0349 0.0273 0.0009 363 25 174 6 JLD2020-7-11 231240 2392 0.8941 0.1181 0.0314 0.0013 649 63 199 8 JLD2020-7-20 177503 5259 0.7670 0.1135 0.0304 0.0014 578 65 193 9 JLD2020-7-22 176812 4865 0.2169 0.0160 0.0246 0.0008 199 13 156 5 3.3 地球化学特征
洞上产铀花岗岩的主微量元素和稀土元素检测结果详见表3。JL2020-6、JL2020-7和JL2020-8数据为此次测得,GF8-1、GF9-1、GF10-1和GF11-1数据引自王迪(2017)。
表 3 洞上产铀花岗岩主量元素(%)、微量元素(×10−6)及稀土元素(×10−6)分析结果Table 3. The analytical results major elements (%), trace elements (×10−6) and REEs (×10−6) of the U-bearing granite in Dongshang deposit样号 JL2020-6 JL2020-7 JL2020-8 GF8-1 GF9-1 GF10-1 GF11-1 元素 中粗粒斑状黑(二)云母花岗岩 粗粒白云母花岗岩 SiO2 72.14 73.01 72.51 75.40 73.70 75.00 75.60 TiO2 0.15 0.16 0.16 0.13 0.16 0.17 0.07 Al2O3 15.17 14.93 14.97 13.50 14.30 14.00 13.60 FeOT 1.28 1.13 1.27 0.85 1.02 1.20 0.75 MnO 0.07 0.06 0.08 0.04 0.03 0.08 0.50 MgO 0.27 0.23 0.25 0.25 0.31 0.30 0.19 CaO 0.72 0.76 0.72 0.47 0.43 0.54 0.74 Na2O 3.78 3.82 3.55 3.47 3.36 3.51 3.78 K2O 4.65 4.44 4.49 4.01 4.77 3.75 4.25 P2O5 0.23 0.25 0.24 0.25 0.26 0.28 0.26 LOI 1.13 1.15 1.03 0.77 0.77 0.96 1.55 总量 99.60 99.96 99.30 99.10 99.60 99.76 100.76 K2O+Na2O 8.43 8.26 8.04 7.48 8.13 7.26 8.03 K2O/Na2O 1.23 1.16 1.26 1.16 1.42 1.07 1.12 CaO/Na2O 0.19 0.20 0.20 0.14 0.13 0.15 0.20 Al2O3/TiO2 101.13 93.31 93.56 103.85 89.38 82.35 194.29 A/CNK 1.21 1.20 1.25 1.24 1.25 1.29 1.12 A/NK 1.35 1.35 1.40 1.34 1.34 1.42 1.26 C/FM 0.47 0.56 0.47 0.43 0.32 0.36 0.79 A/FM 9.81 10.96 9.84 12.27 10.75 9.33 14.47 Rb 622.00 414.00 448.00 305.00 430.00 580.00 500.00 Sr 37.60 33.40 37.90 23.40 55.20 55.40 31.30 Y 8.50 8.58 8.37 4.30 9.63 11.40 4.73 Zr 90.00 90.00 90.00 35.60 59.90 72.80 29.30 Hf 2.01 2.12 2.21 1.07 1.69 2.08 1.11 Nb 16.70 17.10 16.70 8.30 12.10 20.90 12.90 Ta 7.41 7.39 7.51 3.07 2.09 6.07 6.03 Ba 96.70 84.50 102.00 42.80 99.70 83.00 76.70 Th 7.62 7.49 8.11 2.71 4.79 5.96 3.94 U 30.80 35.90 27.20 9.20 13.90 18.00 8.44 Pb 23.20 23.00 23.90 12.30 24.50 22.70 24.40 Ti 930.00 940.00 940.00 779.00 959.00 1019.00 420.00 P 999.00 1077.00 1038.00 1090.00 1134.00 1221.00 1134.00 Rb/Sr 16.50 12.40 11.80 13.00 7.79 10.50 16.00 Rb/Ba 6.43 4.90 4.39 7.13 4.31 6.99 6.52 Rb/Nb 37.20 24.20 26.80 36.70 35.50 27.80 38.80 Zr/Hf 44.80 42.50 40.70 33.30 35.40 35.00 26.40 Th/U 0.25 0.21 0.30 0.29 0.34 0.33 0.47 La 8.68 9.42 10.10 3.79 7.41 9.56 5.54 Ce 18.30 19.92 21.24 9.79 17.20 22.50 10.14 Pr 2.16 2.28 2.50 0.91 1.60 1.94 1.19 Nd 7.78 8.34 8.94 3.42 6.03 7.31 4.14 Sm 1.79 2.01 2.09 0.88 1.62 1.88 0.99 Eu 0.23 0.21 0.23 0.10 0.21 0.22 0.15 Gd 1.63 1.70 1.83 0.82 1.50 1.77 0.89 Tb 0.28 0.28 0.29 0.15 0.30 0.34 0.15 Dy 1.59 1.62 1.56 0.84 1.65 1.83 0.80 Ho 0.26 0.26 0.26 0.13 0.25 0.28 0.12 Er 0.67 0.68 0.69 0.36 0.64 0.74 0.35 Tm 0.09 0.09 0.09 0.05 0.09 0.11 0.05 Yb 0.61 0.61 0.81 0.32 0.54 0.70 0.33 Lu 0.08 0.08 0.08 0.05 0.08 0.10 0.05 ∑REE 44.16 47.49 50.69 21.61 39.12 49.28 24.85 LREE/HREE 7.47 7.92 8.01 6.94 6.75 7.40 8.07 δEu 0.41 0.34 0.35 0.35 0.40 0.36 0.48 (La/Yb)N 10.21 11.13 8.90 8.50 9.84 9.80 12.04 (La/Sm)N 3.13 3.03 3.12 2.78 2.95 3.28 3.61 (Gd/Yb)N 2.21 2.32 1.86 2.12 2.30 2.09 2.23 Zr+Nb+Ce+Y 739.00 523.00 558.00 419.00 532.00 676.00 706.00 3.3.1 主量元素特征
洞上产铀花岗岩SiO2含量为72.1%~75.6%(平均值73.9%),高硅;K2O含量为3.75%~4.77%(平均值4.33%),Na2O含量为3.36%~3.82%(平均值3.61%),K2O+Na2O含量为7.26%~8.43%(平均值7.95%),富碱;在SiO2−(K2O+Na2O)图解上均投点于花岗岩区(图7a),在SiO2−K2O图解上落入高钾钙碱性系列(图7b)。K2O/Na2O比值为1.07~1.42(平均值1.20),富钾贫钠。Al2O3含量为13.5%~15.2%(平均值14.4%),富铝,A/CNK=Al2O3/(CaO+Na2O+K2O)=1.12~1.29(平均值1.22>1.1),A/NK = Al2O3/(Na2O+ K2O)=1.26~1.42(平均值1.35),在A/CNK−A/NK图解上均落于过铝质岩区(图7c)。TiO2含量为0.07%~0.17%,低钛,与副矿物中少见钛铁矿、磷灰石的特征一致。FeOT含量为0.75%~1.28%(平均值1.07%),MgO含量为0.19%~0.31%(平均值0.26%),Mg#=31.4~41.5(平均值36.1),贫铁镁。CaO和P2O5含量分别为0.43%~0.76%和0.23%~0.28%,在SiO2−P2O5图解上SiO2与P2O5的含量呈明显的正相关(图7d),显示S型花岗岩特征(王文龙等,2017)。这些主量元素特征表明,洞上产铀花岗岩属高钾钙碱性系列过铝质花岗岩,与华南壳源重熔型(S型)花岗岩主量元素特征一致(凌洪飞等,2006)。
图 7 洞上产铀花岗岩主量元素图解JL数据为文中分析结果,GF数据引自王迪(2017)a—SiO2−(K2O+Na2O)图(Middlemost,1994);b—SiO2−K2O图(Peccerillo and Taylor,1976);c—A/CNK−ANK图(Maniar and Piccoli,1989);d—SiO2−P2O5图Figure 7. Main element diagrams of the U-bearing granite in Dongshang deposit(a) SiO2–(K2O+Na2O) diagram (Middlemost, 1994); (b)SiO2–K2O diagram (Peccerillo and Taylor, 1976); (c) A/CNK–ANK diagram (Maniar and Piccoli, 1989); (d) SiO2–P2O5 diagram The JL data was analyzed for this article; The GF data was quoted from Wang (2017).3.3.2 微量元素特征
洞上产铀花岗岩富集Rb、U、Pb和Ta,亏损Ba、Sr和Nb、Ti,属低Ba、Sr花岗岩,是壳源物质低程度部分熔融的产物(Harris and Inger,1992)。微量元素蛛网图左侧隆起、右侧平缓(图8a),与华南壳源重熔型(S型)花岗岩微量元素特征一致(凌洪飞等,2006)。Zr、Nb、Ce和Y含量偏低,Zr+Nb+Ce+Y含量为57.0×10−6~136×10−6,远低于A型花岗岩中Zr+Nb+Ce+Y含量的下限(350×10−6,Whalen et al.,1987)。Nb/Ta比值2.14~5.79(平均值2.98)远小于正常花岗岩值(Nb/Ta=11),Zr/Hf比值26.4~44.8,有3个样品Zr/Hf比值40.7~44.8高于正常花岗岩值(Zr/Hf=33 ~ 40),说明该类岩浆演化过程中存在熔体与富挥发分流体的相互作用,使得Ta、Zr趋向富集而Nb、Hf相对亏损。U含量为8.44×10−6~35.9×10−6,整体大于8×10−6,属富铀花岗岩,与华南铀成矿省产铀花岗岩的特征一致。
图 8 洞上产铀花岗岩微量元素原始地幔标准化蛛网图及稀土元素球粒陨石标准化配分曲线(标准化数值引自Sun and McDonough (1989))JL数据为此研究分析结果,GF数据引自王迪(2017)a—微量元素原始地幔标准化蛛网图;b—稀土元素球粒陨石标准化配分曲线Figure 8. Primitive mantle-normalized trace element spider diagram and chondrite-normalized REE distribution pattern of the U-bearing granite in Dongshang deposit (normalized values after Sun and McDonough(1989))(a) Primitive mantle-normalized trace element spider diagram; (b) Chondrite-normalized REE distribution patternThe JL data was analyzed for this article; The GF data was quoted from Wang (2017).3.3.3 稀土元素特征
洞上产铀花岗岩ΣREE=21.6×10−6~50.7×10−6(平均值39.6×10−6),LREE/HREE=6.75~8.07(平均值7.51),(La/Yb)N=8.50~12.0(平均值10.1),明显富集轻稀土,亏损重稀土。(La/Sm)N=2.78~3.61(平均值3.13),轻稀土分馏明显;(Gd/Yb)N=1.86~2.32(平均值2.16),重稀土分馏较弱。球粒陨石标准化配分曲线呈现轻稀土配分曲线相对较陡而重稀土配分曲线相对平坦的特征(图8b);δEu=0.34~0.48(平均值0.39),Eu亏损较明显,与华南壳源重熔型(S型)花岗岩稀土元素特征一致(凌洪飞等,2006)。
4. 讨论
4.1 成岩时代
近些年,部分学者对甘坊岩体内铌钽锂等稀有金属矿产的赋矿围岩开展了锆石U−Pb定年,年龄介于147~141 Ma之间(王迪,2017;秦程,2018;刘莹,2019),并对花岗岩中含铀的铌铁矿族矿物开展U−Pb定年,年龄为144 Ma(刘莹,2019;Xie et al.,2019)。但是产铀花岗岩的形成时代尚未精确厘定。文章对洞上铀矿床产铀花岗岩中含铀副矿物−锆石和独居石开展LA−ICP−MS U−Pb定年,获得年龄为152~151 Ma(图5,图6),表明该花岗岩形成于晚侏罗世,是燕山早期酸性岩浆上侵的产物。
4.2 源区性质与岩石成因
洞上产铀花岗岩室内定名为中粗粒斑状黑(二)云母花岗岩,高硅(w(SiO2)>70%)、富铝(A/CNK>1.1),属高钾钙碱性系列花岗岩;在A/CNK−A/NK、SiO2−P2O5图解(图7c、7d)以及(Zr+Nb+Ce+Y)−(K2O+Na2O)/CaO和(Zr+Ce+Y)−(Rb/Ba)图解上(图9a、9b)大都投点于或靠近S型花岗岩区。
图 9 洞上产铀花岗岩岩石类型判别图解FG—酸性花岗岩;OGT—未发生分异花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—(Zr+Nb+Ce+Y)−((K2O+Na2O)/Ca2O)图解(底图引自Whalen et al.(1987));b—(Zr+Ce+Y)−(Rb/Ba)图解(底图引自Whalen et al.(1987))Figure 9. Discrimination diagrams for the rock-type of the U-bearing granite in Dongshang deposit(a) (Zr+Nb+Ce+Y)–((K2O+Na2O)/Ca2O) diagram (Schema from Whalen et al.(1987)); (b) (Zr+Ce+Y)–(Rb/Ba) diagram (Schema from Whalen et al.(1987))过铝质花岗岩的CaO/Na2O>0.3,暗示源区物质富含斜长石;CaO/Na2O<0.3,暗示源区物质富黏土矿物(Sylvester,1998;兰鸿锋等,2016)。洞上产铀花岗岩CaO/Na2O=0.13~0.20<0.3,表明其源区物质主要是富黏土矿物的泥质岩石,与Rb/Sr−Rb/Ba和(Na2O+K2O)/(MgO+FeOT+TiO2)−(Na2O+K2O+MgO+FeOT+TiO2)图解中该类花岗岩投点于“富黏土源区−泥岩”区和“富白云母的变泥质岩”区的结果一致(图10),暗示其源区物质可能是在大陆稳定区经历强烈地壳化学风化和较弱物理剥蚀的贫斜长石的黏土泥质岩(兰鸿锋等,2016)。
图 10 洞上产铀花岗岩源区属性判别图解JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb/Sr−Rb/Ba图解(底图引自Sylvester(1998));b—NK/MFT−NKMFT图解(底图引自Lee et al.(2003))Figure 10. Discrimination diagrams for the source characteristics of the U-bearing granite in Dongshang deposit(a) Rb/Sr–Rb/Ba diagram (Schema from Sylvester (1998)); (b) NK/MFT–NKMFT diagram (Schema from Lee et al. (2003))岩石和矿物的微量元素含量在岩浆演化过程中变化明显,是推演构造−岩浆作用等地质过程的有效示踪剂(赵振华,1992;Zhao and Zhou,1997;王涛等,2019;郭小飞等,2022)。洞上产铀花岗岩具有较高的Rb/Sr和Rb/Nb比值,平均值分别为12.6和32.4,暗示其源岩为成熟度较高的陆壳物质。Rb/Sr和Rb/Ba比值与SiO2含量呈弱的正相关关系,暗示该类花岗质岩浆经历了较强的结晶分异演化。重稀土元素弱分异,(Gd/Yb)N=1.86~2.32,暗示岩浆源区较深。负Eu异常明显,δEu=0.34~0.48,暗示岩浆演化过程中存在较强的斜长石分离结晶或者源区物质为贫斜长石的黏土泥质岩(陈迪等,2022)。
结合洞上产铀花岗岩所在的甘坊岩体周缘出露新元古界双桥山群安乐林组,岩石组合以变余粉砂岩、砂岩和板岩夹灰黑色炭质板岩为主,分析认为该类花岗岩可能是上地壳富铝的浅变质岩系(双桥山群)在减压增温的条件下部分熔融的产物。
4.3 成岩构造背景
华南中生代花岗岩的成因主要是地壳物质的部分熔融,地幔物质参与较少,并且大规模印支—燕山期岩浆上侵的动力学背景是从挤压−伸展转向后碰撞阶段的拉张环境,表现为多阶段多幕次脉动式活动的特点(谭俊等,2007;王莉娟等,2013;郭春丽等,2014;孙建东等,2022)。燕山运动被划分出造山的主挤压(165~145 Ma)、过渡(145~130 Ma)、主伸展(130~110 Ma)、次挤压(110~90 Ma)和再伸展(90~80 Ma)等多个阶段(董树文等,2007;张岳桥等,2007;项新葵等,2015a,2015b)。燕山早期江南造山带再次活化,构造−岩浆活动背景由先挤压转向拉张−伸展(毛景文等,2011),构造应力场的转换利于幔源物质上涌,进而诱发九岭地区壳源物质发生重熔,形成过铝质中酸性、酸性岩浆。
洞上产铀花岗岩在Rb–(Y+Nb)和Ta–Yb图解上投点于同碰撞花岗岩区,靠近后碰撞花岗岩区(图11),表明该花岗岩是燕山早期主挤压阶段(165±5~145 Ma)九岭地区新元古界双桥山群富白云母的变泥质岩在碰撞造山的背景下经不同程度部分熔融形成的酸性岩浆,沿东西向、北东向断裂上侵、冷凝的产物(毛景文等,2008)。
图 11 洞上产铀花岗岩构造环境判别图解syn-COLG—同碰撞花岗岩;WPG—板内花岗岩;post-COLG—后碰撞花岗岩;VAG—火山弧花岗岩;ORG—洋脊花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb–(Y+Nb)图解(底图引自Pearce(1996));b—Ta–Yb图解(底图引自Pearce(1996))Figure 11. Discrimination diagrams for the tectonic environment of the U-bearing granite in Dongshang deposit(a) Rb–(Y+Nb) diagram (Schema from Pearce (1996)); (b)Ta–Yb diagram (Schema from Pearce (1996))4.4 铀成矿潜力分析
花岗岩中锆石的高U含量、低Th/U比值是判别产铀与非产铀花岗岩的有效依据之一(陈振宇和王登红,2014)。洞上产铀花岗岩JL2020-7样品中28颗锆石的U、Th含量均变化较大,U含量为135×10−6~5890×10−6(平均值1456×10−6>1000×10−6),Th含量为102×10−6~1980×10−6,Th/U比值平均为0.53(接近0.52;表3),与产铀花岗岩的锆石特征一致。在CaO/Na2O–Al2O3/TiO2图解中,洞上产铀花岗岩与诸广花岗岩型铀矿集区产铀的长江岩体和桃山铀矿田产铀的打鼓寨岩体均投点于产铀花岗岩区(图12)。
在《花岗岩型铀矿找矿指南(EJ/T976—96)》(中国核工业总公司,1996)中,产铀花岗岩是指产有铀矿床和具有潜在铀资源的花岗岩,地质特征包括地壳成熟度高、基底岩石铀含量高、多阶段岩浆活动、酸性和中基性岩脉发育、断裂发育、白云母化和碱交代作用强烈、铀场和γ场不均匀、出现偏高场等,属壳源重熔型(S型)花岗岩;副矿物以钛铁矿系列为主,富硅(SiO2含量为70%~75%),富碱(K2O+Na2O含量为7%~9%),铝过饱和(A/CNK>1.10),钾大于钠,铷锶初始比大于0.710,富含U(含量>8×10−6)、Rb、Cs、Li、Be、W、Sn、Ta和F等元素,Rb/Sr比值高,Th/U比值小于3,轻稀土富集,铕负异常明显,锆石铀含量高。
洞上产铀花岗岩Rb/Sr比值(平均值12.6)和Rb/Nb比值(平均值32.4)高,CaO/Na2O(平均值0.17)<0.3,暗示其源自成熟度较高的陆壳物质,且源区物质以富黏土的泥质岩为主。该花岗岩所处的甘坊岩体是燕山期早晚2期共3阶段7次中酸性—酸性岩浆脉动式活动的产物。岩体内北东、北北东向硅化断裂发育,自变质蚀变以白云母化为主,沿断裂常见赤铁矿化、硅化、水云母化、萤石化等热液蚀变。并且,该花岗岩是过铝质高钾钙碱性S型花岗岩,显微镜下见磷灰石、锆石、独居石等副矿物,富硅(SiO2平均含量73.9%)、富碱(K2O+Na2O平均含量7.95%)、铝过饱和(A/CNK平均值1.22)、钾大于钠(K2O/Na2O平均值1.20),富含U(U平均含量20.5×10−6)、Rb、Cs、Li、Be、W、Sn、Ta和F等元素,钍铀比值(平均值0.31)小于3,轻稀土富集(LREE/HREE平均值7.51)、铕负异常明显(δEu平均值0.39),锆石U(平均含量1456×10−6)高。这些地球化学组分特征与诸广花岗岩型铀矿集区产铀的长江岩体和桃山铀矿田产铀的打鼓寨岩体的地球化学组分特征一致(表4),表明该花岗岩具有提供铀源的条件与潜力。
表 4 洞上产铀花岗岩、长江岩体、打鼓寨岩体岩石地球化学组分对比表Table 4. Comparison table of petrogeochemical components of Dongshang U-bearing granite, Changjiang granite and Daguzhai granite岩体 SiO2/% K2O+Na2O/% K2O/Na2O CaO/Na2O A/CNK ∑REE/(×10−6) LREE/HREE δEu 长江 74.00 8.22 1.81 0.31 1.11 197.0 7.38 0.21 洞上 73.90 7.95 1.20 0.17 1.22 39.6 7.51 0.39 打鼓寨 73.20 8.39 1.69 0.22 1.22 205.0 4.43 0.33 岩体 (Zr+Nb+Ce+Y)/(×10−6) Zr/Hf Rb/Sr U/(×10−6) Th/U 锆石U/(×10−6) 锆石Th/(×10−6) 锆石Th/U 长江 252.00 24.60 10.50 18.00 2.22 2453 1084 0.75 洞上 107.00 36.90 12.60 20.50 0.31 2592 660 0.49 打鼓寨 249.00 33.20 6.75 19.50 2.45 68348 33230 0.48 注:打鼓寨岩体数据引自徐勋胜等(2021),长江岩体数据引自田泽瑾(2014) 5. 结论
(1)洞上产铀花岗岩为中粗粒斑状黑(二)云母花岗岩,锆石和独居石U-Pb年龄分别为152±1 Ma和151±2 Ma,年龄在误差范围内一致,表明该花岗岩是燕山早期酸性岩浆上侵的产物。
(2)洞上产铀花岗岩富硅、高碱、富钾贫钠、高铝、低钛、贫铁镁,微量元素Ba、Sr、Nb、Ti亏损、Rb、U、Pb、Ta富集,轻稀土富集且分馏明显,属高钾钙碱性过铝质S型花岗岩,是燕山早期同碰撞造山的主挤压阶段九岭地区新元古界双桥山群安乐林组富白云母的变泥质岩部分熔融的产物。
(3)洞上产铀花岗岩与产铀的长江岩体、打鼓寨岩体具有相似的岩石地球化学特征,富铀、Rb/Sr比值高、Th/U比值小于3、锆石铀含量高等指示其为产铀花岗岩,具有提供铀源的条件与潜力。
-
图 1 九岭地区大地构造位置及铀矿地质简图
1—第四系;2—古近系;3—上白垩统;4—奥陶系;5—寒武系;6—下南华统;7—新元古界双桥山群;8—晋宁期花岗岩;9—燕山早期第一阶段花岗岩;10—燕山早期第二阶段花岗岩;11—燕山晚期花岗岩;12—细晶岩脉、花岗斑岩脉;13—推滑覆断层、剥离断层;14—断裂构造;15—不整合界线;16—地质界线;17—岩相界线;18—铀矿床及名称a—大地构造位置简图(张勇,2018);b—铀矿地质简图
Figure 1. Geotectonic location map and uranium geological map of Jiuling area
(a) Geotectonic location map (Zhang, 2018); (b) Uranium geological map 1–Quaternary; 2–Paleogene; 3–Upper Cretaceous; 4–Ordovician; 5–Cambrian; 6–Lower Nanhuan System; 7–Neoproterozoic Shuangqiaoshan Group; 8–Granite of Jinning Period; 9–Granite of first stage in Early Yanshanian; 10–Granite of second stage in Early Yanshanian; 11–Granite of Late Yanshanian; 12–fine-grain dike or ranite-porphyry vein; 13–nappe structure; 14–fault structure; 15–unconformity; 16–geological boundary; 17–lithologic interface; 18–uranium deposit
图 2 洞上地区铀矿地质简图(据周建廷等,2011;秦程,2018修编)
1—新元古界双桥山群;2—晋宁期花岗闪长岩;3—晋宁期二长花岗岩;4—燕山早期第一阶段花岗岩;5—燕山早期第二阶段花岗岩;6—燕山晚期第一阶段花岗岩;7—细晶岩脉、花岗斑岩脉;8—断裂构造;9—地质界线、岩相界线;10—铀矿床及名称;11—取样位置及编号
Figure 2. Uranium geological map of Dongshang deposit(modified after Zhou et al., 2011; Qin, 2018)
1–Neoproterozoic Shuangqiaoshan Group; 2–granodiorite of Jinning Period; 3–monzonitic granite of Jinning Period; 4–granite of first stage in Early Yanshanian; 5–granite of second stage in Early Yanshanian; 6–granite of Late Yanshanian; 7–fine-grain dike or ranite-porphyry vein; 8–fault structure; 9–geological boundary or lithologic interface; 10–uranium deposit; 11–sampling point and number
图 3 洞上产铀花岗岩岩石学特征
Qtz—石英;Pl—斜长石;Ms—白云母;Chl—绿泥石;Kfs—钾长石a—浅肉红色中粗粒斑状黑(二)云母花岗岩;b—似斑状结构,图中石英斑晶超出视域(+);c—斜长石被白云母交代,绿泥石呈黑云母假晶(+);d—绿泥石和白云母组成黑云母的假晶(+);e—野外露头,发育钾长石化、褐铁矿化;f—岩石手标本,见钾长石化、水云母化
Figure 3. Petrological characteristics of the U-bearing granite in Dongshang deposit
(a) medium-coarse biotite granite; (b) orphyritic texture (+); (c) muscovitize (+); (d) chloritization and muscovitize (+); (e) K-alferation and ferritization of geological outcrop; (f) K-alferation and hydromicazation of hand specimens
图 7 洞上产铀花岗岩主量元素图解
JL数据为文中分析结果,GF数据引自王迪(2017)a—SiO2−(K2O+Na2O)图(Middlemost,1994);b—SiO2−K2O图(Peccerillo and Taylor,1976);c—A/CNK−ANK图(Maniar and Piccoli,1989);d—SiO2−P2O5图
Figure 7. Main element diagrams of the U-bearing granite in Dongshang deposit
(a) SiO2–(K2O+Na2O) diagram (Middlemost, 1994); (b)SiO2–K2O diagram (Peccerillo and Taylor, 1976); (c) A/CNK–ANK diagram (Maniar and Piccoli, 1989); (d) SiO2–P2O5 diagram The JL data was analyzed for this article; The GF data was quoted from Wang (2017).
图 8 洞上产铀花岗岩微量元素原始地幔标准化蛛网图及稀土元素球粒陨石标准化配分曲线(标准化数值引自Sun and McDonough (1989))
JL数据为此研究分析结果,GF数据引自王迪(2017)a—微量元素原始地幔标准化蛛网图;b—稀土元素球粒陨石标准化配分曲线
Figure 8. Primitive mantle-normalized trace element spider diagram and chondrite-normalized REE distribution pattern of the U-bearing granite in Dongshang deposit (normalized values after Sun and McDonough(1989))
(a) Primitive mantle-normalized trace element spider diagram; (b) Chondrite-normalized REE distribution patternThe JL data was analyzed for this article; The GF data was quoted from Wang (2017).
图 9 洞上产铀花岗岩岩石类型判别图解
FG—酸性花岗岩;OGT—未发生分异花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—(Zr+Nb+Ce+Y)−((K2O+Na2O)/Ca2O)图解(底图引自Whalen et al.(1987));b—(Zr+Ce+Y)−(Rb/Ba)图解(底图引自Whalen et al.(1987))
Figure 9. Discrimination diagrams for the rock-type of the U-bearing granite in Dongshang deposit
(a) (Zr+Nb+Ce+Y)–((K2O+Na2O)/Ca2O) diagram (Schema from Whalen et al.(1987)); (b) (Zr+Ce+Y)–(Rb/Ba) diagram (Schema from Whalen et al.(1987))
图 10 洞上产铀花岗岩源区属性判别图解
JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb/Sr−Rb/Ba图解(底图引自Sylvester(1998));b—NK/MFT−NKMFT图解(底图引自Lee et al.(2003))
Figure 10. Discrimination diagrams for the source characteristics of the U-bearing granite in Dongshang deposit
(a) Rb/Sr–Rb/Ba diagram (Schema from Sylvester (1998)); (b) NK/MFT–NKMFT diagram (Schema from Lee et al. (2003))
图 11 洞上产铀花岗岩构造环境判别图解
syn-COLG—同碰撞花岗岩;WPG—板内花岗岩;post-COLG—后碰撞花岗岩;VAG—火山弧花岗岩;ORG—洋脊花岗岩;JL数据为文中分析结果,GF数据引自王迪(2017)a—Rb–(Y+Nb)图解(底图引自Pearce(1996));b—Ta–Yb图解(底图引自Pearce(1996))
Figure 11. Discrimination diagrams for the tectonic environment of the U-bearing granite in Dongshang deposit
(a) Rb–(Y+Nb) diagram (Schema from Pearce (1996)); (b)Ta–Yb diagram (Schema from Pearce (1996))
表 1 洞上产铀花岗岩锆石LA–ICP–MS U–Pb定年分析结果
Table 1. Data of LA–ICP–MS zircon U–Pb dating of the U-bearing granite in Dongshang deposit
测点号 含量/(×10−6) 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ JL2020-7-02 16 237 691 0.0511 0.0010 0.1715 0.0035 0.0244 0.0002 244 40 161 3 155 1 JL2020-7-03 39 531 5890 0.0507 0.0003 0.1676 0.0013 0.0240 0.0001 227 16 157 1 153 1 JL2020-7-05 58 792 2140 0.0520 0.0005 0.1707 0.0025 0.0238 0.0003 287 22 160 2 152 2 JL2020-7-08 28 434 510 0.0499 0.0013 0.1642 0.0039 0.0239 0.0002 192 50 154 3 152 1 JL2020-7-11 127 1980 3700 0.0564 0.0009 0.1910 0.0040 0.0245 0.0002 470 33 177 3 156 2 JL2020-7-13 15 234 632 0.0484 0.0021 0.1600 0.0070 0.0240 0.0005 118 85 151 6 153 3 JL2020-7-15 14 192 725 0.0488 0.0008 0.1601 0.0026 0.0238 0.0002 139 33 151 2 152 1 JL2020-7-16 80 1022 3380 0.0531 0.0009 0.1776 0.0029 0.0243 0.0002 332 36 166 3 155 1 JL2020-7-17 22 295 607 0.0493 0.0009 0.1611 0.0031 0.0237 0.0002 163 38 152 3 151 1 JL2020-7-18 14 132 270 0.0660 0.0027 0.2240 0.0095 0.0246 0.0003 805 85 205 8 157 2 JL2020-7-19 12 179 225 0.0503 0.0016 0.1635 0.0049 0.0236 0.0003 207 60 154 5 150 2 JL2020-7-20 8 111 196 0.0514 0.0017 0.1700 0.0055 0.0240 0.0002 260 60 159 5 153 1 JL2020-7-23 26 384 523 0.0485 0.0014 0.1591 0.0046 0.0238 0.0002 123 60 150 4 152 1 JL2020-7-25 37 494 4680 0.0523 0.0007 0.1725 0.0025 0.0239 0.0003 298 31 162 2 152 2 JL2020-7-28 10 102 135 0.0696 0.0032 0.2390 0.0090 0.0249 0.0008 917 95 218 8 159 5 JL2020-7-31 23 310 361 0.0577 0.0015 0.1950 0.0050 0.0245 0.0003 520 55 181 4 156 2 JL2020-7-32 28 418 909 0.0496 0.0008 0.1629 0.0027 0.0238 0.0002 177 34 153 2 152 1 JL2020-7-33 24 308 720 0.0498 0.0010 0.1641 0.0034 0.0239 0.0002 187 42 154 3 152 1 JL2020-7-34 21 325 360 0.0508 0.0017 0.1670 0.0055 0.0239 0.0003 231 65 157 5 152 2 JL2020-7-35 11 125 333 0.0517 0.0029 0.1680 0.0095 0.0236 0.0003 273 120 158 9 150 2 JL2020-7-36 112 1560 3480 0.0562 0.0010 0.1883 0.0029 0.0243 0.0004 461 36 175 3 155 2 JL2020-7-37 43 458 3260 0.0536 0.0028 0.1780 0.0095 0.0241 0.0007 353 120 166 8 154 4 JL2020-7-39 13 167 168 0.0544 0.0032 0.1770 0.0100 0.0236 0.0005 386 120 165 9 150 3 JL2020-7-40 16 196 492 0.0510 0.0017 0.1690 0.0055 0.0240 0.0003 241 70 159 5 153 2 JL2020-7-43 18 276 761 0.0491 0.0008 0.1617 0.0026 0.0239 0.0002 151 33 152 2 152 1 JL2020-7-50 26 341 229 0.0520 0.0026 0.1740 0.0100 0.0243 0.0004 286 110 163 9 155 3 JL2020-7-51 40 504 1550 0.0590 0.0012 0.1981 0.0037 0.0244 0.0002 567 46 184 3 155 1 JL2020-7-53 28 285 247 0.0606 0.0037 0.2030 0.0120 0.0243 0.0006 625 125 188 10 155 3 JL2020-7-54 20 265 5050 0.0517 0.0007 0.1711 0.0031 0.0240 0.0003 272 31 160 3 153 2 表 2 洞上产铀花岗岩独居石LA–ICP–MS U–Pb定年分析结果
Table 2. Data of LA–ICP–MS monaite U–Pb dating of the U-bearing granite in Dongshang deposit
测点号 含量/(×10−6) 同位素比值 年龄/Ma Th U 207Pb/235U 2σ 206Pb/238U 2σ 207Pb/235U 2σ 206Pb/238U 2σ JLD2020-7-01 191064 11305 0.1530 0.0095 0.0230 0.0007 145 8 147 5 JLD2020-7-03 176267 7805 0.1592 0.0096 0.0244 0.0007 150 8 156 5 JLD2020-7-04 179808 3833 0.1794 0.0176 0.0241 0.0008 168 15 153 5 JLD2020-7-05 179094 9668 0.1589 0.0095 0.0239 0.0007 150 8 152 5 JLD2020-7-07 217554 3884 0.1591 0.0132 0.0236 0.0007 150 12 151 5 JLD2020-7-09 185410 7891 0.1733 0.0103 0.0240 0.0008 162 9 153 5 JLD2020-7-10 185511 6457 0.1512 0.0086 0.0237 0.0007 143 8 151 5 JLD2020-7-13 187573 10423 0.1592 0.0088 0.0233 0.0006 150 8 148 4 JLD2020-7-15 161676 6801 0.1586 0.0123 0.0242 0.0007 149 11 154 5 JLD2020-7-16 181397 6335 0.1616 0.0096 0.0242 0.0007 152 8 154 5 JLD2020-7-17 88445 12300 0.1550 0.0089 0.0235 0.0007 146 8 150 4 JLD2020-7-18 182585 7128 0.1611 0.0104 0.0237 0.0006 152 9 151 4 JLD2020-7-19 180762 5964 0.1689 0.0132 0.0240 0.0007 158 11 153 5 JLD2020-7-21 187512 9102 0.1572 0.0096 0.0235 0.0006 148 8 150 4 JLD2020-7-24 131495 27231 0.1476 0.0069 0.0229 0.0007 140 6 146 4 JLD2020-7-02 104575 13748 0.4302 0.0349 0.0273 0.0009 363 25 174 6 JLD2020-7-11 231240 2392 0.8941 0.1181 0.0314 0.0013 649 63 199 8 JLD2020-7-20 177503 5259 0.7670 0.1135 0.0304 0.0014 578 65 193 9 JLD2020-7-22 176812 4865 0.2169 0.0160 0.0246 0.0008 199 13 156 5 表 3 洞上产铀花岗岩主量元素(%)、微量元素(×10−6)及稀土元素(×10−6)分析结果
Table 3. The analytical results major elements (%), trace elements (×10−6) and REEs (×10−6) of the U-bearing granite in Dongshang deposit
样号 JL2020-6 JL2020-7 JL2020-8 GF8-1 GF9-1 GF10-1 GF11-1 元素 中粗粒斑状黑(二)云母花岗岩 粗粒白云母花岗岩 SiO2 72.14 73.01 72.51 75.40 73.70 75.00 75.60 TiO2 0.15 0.16 0.16 0.13 0.16 0.17 0.07 Al2O3 15.17 14.93 14.97 13.50 14.30 14.00 13.60 FeOT 1.28 1.13 1.27 0.85 1.02 1.20 0.75 MnO 0.07 0.06 0.08 0.04 0.03 0.08 0.50 MgO 0.27 0.23 0.25 0.25 0.31 0.30 0.19 CaO 0.72 0.76 0.72 0.47 0.43 0.54 0.74 Na2O 3.78 3.82 3.55 3.47 3.36 3.51 3.78 K2O 4.65 4.44 4.49 4.01 4.77 3.75 4.25 P2O5 0.23 0.25 0.24 0.25 0.26 0.28 0.26 LOI 1.13 1.15 1.03 0.77 0.77 0.96 1.55 总量 99.60 99.96 99.30 99.10 99.60 99.76 100.76 K2O+Na2O 8.43 8.26 8.04 7.48 8.13 7.26 8.03 K2O/Na2O 1.23 1.16 1.26 1.16 1.42 1.07 1.12 CaO/Na2O 0.19 0.20 0.20 0.14 0.13 0.15 0.20 Al2O3/TiO2 101.13 93.31 93.56 103.85 89.38 82.35 194.29 A/CNK 1.21 1.20 1.25 1.24 1.25 1.29 1.12 A/NK 1.35 1.35 1.40 1.34 1.34 1.42 1.26 C/FM 0.47 0.56 0.47 0.43 0.32 0.36 0.79 A/FM 9.81 10.96 9.84 12.27 10.75 9.33 14.47 Rb 622.00 414.00 448.00 305.00 430.00 580.00 500.00 Sr 37.60 33.40 37.90 23.40 55.20 55.40 31.30 Y 8.50 8.58 8.37 4.30 9.63 11.40 4.73 Zr 90.00 90.00 90.00 35.60 59.90 72.80 29.30 Hf 2.01 2.12 2.21 1.07 1.69 2.08 1.11 Nb 16.70 17.10 16.70 8.30 12.10 20.90 12.90 Ta 7.41 7.39 7.51 3.07 2.09 6.07 6.03 Ba 96.70 84.50 102.00 42.80 99.70 83.00 76.70 Th 7.62 7.49 8.11 2.71 4.79 5.96 3.94 U 30.80 35.90 27.20 9.20 13.90 18.00 8.44 Pb 23.20 23.00 23.90 12.30 24.50 22.70 24.40 Ti 930.00 940.00 940.00 779.00 959.00 1019.00 420.00 P 999.00 1077.00 1038.00 1090.00 1134.00 1221.00 1134.00 Rb/Sr 16.50 12.40 11.80 13.00 7.79 10.50 16.00 Rb/Ba 6.43 4.90 4.39 7.13 4.31 6.99 6.52 Rb/Nb 37.20 24.20 26.80 36.70 35.50 27.80 38.80 Zr/Hf 44.80 42.50 40.70 33.30 35.40 35.00 26.40 Th/U 0.25 0.21 0.30 0.29 0.34 0.33 0.47 La 8.68 9.42 10.10 3.79 7.41 9.56 5.54 Ce 18.30 19.92 21.24 9.79 17.20 22.50 10.14 Pr 2.16 2.28 2.50 0.91 1.60 1.94 1.19 Nd 7.78 8.34 8.94 3.42 6.03 7.31 4.14 Sm 1.79 2.01 2.09 0.88 1.62 1.88 0.99 Eu 0.23 0.21 0.23 0.10 0.21 0.22 0.15 Gd 1.63 1.70 1.83 0.82 1.50 1.77 0.89 Tb 0.28 0.28 0.29 0.15 0.30 0.34 0.15 Dy 1.59 1.62 1.56 0.84 1.65 1.83 0.80 Ho 0.26 0.26 0.26 0.13 0.25 0.28 0.12 Er 0.67 0.68 0.69 0.36 0.64 0.74 0.35 Tm 0.09 0.09 0.09 0.05 0.09 0.11 0.05 Yb 0.61 0.61 0.81 0.32 0.54 0.70 0.33 Lu 0.08 0.08 0.08 0.05 0.08 0.10 0.05 ∑REE 44.16 47.49 50.69 21.61 39.12 49.28 24.85 LREE/HREE 7.47 7.92 8.01 6.94 6.75 7.40 8.07 δEu 0.41 0.34 0.35 0.35 0.40 0.36 0.48 (La/Yb)N 10.21 11.13 8.90 8.50 9.84 9.80 12.04 (La/Sm)N 3.13 3.03 3.12 2.78 2.95 3.28 3.61 (Gd/Yb)N 2.21 2.32 1.86 2.12 2.30 2.09 2.23 Zr+Nb+Ce+Y 739.00 523.00 558.00 419.00 532.00 676.00 706.00 表 4 洞上产铀花岗岩、长江岩体、打鼓寨岩体岩石地球化学组分对比表
Table 4. Comparison table of petrogeochemical components of Dongshang U-bearing granite, Changjiang granite and Daguzhai granite
岩体 SiO2/% K2O+Na2O/% K2O/Na2O CaO/Na2O A/CNK ∑REE/(×10−6) LREE/HREE δEu 长江 74.00 8.22 1.81 0.31 1.11 197.0 7.38 0.21 洞上 73.90 7.95 1.20 0.17 1.22 39.6 7.51 0.39 打鼓寨 73.20 8.39 1.69 0.22 1.22 205.0 4.43 0.33 岩体 (Zr+Nb+Ce+Y)/(×10−6) Zr/Hf Rb/Sr U/(×10−6) Th/U 锆石U/(×10−6) 锆石Th/(×10−6) 锆石Th/U 长江 252.00 24.60 10.50 18.00 2.22 2453 1084 0.75 洞上 107.00 36.90 12.60 20.50 0.31 2592 660 0.49 打鼓寨 249.00 33.20 6.75 19.50 2.45 68348 33230 0.48 注:打鼓寨岩体数据引自徐勋胜等(2021),长江岩体数据引自田泽瑾(2014) -
[1] China National Nuclear Corporation, 1996. Prospecting guidebook on granite-related uranium deposits: EJ/T 996—1996 [S]. Beijing: Nuclear Industry Standardization Institute: 1-67. (in Chinese) [2] CHEN D, LUO P, ZENG Z F, et al. , 2022. Petrogenesis and implications of the Dupangling compound granite in southern Hunan Province, China: Constraints from mineralogical chemistry, zircon U-Pb age, geochemistry and Nd-Hf isotope[J]. Journal of Geomechanics, 28(4): 617-641. (in Chinese with English abstract) [3] CHEN Z Y, WANG D H, 2014. The significance of Th, U contents and Th/U ratios of zircons in distinguishing uranium-producing and non-uranium-producing granites[J]. Mineral Deposits, 33(S1): 1159-1160. (in Chinese) DONG S W, ZHANG Y Q, LONG C X, et al. , 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 81(11): 1449-1461. (in Chinese with English abstract) [4] DOU X P, 2004. Genetic types of granitoids in eastern China and their relationship to uranium metallogenesis[J]. Uranium Geology, 20(6): 330-336. (in Chinese with English abstract) [5] DOU X P, XIONG C, DU X S, et al. , 2015. Study on uranium contents and the characteristics of migration enrichment in some granitic plutons of East China[J]. World Nuclear Geoscience, 32(3): 145-151. (in Chinese with English abstract) [6] DUAN Z, LIAO S B, CHU P L, et al. , 2019. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. Geology in China, 46(3): 493-516. (in Chinese with English abstract) [7] GUO C L, CHEN Z Y, LOU F S, et al. , 2014. Geochemical characteristics and genetic types of the W-Sn bearing Late Jurassic granites in the Nanling region[J]. Geotectonica et Metallogenia, 38(2): 301-311. (in Chinese with English abstract) [8] GUO X F,WANG Q L,JING Y H,et al, 2022.Zircon U-Pb Geochronology and Hf Isotope Characteristics of the Xihuashan Granites in Southern Jiangxi Province and Their Geological Significance[J].Geology and Exploration, 58(3):585-597.(in Chinese with English abstract) [9] HARRIS N B W, INGER S, 1992. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46-56. doi: 10.1007/BF00310881 [10] JIANG S Y, PENG N J, HUANG L C, et al. , 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province[J]. Acta Petrologica Sinica, 31(3): 639-655. (in Chinese with English abstract) [11] LAN H F, LING H F, SUN L Q, et al. , 2016. Study on petrogenesis and uranium mineralization potential of Taojindong granite in southern Zhuguangshan composite pluton[J]. Geological Journal of China Universities, 22(1): 12-29. (in Chinese with English abstract) [12] LEE S Y, BARNES C G, SNOKE A W, et al. , 2003. Petrogenesis of Mesozoic, Peraluminous granites in the Lamoille Canyon area, Ruby Mountains, Nevada, USA[J]. Journal of Petrology, 44(4): 713-732. doi: 10.1093/petrology/44.4.713 [13] LING H F, SHEN W Z, SUN T, et al. , 2006. Genesis and source characteristics of 22 Yanshanian granites in Guangdong province: study of element and Nd-Sr isotopes[J]. Acta Petrologica Sinica, 22(11): 2687-2703. (in Chinese with English abstract) [14] LIU Y, 2019. The mineralogical characteristics of the rare-metal granites in Jiuling district, Jiangxi province and the implication for the various metallogenic mechanism[D]. Nanjing University. (in Chinese with English abstract) [15] LIU Y S, HU Z C, GAO S, et al. , 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [16] LIU Y S, GAO S, HU Z C, et al. , 2010. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [17] LUDWIG K R, 2003. Isoplot/Ex, Version 3.00: a geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center. [18] MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [19] MAO J W, XIE G Q, GUO C L, et al. , 2008. Spatial-temporal distribution of Mesozoic Ore Deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510-526. (in Chinese with English abstract) [20] MAO J W, CHEN M H, YUAN S D, et al. , 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 85(5): 636-658. (in Chinese with English abstract) [21] MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9 [22] PEARCE J, 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005 [23] PECCERILLO A, TAYLOR S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745 [24] QIN C, 2018. Preliminary study of mineralization potentiality of Shiziling muscovite granite, Jiangxi province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) [25] SONG B, ZHANG Y H, WAN Y S, et al. , 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(S1): 26-30. (in Chinese with English abstract) [26] SUN J D,LI H L,LU F,et al, 2022.Geochemistry,Zircon U-Pb Ages,and Hf Isotopes of the Mengshan Rock Mass in Western Jiangxi Province and Their Geologic Implications[J].Geology and Exploration, 58(1):96-107. (in Chinese with English abstract) [27] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [28] SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3 [29] TAN J, WEI J H, LI Y J, et al. , 2007. Some reviews on diagenesis and metallogeny of the Mesozoic crustal remelting granitoids in the Nanling region[J]. Geological Review, 53(3): 349-362. (in Chinese with English abstract) [30] TIAN Z J, 2014. Uranium-bearing and barren granites from the Zhuguang mountain: geochronology, Element geochemistry, mineralogy comparison[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) [31] WANG D, 2017. Formation of huge granitic batholiths in Jiuling area of North Jiangxi province[D]. Nanjing: Nanjing University. (in Chinese with English abstract) [32] WANG L J, WANG J B, WANG Y Z, et al. , 2013. Geological characteristics of host granite intrusions of the W-Sn-Nb-Ta deposit, Nanling area, China[J]. Minerl Exploration, 4(6): 598-608. (in Chinese with English abstract) [33] WANG T, GUO L, LI S, et al. , 2019. Some important issues in the study of granite tectonics[J]. Journal of Geomechanics, 25(5): 899-919. (in Chinese with English abstract) [34] WANG W L, TENG X J, LIU Y, et al. , 2017. Zircon U-Pb chronology and geochemical characteristics of the Wuheertu granite mass in Langshan, Inner Mongolia[J]. Journal of Geomechanics, 23(3): 382-396. (in Chinese with English abstract) [35] WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202 [36] WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122 [37] XIANG X K, YIN Q Q, SUN K K, et al. , 2015a. Origin of the Dahutang syn-collisional granite-porphyry in the middle segment of the Jiangnan orogen: zircon U-Pb geochronologic, geochemical and Nd-Hf isotopic constraints[J]. Acta Petrologica et Mineralogica, 34(5): 581-600. (in Chinese with English abstract) [38] XIANG X K, YIN Q Q, FENG C Y, et al. , 2015b. Elements and fluids migration regularity of granodiorite alteration zones in the Shimensi tungsten polymetallic deposit in northern Jiangxi and their constrain on mineralization[J]. Acta Geologica Sinica, 89(7): 1273-1287. (in Chinese with English abstract) [39] XIAO Z B, WANG H C, KANG J L, et al. , 2017. U-Pb chronology, Hf isotope and geological implication of zircons from the Neoarchean quartzite in Changyi area, eastern Shandong[J]. Acta Petrologica Sinica, 33(9): 2925-2938. (in Chinese with English abstract) [40] XIE L, LIU Y, WANG R C, et al. , 2019. Li–Nb–Ta mineralization in the Jurassic Yifeng Granite-aplite intrusion within the Neoproterozoic Jiuling batholith, South China: a fluid-rich and Quenching Ore-forming process[J]. Journal of Asian Earth Sciences, 185(17): 104047. [41] XU X S, ZHANG H, WU Y, et al. , 2021. Disintegration of Daguzhai composite pluton in South Jiangxi and its geological implication[J]. Uranium Geology, 37(3): 398-405. (in Chinese with English abstract) [42] ZHANG D, LI F, HE X L, et al. , 2021. Mesozoic tectonic deformation and its rock / ore-control mechanism in the important metallogenic belts in South China[J]. Journal of Geomechanics, 27(4): 497-528. (in Chinese with English abstract) [43] ZHANG Y, PAN J Y, MA D S, et al. , 2017. Re-Os molybdenite age of Dawutang tungsten ore district of northwest Jiangxi and its geological significance[J]. Mineral Deposits, 36(3): 749-769. (in Chinese with English abstract) [44] ZHANG Y, 2018. Ore-forming fluid evolution and Sb-Au-W metallogenesis in the Central Hunan-northwestern Jiangxi, South China[D]. Nanjing: Nanjing University. (in Chinese with English abstract) [45] ZHANG Y, LIU N Q, PAN J Y, et al. , 2019. Multi-mineralization stages of the Shimengsi giant tungsten deposit of Northwest Jiangxi: the application of cumulative frequency distribution in tungsten ore genesis and ore prospecting[J]. Journal of East China University of Technology, 42(4): 334-341, 367. (in Chinese with English abstract) [46] ZHANG Y, PAN J Y, MA D S, et al. , 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: constraints from mineralogy and geochemistry of hydrothermal alteration[J]. Acta Geologica Sinica, 94(11): 3321-3342. (in Chinese with English abstract) [47] ZHANG Y Q, DONG S W, ZHAO Y, et al. , 2007. Jurassic tectonics of North China: a synthetic view[J]. Acta Geologica Sinica, 81(11): 1462-1480. (in Chinese with English abstract) [48] ZHAO F M, 2011. Research and evaluation of uranium deposits in China (volume IV): carbonaceous-siliceous-pelitic rock type uranium deposit[M]. Beijing: China Nuclear Geology. (in Chinese) [49] ZHAO Z H, 1992. Trace element geochemical[J]. Advances in Earth Science, 7(5): 65-66. (in Chinese) [50] ZHAO Z H, ZHOU L D, 1997. REE geochemistry of some alkali-rich intrusive rocks in China[J]. Science in China Series D: Earth Sciences, 40(2): 145-158. doi: 10.1007/BF02878373 [51] ZHOU J T, WANG G B, HE S F, et al. , 2011. Diagenesis and mineralization of Ganfang rock in Yifeng, Jiangxi province[J]. Journal of East China Institute of Technology, 34(4): 345-351, 358. (in Chinese with English abstract) [52] 陈迪, 罗鹏, 曾志方, 等, 2022. 湘南都庞岭复式花岗岩成因及地质意义: 矿物化学、锆石U-Pb年代学、地球化学与Nd-Hf同位素制约[J]. 地质力学学报, 28(4): 617-641. [53] 陈振宇, 王登红, 2014. 锆石Th、U含量和Th/U比值对产铀、不产铀花岗岩体的判别意义[J]. 矿床地质, 33(S1): 1159-1160. [54] 董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449-1461. [55] 窦小平, 2004. 华东地区花岗岩类成因类型及其与铀成矿的关系[J]. 铀矿地质, 20(6): 330-336. [56] 窦小平, 熊超, 杜兴胜, 等, 2015. 华东地区部分花岗岩体铀含量及迁移富集特征研究[J]. 世界核地质科学, 32(3): 145-151. [57] 段政, 廖圣兵, 褚平利, 等, 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 46(3): 493-516. [58] 郭春丽, 陈振宇, 楼法生, 等, 2014. 南岭与钨锡矿床有关晚侏罗世花岗岩的成矿专属性研究[J]. 大地构造与成矿学, 38(2): 301-311. [59] 郭小飞,王庆龙,荆一洪,等, 2022.赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义[J].地质与勘探, 58(3):585-597. [60] 蒋少涌, 彭宁俊, 黄兰椿, 等, 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨[J]. 岩石学报, 31(3): 639-655. [61] 兰鸿锋, 凌洪飞, 孙立强, 等, 2016. 诸广山南体桃金洞花岗岩成因和铀成矿潜力探讨[J]. 高校地质学报, 22(1): 12-29. [62] 凌洪飞, 沈渭洲, 孙涛, 等, 2006. 广东省22个燕山期花岗岩的源区特征及成因: 元素及Nd-Sr同位素研究[J]. 岩石学报, 22(11): 2687-2703. [63] 刘莹, 2019. 江西九岭地区稀有金属花岗岩矿物学特征与成矿机制差异性研究[D]. 南京大学. [64] 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 14(4): 510-526. [65] 毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 85(5): 636-658. [66] 秦程, 2018. 江西宜丰狮子岭白云母花岗岩成矿潜力研究[D]. 北京: 中国地质大学(北京). [67] 宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26-30. [68] 孙建东, 李海立, 陆凡, 等, 2022.赣西蒙山岩体地球化学、锆石U-Pb年龄、Hf同位素特征及地质意义[J].地质与勘探, 58(1):96-107. [69] 谭俊, 魏俊浩, 李艳军, 等, 2007. 南岭中生代陆壳重熔型花岗岩类成岩成矿的有关问题[J]. 地质论评, 53(3): 349-362. [70] 田泽瑾, 2014. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究[D]. 北京: 中国地质大学(北京). [71] 王迪, 2017. 赣北九岭地区巨型复式花岗岩基的形成[D]. 南京: 南京大学. [72] 王莉娟, 王京彬, 王玉往, 等, 2013. 我国南岭地区钨锡铌钽矿床成矿花岗岩主要地质特征[J]. 矿产勘查, 4(6): 598-608. [73] 王涛, 郭磊, 李舢, 等, 2019. 花岗岩大地构造研究的若干重要问题[J]. 地质力学学报, 25(5): 899-919. [74] 王文龙, 滕学建, 刘洋, 等, 2017. 内蒙古狼山乌和尔图花岗岩岩体锆石U-Pb年代学及地球化学特征[J]. 地质力学学报, 23(3): 382-396. [75] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. [76] 项新葵, 尹青青, 孙克克, 等, 2015a. 江南造山带中段大湖塘同构造花岗斑岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石矿物学杂志, 34(5): 581-600. [77] 项新葵, 尹青青, 丰成友, 等, 2015b. 赣北石门寺钨多金属矿床花岗闪长岩蚀变带元素、流体迁移规律及其对成矿作用的制约[J]. 地质学报, 89(7): 1273-1287. [78] 肖志斌, 王惠初, 康健丽, 等, 2017. 胶东昌邑地区新太古代石英岩的锆石U-Pb年代学和Hf同位素特征及其地质意义[J]. 岩石学报, 33(9): 2925-2938. [79] 徐勋胜, 张鸿, 吴勇, 等, 2021. 赣南打古寨复式花岗岩体的解体及其地质意义[J]. 铀矿地质, 37(3): 398-405. [80] 张达, 李芳, 贺晓龙, 等, 2021. 华南重要成矿区带中生代构造变形及其控岩控矿机理[J]. 地质力学学报, 27(4): 497-528. [81] 张勇, 潘家永, 马东升, 等, 2017. 赣西北大雾塘钨矿区地质特征及Re-Os同位素年代学研究[J]. 矿床地质, 36(3): 749-769. [82] 张勇, 2018. 湘中-赣西北成矿流体演化与Sb-Au-W成矿[D]. 南京: 南京大学. [83] 张勇, 刘南庆, 潘家永, 等, 2019. 赣西北石门寺超大型钨矿床多期成矿作用: 累积概率格纸在钨矿成因及找矿中的应用[J]. 东华理工大学学报(自然科学版), 42(4): 334-341, 367. [84] 张勇, 潘家永, 马东升, 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示[J]. 地质学报, 94(11): 3321-3342. [85] 张岳桥, 董树文, 赵越, 等, 2007. 华北侏罗纪大地构造: 综评与新认识[J]. 地质学报, 81(11): 1462-1480. [86] 赵凤民, 2011. 中国铀矿床研究评价(第四卷): 碳硅泥岩型铀矿床[M]. 北京: 中国核工业地质局. [87] 赵振华, 1992. 微量元素地球化学[J]. 地球科学进展, 7(5): 65-66. [88] 中国核工业总公司, 1996. 花岗岩型铀矿找矿指南: EJ/T 976—1996[S]. 北京: 核工业标准化研究所: 1-67. [89] 周建廷, 王国斌, 何淑芳, 等, 2011. 江西宜丰地区甘坊岩体成岩成矿作用分析[J]. 东华理工大学学报(自然科学版), 34(4): 345-351, 358. 期刊类型引用(1)
1. 肖述刚,徐恒,常国虎,余莉,王宗元,张忠明,张俊学,汤俊,卢楠迪,杨文坚. 云南个旧阳山地区淡色花岗岩成因与成矿效应:岩石地球化学和独居石U-Pb年代学方面的制约. 矿物岩石. 2024(04): 41-57 . 百度学术
其他类型引用(0)
-