Discovery of Permian tuff from the northern margin of the Qaidam Basin and its geological implications
-
摘要:
柴达木盆地北缘地区是否存在早二叠世沉积记录依旧是一个悬而未决的问题。现有区域地质资料普遍认为二叠系并未沉积或已完全被剥蚀。这分歧起源于对现有的古生物化石形成年代认识的不同。此次研究对柴达木盆地北缘东段旺尕秀地区的石炭系克鲁克组和扎布萨尕秀组开展详细的野外地质调查和剖面实测工作,在东大沟剖面扎布萨尕秀组底部鉴别出数层凝灰岩,并采集锆石U-Pb年代学样品。通过锆石LA-ICP-MS U-Pb测年,首次获得295±2 Ma(MSWD=0.035)的高质量年代学数据。此次发表的数据,明确了柴达木盆地北缘早二叠世沉积地层的存在。该研究成果为后续柴达木二叠系含油气系统勘探提供了重要的基础地质资料支撑,并为今后开展石炭纪—二叠纪全球气候变化、海平面升降等方面的研究工作提供了重要的年代学约束。
Abstract:Whether the Permian sedimentary records are still preserved in the northern Qaidam Basin is an open issue with various viewpoints. Most regional geological correlations imply that those Permian successions have been wholly eroded or that there is no Permian deposition in this area. These arguments were partly derived from the contrasting interpretations of the age of the fossils obtained from the Zhabusagaxiu formation. Other scholars consider that the lower unit of the Zhabusagaxiu formation, composed of alternating sandstone, mudstone, and limestone, belongs to the Carboniferous. In contrast, its upper limestone member should be assigned an early Permian sedimentary age, hinting that Permian successions are preserved in the northern Qaidam Basin. Therefore, it is still unclear whether the Permian sedimentary records are still preserved in the northern Qaidam Basin. In this study, the Keluke and Zhabusagaxiu formations in the Wanggaxiu-Dongdagou section were investigated in the field and measured in detail, and several volcanic tuff interbeddings were identified. Zircon LA-ICP-MS U-Pb geochronological studies were undertaken on zircons retrieved from a collected tuff sample. A high-precision weighted mean age of 295±2 Ma(MSWD=0.035)was obtained for the first time. This firstly reported age estimate solidly constrains the existence of the Permian strata in the northern Qaidam Basin. This clue will provide new insight into the following oil-gas exploration concerning the Permian successions and also provide a crucial limit on the studies of Carboniferous-Permian global climate change and sea level change.
-
Key words:
- early Permian /
- Zhabusagaxiu formation /
- zircon geochronology /
- northern Qaidam /
- tuff
-
图 1 柴达木盆地北缘区域地质简图(据Sun et al., 2022修改);
a—中国大陆地区大地构造纲要图; b—柴达木盆地东北部区域大地构造简图
Figure 1. Simplified geological map of the northern margin of the Qaidam Basin (modified from Sun et al., 2022)
(a) Sketch tectonic map of mainland China; (b) Geologic map of the northeastern Qaidam Basin
图 2 柴达木盆地北缘典型石炭系—二叠系剖面地层柱状图(剖面位置见图 1;据Sun et al., 2022修改)
Figure 2. Stratigraphic columns for representative sections in the northern Qaidam Basin (The profiles are shown in Fig. 1; modified from Sun et al., 2022)
图 3 旺尕秀地区地质简图及旺尕秀剖面地层剖面简图(据青海省地质矿产局,1991修改)
Figure 3. Simplified geologic map of the Wanggaxiu area and stratigraphic profile of the Wanggaxiu section (modified from Qinghai Bureau of Geology and Mineral Resources, 1991)
图 4 旺尕秀剖面野外及样品镜下照片
a—旺尕秀剖面扎布萨尕秀组下部岩石组合特征及样品WGXPV1采样位置(红色星号,镜向220°); b、c—镜下照片(正交偏光)
Figure 4. Photos of Wanggaxiu section in the field and samples under microscope
(a) Lithological association of the lower section of the Zhabusagaxiu formation at the Wangaxiu section with a red star showing the position of the Sample WFXPV1, Lens direction 220°; (b and c) Petrology of the Sample WFXPV1 under microscope sing circular polarization
表 1 旺尕秀地区下二叠统凝灰岩锆石LA-ICP-MS U-Pb同位素分析数据
Table 1. LA-ICP-MS U-Pb dating data of zircons from a tuff of the Lower Permian in the Wanggaxiu area
编号 元素含量/×10-6 Th/U 同位素比值 同位素年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 谐和度 1 8.1 96.2 124.1 0.8 0.0539 0.0023 0.3489 0.0151 0.0469 0.0011 368 94 304 11 296 7 97% 2 10.1 131.8 155.1 0.8 0.0526 0.0023 0.3365 0.0147 0.0464 0.0011 313 97 295 11 292 7 99% 3 27.3 496.6 372.7 1.3 0.0528 0.0018 0.3398 0.0114 0.0467 0.0010 318 74 297 9 295 6 99% 4 16.1 218.8 240.6 0.9 0.0528 0.0019 0.3423 0.0124 0.0471 0.0011 319 81 299 9 296 6 99% 5 6.8 102.3 98.5 1.0 0.0527 0.0029 0.3377 0.0186 0.0465 0.0011 315 122 295 14 293 7 99% 6 10.5 137.7 158.6 0.9 0.0540 0.0024 0.3490 0.0154 0.0469 0.0011 371 96 304 12 295 7 97% 7 13.5 241.8 193.2 1.3 0.0510 0.0040 0.3263 0.0249 0.0464 0.0013 240 170 287 19 293 8 98% 8 9.9 140.5 143.3 1.0 0.0523 0.0022 0.3410 0.0141 0.0473 0.0011 300 92 298 11 298 7 100% 9 10.8 102.5 172.7 0.6 0.0544 0.0021 0.3527 0.0137 0.0471 0.0011 386 84 307 10 296 6 97% 10 15.9 175.3 249.3 0.7 0.0523 0.0016 0.3367 0.0106 0.0467 0.0010 298 69 295 8 294 6 100% 11 21.5 250.8 332.6 0.8 0.0545 0.0022 0.3512 0.0140 0.0468 0.0011 390 87 306 11 295 6 96% 12 14.4 232.3 200.1 1.2 0.0536 0.0017 0.3468 0.0111 0.0470 0.0010 352 70 302 8 296 6 98% 13 11.5 177.0 163.1 1.1 0.0535 0.0021 0.3467 0.0133 0.0470 0.0011 348 84 302 10 296 6 98% 14 6.4 80.0 96.5 0.8 0.0530 0.0028 0.3409 0.0176 0.0467 0.0011 327 114 298 13 294 7 99% 15 8.3 126.3 120.2 1.1 0.0534 0.0026 0.3427 0.0166 0.0466 0.0011 344 107 299 13 293 7 98% 16 13.9 199.9 208.3 1.0 0.0504 0.0016 0.3260 0.0107 0.0469 0.0010 215 73 287 8 295 6 97% 17 5.9 73.8 91.6 0.8 0.0564 0.0035 0.3653 0.0224 0.0470 0.0012 467 132 316 17 296 7 93% 18 10.2 144.5 153.3 0.9 0.0559 0.0026 0.3614 0.0167 0.0469 0.0011 449 101 313 12 295 7 94% 19 9.0 138.9 133.0 1.0 0.0556 0.0032 0.3570 0.0201 0.0466 0.0011 437 122 310 15 293 7 94% 20 16.1 245.8 234.7 1.0 0.0533 0.0016 0.3450 0.0104 0.0469 0.0010 343 66 301 8 296 6 98% 21 13.7 219.8 199.6 1.1 0.0533 0.0017 0.3439 0.0111 0.0468 0.0010 341 71 300 8 295 6 98% 22 15.3 252.8 218.9 1.2 0.0528 0.0016 0.3422 0.0108 0.0470 0.0010 322 69 299 8 296 6 99% 23 12.0 194.4 172.2 1.1 0.0530 0.0027 0.3429 0.0175 0.0469 0.0011 329 113 299 13 296 7 99% 24 12.9 160.6 198.6 0.8 0.0559 0.0024 0.3595 0.0151 0.0467 0.0011 446 91 312 11 294 7 94% 25 11.8 190.6 169.7 1.1 0.0543 0.0028 0.3506 0.0180 0.0468 0.0011 384 112 305 14 295 7 97% 26 7.7 71.4 125.0 0.6 0.0542 0.0021 0.3514 0.0138 0.0470 0.0011 379 85 306 10 296 6 97% 27 16.9 278.8 242.5 1.1 0.0546 0.0031 0.3520 0.0199 0.0468 0.0011 395 123 306 15 295 7 96% 28 8.7 137.1 124.5 1.1 0.0513 0.0028 0.3330 0.0180 0.0471 0.0011 255 121 292 14 297 7 98% 29 15.6 251.1 223.0 1.1 0.0536 0.0018 0.3459 0.0115 0.0468 0.0010 353 73 302 9 295 6 98% 30 7.1 90.7 109.1 0.8 0.0530 0.0033 0.3429 0.0209 0.0469 0.0012 328 134 299 16 296 7 99% -
BELOUSOVA E, GRIFFIN W, O′REILLY S Y, et al., 2002. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 BLACK L P, KAMO S L, ALLEN C M, et al., 2003. TEMORA 1: a new zircon standard for phanerozoic U-Pb geochronology[J]. Chemical Geology, 200(1-2): 155-170. doi: 10.1016/S0009-2541(03)00165-7 CHEN S Y, BI M W, SUN J P, et al., 2016. Mixed sedimentary characteristics and controlling factors of Upper Paleozoic Group in Northern Qaidam Basin[J]. Geological Bulletin of China, 35(2-3): 282-292. (in Chinese with English abstract) COHEN K M, FINNEY S C, GIBBARD P L, et al., 2013. The ICS international chronostratigraphic chart[J]. Episodes, 36(3): 199-204. doi: 10.18814/epiiugs/2013/v36i3/002 CORFU F, HANCHARJM, HOSKIN P W O, et al., 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469 GAO W L, WANG Z X, LI L L, et al., 2021. 40Ar/39Ar laser dating of the Zongwulong ductile shear zone in northeastern Tibetan Plateau: Constraints on the time of Indosinianorogeny[J]. Geology in China, 48(1): 149-160. (in Chinese with English abstract) HE G T, XUE L M, 1986. The carboniferous system of Qinghai province[J]. Regional Geology of China (3): 211-220. (in Chinese with English abstract) HE G T, WANG Z J, ZHAN L P, et al., 1987. The Late Carboniferous strata from north margin of Qaidam Basin[J]. Bulletin of the Chinese Academy of Geological Sciences. 17(3): 141-158. (in Chinese with English abstract) JI W H, LI R S, CHEN F N, et al., 2020. Tectonic reconstruction of northwest China in the Nanhua-Paleozoic and discussions on key issues[J]. Journal of Geomechanics, 26(5): 634-655. (in Chinese with English abstract) JIN Y G, SHANG Q H, HOU J P, et al., 2000. Chinese stratigraphic code-Permian[M]. Beijing: Geological Publishing House. (in Chinese) LI C X, CHANG J, QIU N S, et al., 2022. Meso-Neoproterozoic tectono-thermal evolution in the northern margin of North ChinaCraton: Constraints from zircon (U-Th)/He ages[J]. Journal of Geomechanics, 28(1): 113-125. LI Y, WANG X D, HU K Y, et al., 2021. Lithostratigraphic subdivision and correlation of the Carboniferous in China[J]. Journal of Stratigraphy, 45(3): 303-318. (in Chinese with English abstract) LIU W P, LIU C L, WAN M X, et al., 2016. A study of the Lower Paleozoic accumulation condition in Delingha region in Qaidam Basin[J]. Earth Science Frontiers, 23(5): 119-126. (in Chinese with English abstract) LIU X M, GAO S, DIWU C R, et al., 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size[J]. Chinese Science Bulletin, 52(9): 1257-1264. doi: 10.1007/s11434-007-0160-x MA L C, JIANG W, XIAO Z X, et al., 2020. Discussion on the depositional timing of the Zhabusagaxiu formation in the eastern QaidamBasin, China[J]. Journal of Geomechanics, 26(6): 961-972. (in Chinese with English abstract) MA Y S, YIN C M, LIU C L, et al., 2012. The progress of carboniferous oil and gas investigation and assessment in Qaidam basin[J]. Acta Geoscientica Sinica, 33(2): 135-144. (in Chinese with English abstract) PENG B, ZHANG H, YANG S H, et al., 2020. Logging characterization of Carboniferous fractured-vuggy karst reservoirs in the eastern Qaidam basin[J]. Journal of Geomechanics, 26(6): 923-931. (in Chinese with English abstract) QIAN T, WANG Z X, WANG Y, et al., 2021. Jurassic evolution of the Qaidam Basin in western China: Constrained by stratigraphic succession, detrital zircon U-Pb geochronology and Hf isotope analysis[J]. GSA Bulletin, 133(11-12): 2291-2318. QIAN T, LI W P, GAO W L, et al., 2021. A preliminary study on post-orogenesis of the North Qaidam tectonic belt duringthe Early Paleozoic by provenance analysis of the Devonian sediment[J]. ACTA GEOLOGICA SINICA, 1-17[2023-03-10]. (in Chinese with English abstract) Qinghai Bureau of Geology and Mineral Resources (BGMR), 1978. Regional Geologicalinvestigation of the Delinghajiuzhi Area. Unpublished scientific report as a part of theRegional Geology of Qinghai Province, 1-124 (in Chinese). Qinghai Bureau of Geology and Mineral Resources (QBGMR), 1991. Regional geology of the Qinghai province[M]. Beijing: Geological Publishing House: 1-62. (in Chinese) SHEN B H, SHEN S Z, HOU Z S, et al., 2021. Lithostratigraphic subdivision and correlation of the Permian in China[J]. Journal of Stratigraphy, 45(3): 319-339. (in Chinese with English abstract) SHEN S Z, XU H P, YUAN D X, et al., 2020. Permian stratigraphy and index fossils of China[M]. Hangzhou: Zhejiang University Press. (in Chinese with English abstract) SHEN S Z, ZHANG H, ZHANG Y C, et al., 2019. Permian integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 62(1): 154-188. doi: 10.1007/s11430-017-9228-4 SHENG J Z, 1962. Permian in China[M]. Beijing: Science Press. (in Chinese) SHI X D, 1983. The discovery of tournaisian in the MT. Amunike of the North-Eastern Qaidam basin, with a discussion on the dicision of the lower Carboniferous in the MT. Oulongbuluke[J]. Geological Anthology of Qinghai Tibet Plateau (5): 187-206. (in Chinese with English abstract) SUN J P, CHEN S Y, HU Z Y, et al., 2014. Research on the mixed model and developmental characteristic of the clastic-carbonate diamictite facies in the northern Qaidam[J]. Natural Gas Geoscience, 25(10): 1586-1593. (in Chinese with English abstract) doi: 10.11764/j.issn.1672-1926.2014.10.1586 SUN J P, 2015. Neoproterozoic to Paleozoic basin-mountain framework and Palaeotectonic-Paleogeography evolution of northeast Qaidam[D]. Qingdao: China University of Petroleum (East China): 1-155. (in Chinese with English abstract) SUN J P, CHEN S Y, PENG Y, et al., 2015. Research on Northern Qaidam tectonic attributes during Devonian[J]. Journal of China University of Petroleum, 39(2): 23-30. (in Chinese with English abstract) SUN J P, CHEN S Y, LIU C L, et al., 2016a. Tectonic setting of Northeastern Qaidam Basin and its evolution during the Late Paleozoic: Evidence from geochemical characteristics of detrital rock[J]. Earth Science Frontiers, 23(5): 45-55. (in Chinese with English abstract) SUN J P, CHEN S Y, MA Y S, et al., 2016b. Early Ordovician continental-arc collision and retro-arc foreland basin on the Northern margin of Qaidam basin: geochemical evidence from Clastic rocks[J]. Acta Geologica Sinica, 90(1): 80-92. (in Chinese with English abstract) SUN J P, JIANG W, MA L C, 2019a. Early Permian strata exist in the Olongbluk block[J]. Acta Geologica Sinica (English Edition), 93(2): 481-482. doi: 10.1111/1755-6724.13786 SUN J P, DONG Y P, MA L C, et al., 2019b. Late Paleoproterozoic tectonic evolution of the Olongbuluke Terrane, northern Qaidam, China: Constraints from stratigraphy and detrital zircon geochronology[J]. Precambrian Research, 331: 105349. doi: 10.1016/j.precamres.2019.105349 SUN J P, DONG Y P, JIAN G W, et al., 2020. Reconstructing the Olongbuluke Terrane (northern Tibet) in the end-Neoproterozoic to Ordovician Indian margin of Gondwana[J]. Precambrian Research, 348: 105865. SUN J P, DONG Y P, MA L C, et al., 2022. Devonian to Triassic tectonic evolution and basin transition in the East Kunlun-Qaidam Area, northern Tibetan plateau: Constraints from stratigraphy and detrital zircon U-Pb geochronology[J]. GSA Bulletin, 134(7-8): 1967-1993. WANG S, ZHANG S H, ZHANG Q Q, et al., 2022. In-situ zircon U-Pb dating method by LA-ICP-MS and discussions on the effect of differentbeam spot diameters on the dating results[J]. Journal of Geomechanics, 28(4): 642-652. WANG X L, GAO J H, ZHANG H J, et al., 2002. Recognition of the top and base boundaries of the Carboniferoussystemin the Northern margin of the Qaidam Basin[J]. Earth Science Frontiers, 9(3): 65-72. (in Chinese with English abstract) WANG Z J, 1981. Rugose corals from the early lower Carboniferous Chuan-Shangou Formation in Amunike mountain, Qinghai Province[J]. Acta Geologica Sinica, 55(3): 170-178. (in Chinese with English abstract) WANG Z J, YU X G, 1995. The late carboniferous Rugose corals from Shihuigou on the North Margin of the Qaidam basin[J]. Acta Geoscientica Sinica(3): 310-327. (in Chinese with English abstract) WEI X J, MA Y S, LI Z X, et al., 2018. High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous, northern QaidamBasin[J]. Journal of Palaeogeography, 20(3): 409-422. (in Chinese with English abstract) YANG P, HU Y, 2006. Paleoecology and sedimentary environment of carboniferous in Qaidam Basin[J]. Xinjiang Petroleum Geology, 27(3): 280-284. (in Chinese with English abstract) YANG S P, HOU H F, GAO L D, et al., 1980. The carboniferous system of China[J]. Acta Geologica Sinica(3): 167-175. (in Chinese with English abstract) YU J Z, LIN Y Y, 1961. Discussion on Early Carboniferous stratigraphic correlation on the Southern and Northern slopes of Qilian Mountains from coral fossils[J]. Acta Geologica Sinica, 41(2): 154-173. (in Chinese with English abstract) ZHANG Y, CHEN S Y, SUN J P, et al., 2016. Lithofacies and sedimentary environment of shale in Carboniferous Keluke Formation, Northern Qaidam Basin[J]. Earth Science Frontiers, 23(5): 86-94. (in Chinese with English abstract) ZHU X F, 1987. Carboniferous and Permian Fufulinids from Ulan county, Qinghai province[J]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences (2): 1-49. (in Chinese) 陈世悦, 毕明威, 孙娇鹏, 等, 2016. 柴北缘上古生界混合沉积特征及控制因素[J]. 地质通报, 35(2-3): 282-292. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2016Z1010.htm 高万里, 王宗秀, 李磊磊, 等, 2021. 青藏高原东北缘宗务隆韧性剪切带40Ar/39Ar年代学及对印支期造山时限的制约[J]. 中国地质, 48(1): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101012.htm 贺广田, 薛连明, 1986. 青海的石炭系[J]. 中国区域地质(3): 211-220. 贺广田, 王增吉, 詹立培, 等, 1987. 柴达木盆地北缘晚石炭世地层[J]. 中国地质科学院院报, 17(3): 141-158. 计文化, 李荣社, 陈奋宁, 等, 2020. 中国西北地区南华纪—古生代构造重建及关键问题讨论[J]. 地质力学学报, 26(5): 634-655. doi: 10.12090/j.issn.1006-6616.2020.26.05.055 金玉玕, 尚庆华, 侯静鹏, 等, 2000. 中国地层典-二叠系[M]. 北京: 地质出版社. 李晨星, 常健, 邱楠生, 等, 2022. 华北克拉通北缘中—新元古界构造-热演化: 来自锆石(U-Th)/He年龄的约束[J]. 地质力学学报, 28(1): 113-125. doi: 10.12090/j.issn.1006-6616.2021042 李莹, 王向东, 胡科毅, 等, 2021. 中国石炭纪岩石地层划分和对比[J]. 地层学杂志, 45(3): 303-318. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202103006.htm 刘文平, 刘成林, 万茂霞, 等, 2016. 柴达木盆地德令哈地区下古生界成藏地质条件研究[J]. 地学前缘, 23(5): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201605017.htm 马立成, 江万, 肖宙轩, 等, 2020. 柴达木盆地东部扎布萨尕秀组的时代归属讨论[J]. 地质力学学报, 26(6): 961-972. doi: 10.12090/j.issn.1006-6616.2020.26.06.077 马寅生, 尹成明, 刘成林, 等, 2012. 柴达木盆地石炭系油气资源调查评价进展[J]. 地球学报, 33(2): 135-144. 彭博, 张浩, 杨晟颢, 等, 2020. 柴达木盆地东部石炭系古岩溶缝洞单元测井响应[J]. 地质力学学报, 26(6): 923-931. doi: 10.12090/j.issn.1006-6616.2020.26.06.073 钱涛, 李王鹏, 高万里, 等, 2021. 柴北缘构造带早古生代造山后作用初探: 泥盆纪沉积物物源示踪[J]. 地质学报, 1-17[2023-03-10]. 青海省地质矿产局, 1978. 1∶200000区域地质调查报告: 德令哈旧址幅[M]. 北京: 地质出版社: 1-112. 青海省地质矿产局, 1991. 青海省区域地质志[M]. 北京: 地质出版社: 1-662. 申博恒, 沈树忠, 侯章帅, 等, 2021. 中国二叠纪岩石地层划分和对比[J]. 地层学杂志, 45(3): 319-339. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202103007.htm 沈树忠, 徐海鹏, 袁东勋, 等, 2020. 中国二叠纪地层及标准化石图集[M]. 杭州: 浙江大学出版社. 盛金章, 1962. 中国的二叠系[M]. 北京: 科学出版社. 施希德, 1983. 柴达木东北缘阿木尼克山杜内阶的发现: 兼对欧龙布鲁克下石炭统划分的讨论[J]. 青藏高原地质文集(5): 187-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL197901000.htm 孙娇鹏, 陈世悦, 胡忠亚, 等, 2014. 柴东北缘古生代碎屑岩—碳酸盐岩混积相发育特征及组合模式研究[J]. 天然气地球科学, 25(10): 1586-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201410013.htm 孙娇鹏, 2015. 柴达木东北部新元古代-古生代盆山格局及构造古地理演化[D]. 青岛: 中国石油大学(华东): 1-155. 孙娇鹏, 陈世悦, 彭渊, 等, 2015. 柴北缘构造带泥盆纪构造属性研究[J]. 中国石油大学学报(自然科学版), 39(2): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201502005.htm 孙娇鹏, 陈世悦, 刘成林, 等, 2016a. 柴达木盆地东北部晚古生代盆地构造环境: 来自碎屑岩地球化学的证据[J]. 地学前缘, 23(5): 45-55. 孙娇鹏, 陈世悦, 马寅生, 等, 2016b. 柴达木盆地北缘早奥陶世陆-弧碰撞及弧后前陆盆地: 来自碎屑岩地球化学的证据[J]. 地质学报, 90(1): 80-92. 王森, 张拴宏, 张琪琪, 等, 2022. LA-ICP-MS锆石微区U-Pb定年方法及不同束斑直径对年龄结果的影响作用探讨[J]. 地质力学学报, 28(4): 642-652. doi: 10.12090/j.issn.1006-6616.2021140 王训练, 高金汉, 张海军, 等, 2002. 柴达木盆地北缘石炭系顶、底界线再认识[J]. 地学前缘, 9(3): 65-72. 王增吉, 1981. 柴达木盆地北缘早石炭世早期穿山沟组的皱纹珊瑚[J]. 地质学报, 55(3): 170-178. 王增吉, 俞学光, 1995. 柴达木盆地北缘石灰沟晚石炭世的四射珊瑚[J]. 地球学报(3): 310-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB503.007.htm 魏小洁, 马寅生, 李宗星, 等, 2018. 柴达木盆地北缘上石炭统碎屑岩—碳酸盐岩高频转换过程及驱动机制[J]. 古地理学报, 20(3): 409-422. 杨平, 胡勇, 2006. 柴达木盆地石炭纪古生态与沉积环境[J]. 新疆石油地质, 27(3): 280-284. 杨式溥, 侯鸿飞, 高联达, 等, 1980. 中国的石炭系[J]. 地质学报(3): 167-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198003000.htm 俞建章, 林英钖, 1961. 从珊瑚化石来讨论祁连山南北坡早石炭世地层对比问题[J]. 地质学报, 41(2): 154-173. 张跃, 陈世悦, 孙娇鹏, 等, 2016. 柴北缘石炭系克鲁克组泥页岩岩相特征与沉积环境分析[J]. 地学前缘, 23(5): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201605011.htm 朱秀芳, 1987. 青海乌兰石炭—二叠纪的类动物群[J]. 中国地质科学院地质研究所所刊, (2): 1-49. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198708001002.htm