Huge growth of the late Mesoarchean–early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: A review
-
摘要: 在对一些重点地区新太古代早期—中太古代晚期(2.6~3.0 Ga)岩石的空间分布、岩石类型和形成时代作简要介绍基础上,文章总结了华北克拉通这一时代花岗质岩石的年龄分布模式、地球化学和Nd-Hf-O同位素组成特征。新太古代早期—中太古代晚期变质基底具有如下特征:①新太古代早期—中太古代晚期岩浆作用在华北克拉通几乎连续分布,峰期为2.70~2.75 Ga;②新太古代早期—中太古代晚期岩石在华北克拉通广泛存在,主要分布在东部古陆块、中部古陆块和南部古陆块中;③新太古代早期—中太古代晚期侵入岩以英云闪长岩为主,存在奥长花岗岩和花岗闪长岩及其他类型岩石;④新太古代早期—中太古代晚期表壳岩规模很小,零星分布于花岗质岩石中,岩石类型主要为变玄武质岩石,一些地区存在变质科马提岩、变质安山质‒英安质火山岩和变质碎屑沉积岩;⑤2.6 Ga可作为华北克拉通新太古代早期和晚期的界线;⑥TTG岩石的Sr/Y和La/Yb比值存在很大变化,在Sr/Y-Y和La/Yb-Yb图中位于高压、中压和低压TTG分布区;除少量富钾花岗岩外,华北克拉通新太古代早期—中太古代晚期岩石大都具有亏损Nd-Hf同位素组成特征;岩浆锆石O同位素组成与全球太古宙岩浆锆石类似;⑦许多地区都具有类似地质特征,但一些地区显示出较大的独特性。新的研究进一步支持了这样的认识:与全球其他许多典型克拉通类似,新太古代早期—中太古代晚期是华北克拉通最重要的陆壳增生时期,主要区别是华北克拉通叠加了强烈的新太古代晚期岩浆构造热事件。
-
关键词:
- 新太古代早期—中太古代晚期 /
- 华北克拉通 /
- Nd-Hf-O同位素 /
- TTG /
- 陆壳巨量增生
Abstract: Based on a brief introduction of the spatial distribution, rock types and formation ages of the late Mesoarchean–early Neoarchean (2.6~3.0 Ga) rocks in some key areas of the North China Craton, this paper summarizes the ages and geochemical and Nd-Hf-O isotopic compositions of the granitoids all over the craton. The late Mesoarchean–early Neoarchean basement shows the following features: (1) The late Mesoarchean–early Neoarchean magmatism is almost continuous, with a peak period of 2.70~2.75 Ga; (2) The late Mesoarchean–early Neoarchean rocks widely occur in the North China Craton, mainly in the Eastern Ancient Terrane, the Central Ancient Terrane and the Southern Ancient Terrane; (3) The intrusive rocks are mainly tonalite in composition, with trondhjemite, granodiorite, K-rich granite and gabbro-diorite; (4) The supracrustal rocks are commonly small in scale and scatter in granitoids. The rock types are mainly meta-basaltic rocks. In some areas, there are meta-komatiites, meta-andesitic-dacitic rocks and meta-clastic sedimentary rocks; (5) 2.6 Ga can be regarded as the boundary between the early and late Neoarchean in the North China Craton; (6) TTG rocks show large Sr/Y and La/Yb variations, plotting in the high-, medium- and low-pressure TTG areas in the Sr/Y–Y and La/Yb–Yb diagrams. Except for a few K-rich granites, the late Mesoarchean–early Neoarchean rocks are commonly depleted in Nd-Hf isotope compositions, with the magmatic zircon being similar in O isotope composition to that of the Archean magmatic zircon worldwide; (7) Many regions have similar geological characteristics, but some regions show great uniqueness. The research futher supports the understanding that, similar to many other typical cratons worldwide, the late Mesoarchean–early Neoarchean is the most important period of continental accretion in the North China Craton, and the main difference is that the North China Craton underwent a strong and widespread magmato-tectonothermal event at the end of the Neoarchean. -
0. 引言
柴达木盆地是中国西部重要含油气盆地之一,目前油气勘探与开发主要集中在盆地西部古—新近系、北缘侏罗系和东部三湖地区第四系这3套含油气系统(付锁堂等, 2016)。近年来,柴达木盆地东部(简称柴东)石炭系取得了油气资源调查的一系列进展性认识(马寅生等, 2012; Li et al., 2014; 刘成林等, 2016; 马立成等,2020),部署的钻井也获得了重要的油气发现(李宗星等, 2019; 彭博等, 2020),预示该层系的油气资源前景较广阔,有望成为盆地未来油气勘探的接替领域。
柴东欧南凹陷石炭系的石油地质条件优越,成藏要素配置良好,是油气运聚成藏的有利次级构造单元(刘成林等, 2021)。凹陷周缘地区广泛发育石炭系野外露头油苗,经油源对比研究确定石油来源于石炭系烃源岩(刘成林等, 2012)。石炭系发育多套烃源岩层系,包括暗色泥/页岩、煤和泥灰岩3种岩性类型烃源岩(曹军等, 2016; 李军亮等, 2016)。有机地球化学测试结果显示石炭系烃源岩有机质类型以腐殖型(Ⅲ型)为主,处于成熟—高成熟演化阶段,总体表现为“中等—好”评价级别的烃源岩,具有一定生烃潜力(李军亮等, 2016);烃源岩抽提物的生物化合物指标说明有机质具有陆相和海相混合来源的特点,堆积于海陆交汇的半深—深水和弱氧化—弱还原的沉积环境(Wang et al., 2018)。
迄今,石炭系烃源岩类型、质量评价、生烃潜力等方面虽然取得了较统一的认识,但在优质烃源岩形成及分布等研究上仍需深入探索。明确优质烃源岩形成机制并揭示其分布规律是低勘探程度区带油气勘探部署的关键依据,认清影响有机质富集的地质因素是其中至关重要的环节。文章针对以上柴东欧南凹陷石炭系油气资源调查关注的科学问题和制约下一步油气勘探部署的实际问题,利用有机地球化学、元素地球化学、X射线衍射(XRD)、扫描电镜(SEM)等测试方法,综合分析了烃源岩矿物组分、有机质丰度、干酪根类型、热演化程度、形成环境、TOC与主要矿物关系等,确定了石炭系海相有机质富集的控制因素,为探讨石炭系优质烃源岩形成机制和预测高质量烃源岩分布提供了新的切入点。
1. 地质概况
欧南凹陷位于柴达木盆地东部德令哈坳陷,呈北西—南东向展布,南、北方向分别以埃北和欧南断裂为界(图 1),与德令哈、霍布逊凹陷和欧龙布鲁克、埃姆尼克凸起等次级构造单元共同组成了“三凹夹两隆”构造格局(图 2)。
石炭纪沉积时期,研究区位于约13.5°N的低纬度地区(Wang et al., 2016),处于古特提斯洋持续扩张体制下向北倾斜的被动大陆边缘环境(孙娇鹏等, 2017),依次发育下石炭统城墙沟组(C1ch,对应维宪阶)和怀头他拉组(C1h,对应谢尔普霍夫阶),以及上石炭统克鲁克组(C2k,对应巴什基尔阶)与扎布萨尕秀组(C2zh,可与太原组对比,对应晚石炭世卡西莫夫阶—早二叠世早期阿瑟尔阶)(青海省地质矿产局, 1991)。欧南凹陷早石炭世C1h以(含生屑)泥晶灰岩夹泥岩沉积为主,晚石炭世C2k则堆积灰岩、砂岩和煤频繁互层沉积物,晚期(C2zh)在海侵作用下过渡至碳酸盐岩沉积环境,总体表现出碎屑岩-碳酸盐岩混积的陆表海沉积层序(牛永斌等, 2010; 魏小洁等, 2018),组成较良好的生储盖组合(图 3)。
2. 烃源岩特征
此次研究中统计分析的数据来源于欧南凹陷及周边地区柏树沟、旺尕秀、石灰沟等野外露头(23样次)和CY2、QDC1、QDD1等关键钻井(338样次岩屑及岩芯,埋深主要分布于0~3500 m)的石炭系烃源岩样品测试结果(总共361样次)。
2.1 烃源岩岩性及组分
研究区石炭系31块烃源岩样品全岩XRD矿物组分测试结果显示(表 1, 表 2):烃源岩包括泥页岩和灰岩两种类型岩性,泥页岩类烃源岩组分以石英(16.4%~88.3%,均值46.8%)和黏土矿物(9.0%~83.6%,均值42.3%)为主,其次为碳酸盐矿物(0~34.4%,均值7.0%),包括方解石(0~21.8%,均值5.2%)、白云石(0~18.2%,均值1.8%)和菱铁矿(个别样品含),含少量斜长石和黄铁矿(图 4a)。黏土矿物中高岭石组分约占全岩总质量的16.5%(0~54.4%)、伊/蒙混层含量为14.7%(0~32.8%)、伊利石组分约7.9%(0~18.4%)、绿泥石约为3.3%(0~26.0%)(图 4b)。
表 1 欧南凹陷及周边野外露头和重点钻井石炭系烃源岩样品矿物组分Table 1. Whole rock mineral compositions of the Carboniferous source rocks by XRD analysis, Ounan depression序号 样品编号 取样点 岩性 层位 深度/
mXRD全岩矿物组成/% 石英 钾长石 斜长石 方解石 白云石 菱铁矿 黄铁矿 黏土矿物 1 SHG-1 石灰沟 泥岩 C1h — 30.3 — — — — — — 69.7 2 SHG-2 灰岩 C1h — 24.1 — — 51.4 — — — 24.5 3 SHG-3 泥岩 C2k — 40.4 — 1.9 — — — — 57.7 4 SHG-4 页岩 C2k — 16.4 — — — — — — 83.6 5 WGX-1 旺尕秀 页岩 C2k — 44.0 — — — — — — 56.0 6 WGX-2 页岩 C2k — 51.9 — — — — — — 48.1 7 BSG-1 柏树沟 页岩 C2zh — 57.0 — — — — — — 43.0 8 BSG-2 页岩 C2zh — 42.0 — — 54.5 — — — 3.5 9 BSG-3 泥岩 C2zh — 34.2 — — — — — 18.2 47.6 10 BSG-4 灰岩 C2zh — 5.1 — — 94.4 — — — 0.5 11 BSG-5 灰岩 C2k — 3.9 — — 96.0 — — — 0.1 12 BSG-6 灰岩 C2k — 10.2 — — 89.3 — — — 0.5 13 BSG-7 灰岩 C2k — 23.9 — 2.2 52.5 8.3 — — 13.1 14 BSG-8 灰岩 C2zh — 0.8 — — 99.0 — — — 0.2 15 QDC-1 QDC1 泥岩 C2k 3393.80 71.9 — — 2.1 — — — 26.0 16 QDC-2 灰岩 C2k 3395.20 6.0 — — 88.1 4.8 — — 1.1 17 QDC-3 灰岩 C2k 3395.50 20.6 — — 59.1 6.8 — 1.6 11.9 18 QDC-4 泥岩 C2k 3398.80 34.6 — — 21.8 4.3 — 2.8 36.5 19 QDC-5 泥岩 C2k 3400.10 38.2 — — 4.2 2.4 — 2.6 52.6 20 QDC-6 泥岩 C2k 3401.40 35.6 — — — — — 2.6 61.8 21 CY2-1 CY2 泥岩 C2k 657.43 67.4 — — — 8.9 — — 23.7 22 CY2-2 泥岩 C2k 923.90 48.2 — — 16.2 18.2 — — 17.4 23 CY2-3 泥岩 C2k 950.20 50.6 — 2.2 — — 15.6 — 31.6 24 CY2-4 灰岩 C2k 958.50 19.3 — — 21.3 16.1 28.1 — 15.2 25 CY2-5 灰岩 C2k 992.30 7.3 — — 90.5 2.0 — — 0.2 26 CY2-6 泥岩 C2k 1010.40 88.3 — — — 2.7 — — 9.0 27 CY2-7 灰岩 C2k 1031.70 4.4 — — 95.3 — — — 0.3 28 CY2-8 泥岩 C2k 1042.30 45.1 — 2.3 1.7 — — — 50.9 29 CY2-9 灰岩 C1h 2381.40 11.9 2.2 — 35.0 15.3 — — 35.6 30 CY2-10 灰岩 C1h 2388.60 9.2 0.8 — 79.0 — — — 11.0 31 CY2-11 灰岩 C1h 2400.30 1.9 — — 88.6 9.0 — — 0.5 均值 泥页岩 46.8 — 0.3 5.2 1.8 0.9 1.3 42.3 均值 灰岩 10.6 0.2 0.2 74.3 4.5 2.0 0.1 8.2 表 2 欧南凹陷及周边石炭系烃源岩样品有机地化特征和黏土矿物组分Table 2. Organic geochemistry characteristics and clay mineral compositions of the Carboniferous source rock samples, Ounan depression序号 样品编号 岩性 烃源岩测试/% 黏土矿物在全岩中的相对含量/% TOC 氯仿沥青“A” RO 伊/蒙混层 伊利石 高岭石 绿泥石 I/S比 1 SHG-1 泥岩 7.44 0.1900 — 10.46 4.88 54.37 — 25 2 SHG-2 灰岩 0.57 0.0900 1.44 7.35 2.45 14.70 — 25 3 SHG-3 泥岩 12.96 0.5200 — 17.31 3.46 36.93 — 35 4 SHG-4 页岩 6.55 0.1600 — 23.41 9.20 51.00 — 20 5 WGX-1 页岩 17.21 — 1.08 25.76 14.56 15.68 — 25 6 WGX-2 页岩 21.17 — — 12.03 6.25 29.82 — 20 7 BSG-1 页岩 22.73 0.0093 1.36 13.33 6.02 23.65 — 25 8 BSG-2 页岩 0.96 0.0027 1.24 3.50 — — — — 9 BSG-3 泥岩 14.51 0.0142 1.63 23.80 8.09 15.71 — 25 10 BSG-4 灰岩 0.66 0.0014 1.47 0.50 — — — — 11 BSG-5 灰岩 0.09 — — 0.10 — — — — 12 BSG-6 灰岩 0.15 — — 0.50 — — — — 13 BSG-7 灰岩 1.29 — — 5.24 2.75 5.11 — 20 14 BSG-8 灰岩 0.17 — 1.30 0.20 — — — — 15 QDC-1 泥岩 3.00 — 2.55 — — — 26.00 — 16 QDC-2 灰岩 1.45 — — 1.10 — — — — 17 QDC-3 灰岩 1.52 — — 5.36 3.93 1.31 1.31 20 18 QDC-4 泥岩 2.81 — — 15.33 13.51 4.38 3.29 20 19 QDC-5 泥岩 0.73 — — 21.57 18.41 6.31 6.31 20 20 QDC-6 泥岩 1.30 — 2.57 32.75 13.60 8.03 7.42 25 21 CY2-1 泥岩 2.53 — 1.30 7.58 6.64 5.93 3.56 25 22 CY2-2 泥岩 2.06 — 1.37 8.35 4.52 2.78 1.74 20 23 CY2-3 泥岩 16.52 — 1.46 13.27 8.53 9.80 — 20 24 CY2-4 灰岩 0.28 — — 5.02 3.04 7.14 — 15 25 CY2-5 灰岩 0.17 — 1.39 0.20 — — — — 26 CY2-6 泥岩 27.83 — — 3.24 2.70 1.53 1.53 15 27 CY2-7 灰岩 3.40 — 1.52 0.30 — — — — 28 CY2-8 泥岩 8.72 — — 18.32 12.73 13.74 6.11 20 29 CY2-9 灰岩 0.51 — — 5.34 23.14 — 7.12 10 30 CY2-10 灰岩 0.45 — 1.79 2.53 3.96 — 4.51 15 31 CY2-11 灰岩 0.39 — — 0.50 — — — — 均值 泥页岩 9.94 0.15 — 14.7 7.8 16.5 3.3 — 均值 灰岩 0.79 0.05 — 2.5 2.8 2.0 0.9 — 碳酸盐岩类烃源岩主要为石灰岩,方解石含量约占岩石总重量的72.9%(21.3%~99.0%),其次为石英(12.7%)、黏土矿物(8.9%)、白云石(4.2%)和极少量的钾长石、斜长石、黄铁矿或菱铁矿(表 1,图 4a)。碳酸盐岩的黏土矿物组分与泥页岩有所区别,伊利石(2.6%)和伊/蒙混层(2.5%)的含量相对较高,其次为高岭石(1.9%)、绿泥石(0.9%),见表 2、图 4b。值得注意的是,不论泥页岩还是碳酸盐岩烃源岩样品均含有相对较丰富的石英矿物组分(表 1)。
2.2 有机质丰度
柴东欧南凹陷及周边地区关键露头和钻孔的有机地球化学测试结果表明:石炭系烃源岩总有机碳(TOC)值分布于0.09%~90.2%之间(N=361样次,包括表 2和部分煤岩样品),峰值约在0.2%~1.0%(图 5);石炭系烃源岩中氯仿沥青“A”含量约为0.0015%~0.2%(均值0.022%,N=99样次,以钻孔样品为主),生烃潜量(S1+S2)分布于0.02~10.82 mg/g之间(均值0.48 mg/g),见图 6。
根据烃源岩有机质丰度指标的评价(国家能源局, 2020),不论从TOC指标和氯仿沥青“A”、生烃潜量等指标来看,研究区石炭系主要发育“差—中等”级别烃源岩,少量“好”级别以上烃源岩,总体而言石炭系烃源岩具有一定生烃潜力。
2.3 有机质类型及成熟度
2.3.1 干酪根类型
显微镜下观察发现石炭系烃源岩样品中常见无结构镜质体,呈破碎颗粒状、块状(图 7a、7b)、或条带状沿页岩层理面分布(图 7c、7d),镜质体孔隙或裂缝中充填有固态原沥青或运移沥青(图 7c);样品中也观察到少量丝质体或半丝质体惰质组分(图 7a、7b)。镜检结果显示研究区石炭系烃源岩中含大量镜质体,少量惰质体和微量腐泥干酪根组分,判定其主要残留腐殖型(Ⅲ型)干酪根。
岩石热解测试结果显示(N=60样次):石炭系烃源岩样品的最高热解峰温(Tmax)普遍高于450 ℃,说明大部分岩石样品中的分散有机质处于较高热演化程度(Tissot and Welte, 1984),通过Tmax-HI(氢指数)图版对此类样品有机质类型的判别失效,少量低Tmax(< 450 ℃)烃源岩样品中有机质类型为Ⅲ型(图 8a);OI(氧指数)-HI图版(图 8b)与O/C(氧/碳原子比)-H/C(氢/碳原子比)范氏图(图 8c)的判识结果也显示石炭系烃源岩主要发育Ⅲ型为主的干酪根。
图 8 石炭系烃源岩干酪根类型图解a—Tmax与HI图版;b—OI与HI图版;c—O/C与H/C图版;d—抽提物饱和烃/芳香烃比与非烃及沥青质含量图版Figure 8. Plots of kerogen types for the Carboniferous source rocks(a) Plot of Tmax vs. hydrogen index (HI); (b) Plot of oxygen index (OI) vs.hydrogen index (HI); (c)Plot of O/C vs.H/C; (d) Plot of saturated/aromatic component ratios vs.contents of resin and bitumen石炭系烃源岩可溶有机质氯仿沥青“A”族组分(N=99样次)中饱和烃/芳香烃比值分布于0.44~6.29(均值2.31),而非烃与沥青质组分含量总和约5.35%~65.32%(均值41.13%),根据烃源岩可溶有机质特征划分有机质类型标准(国家能源局, 2020),表明烃源岩样品中可溶有机质(氯仿沥青“A”)的生烃母质类型主要为Ⅱ型和少Ⅲ型或Ⅰ型干酪根(图 8d)。
以上分析说明:研究区石炭系烃源岩主要残留陆相高等植物生物为主体的腐殖型(Ⅲ型)干酪根,而烃源岩的抽提可溶有机质却具有低等水生生物(Ⅱ型和少量Ⅰ型,腐泥型)为生烃母质的特征。
2.3.2 有机质成熟度
研究区石炭系烃源岩有机质整体处于成熟—高成熟热演化阶段。石炭系钻井岩心和野外露头烃源岩样品有机质的镜质体反射率(RO)主要分布于1.08%~2.57%(N=16样次;图 9),均值为1.58%,表明石炭系烃源岩热演化程度较高(王利等, 2019),处于高成熟轻质油-凝析油-湿气生烃阶段,这与CY2井C2k组所产湿气和少量凝析油的压裂试油结果相一致(李宗星等, 2019)。
图 9 石炭系烃源岩埋深-RO剖面(QDD1井RO数据来源于刘奎等(2020))Figure 9. Plot of kerogen RO vs. burial depth for the Carboniferous source rocks (RO data of Well QDD1 is from Liu et al., 2020)欧南凹陷石炭系烃源岩的干酪根兼具低等水生生物与高等植物的混合生物有机质来源,有机质的热演化已经进入高—过成熟阶段,说明倾油型低等水生生物为主的腐泥型干酪根已经历了生油窗(RO=0.5%~1.2%;Tissot and Welte, 1984),液态烃的大规模生成与排出过程也解释了凹陷周缘出现丰富油(沥青)砂出露的现象(马寅生等, 2012)。倾气型的腐殖型干酪根已经进入生气高峰(RO平均值>1.5%),较高热演化背景及气侵作用是导致石炭系烃源岩中氯仿沥青“A”含量和生烃潜量总体偏低的重要原因。
3. 烃源岩沉积环境
Wang et al. (2018)根据CY2井C2k烃源岩有机质的Ph/nC18、Pr/nC17、Pr/Ph和C29/C27等生物标志化合物特征认为有机质形成于海-陆交互陆棚沉积环境,由陆源和海源生物有机质所组成。此次研究主要利用欧南凹陷及周边地区石炭系烃源岩样品元素地球化学测试结果(N=31样次),综合判定研究区烃源岩主要形成于半咸—咸水、干热、弱还原—弱氧化过渡带的海陆交互陆棚沉积环境,与CY2钻井烃源岩样品有机地化指标所判定的结果基本一致。
3.1 古盐度
Sr/Ba比值是区别陆相和海相沉积的常用参数,Sr和Ba元素的化学性质相似,与海水混合后易与海水中丰富的SO42-离子反应生成SrSO4和BaSO4,但BaSO4的溶解度相对较低。一般而言,Sr/Ba值小于0.6反映淡水沉积,0.6~1.0之间代表半咸水相,海相沉积物该比值大于1.0(Wei and Algeo, 2020)。另外,B/Ga比值亦是指示古盐度的辅助指标,沉积水体盐度随B/Ga增大而升高(Remírez and Algeo, 2020)。
研究区石炭系烃源岩样品Sr/Ba值分布于0.31~52.76(均值7.79),B/Ga值约为0.01~3.18(均值0.53),说明沉积古水体盐度整体为咸(海)水,仅C2k组部分样品反映半咸水水体环境(图 10),石炭纪沉积古水体盐度整体处于半咸—咸水状态。
3.2 古气候
潮湿气候条件下Fe元素容易以Fe(OH)3沉淀在沉积中,而Mn元素的富集与暖干气候有关,Fe/Mn比值反映了湿度变化(Song et al., 2019);Sr/Cu比值变化与温度关系密切,该值大于10指示炎热环境,而比值范围1~10之间则代表了相对温暖的沉积环境(Fu et al., 2015)。
石炭系烃源岩Fe/Mn值约为6.36~475.84(均值112.14),Sr/Cu值在1.68~82.02之间变化(均值23.47),见图 11;基于以上判定原则,尽管研究区石炭纪气候变化较频繁,但整体仍表现为“干热”的沉积环境。
3.3 氧化—还原条件
Fe存在两种价态,对氧化还原反应较敏感;Fe2+/Fe3+≫1为还原环境,Fe2+/Fe3+>1为弱还原环境,Fe2+/Fe3+ < 1为弱氧化环境,Fe2+/Fe3+≪1为氧化环境(Robinson and Sahota, 2000)。古海洋水体呈分层特性,V/(V+Ni)比值在0.6~0.8范围指示弱氧化—弱还原过渡状态,小于0.6为偏氧化条件,而大于0.8为深水还原相(Hatch and Leventhal, 1992)。
石炭系烃源岩Fe2+/Fe3+值分布于0.16~19.06(均值为4.35),个别样品Fe2+/Fe3+值高达300;V/(V+Ni)比值分布区间在0.40~0.92(均值0.71),见图 12,总体处于弱还原—弱氧化过渡带内,与烃源岩有机质生物标志化合物所指示的海-陆交互陆棚沉积环境相一致。
4. 烃源岩有机质富集
4.1 有机质富集与矿物组分关系
4.1.1 石英矿物组分
研究区石炭系烃源岩矿物组分特征表现为相对富集石英矿物(平均含量为47.1%),根据总有机碳(TOC)与全岩XRD石英矿物含量的关系(图 13),高有机质丰度(TOC>5%)烃源岩样品总有机碳含量与石英矿物含量之间呈一定正相关关系,而低有机质丰度(TOC < 5%)与石英矿物并无明显相关性,说明石炭系烃源岩发育两套不同来源的生物有机质。
石炭系烃源岩主要残留陆相高等植物生物为主体的腐殖型(Ⅲ型)干酪根(图 7),而烃源岩的抽提可溶有机质却具有低等水生生物(Ⅱ型和少量Ⅰ型,腐泥型)为生烃母质的特征(图 8),结合元素地球化学反映出明确的海陆交互陆沉积环境(图 12),推测石炭系烃源岩发育海相(Ⅱ型干酪根为主)和陆相(Ⅲ型干酪根为主)混源型生物有机质。石炭系高丰度烃源岩TOC随石英矿物组分增大而升高,该现象与扬子地区古生界海相页岩所呈现的TOC-石英含量关系相似(Liu et al., 2019; Khan et al., 2019),反映高丰度(TOC>5%)烃源岩主要富集海相生物有机质,且海相生物数量受到石英(SiO2)矿物的深刻影响,而低丰度(TOC < 5%)烃源岩的沉积有机质受陆相高等植物供给控制,与石英矿物含量大小无明显相关性。
4.1.2 其他矿物组分
黏土和碳酸盐矿物是石炭系烃源岩除石英以外最重要的矿物组分,平均含量分别占到44.7%和12.3%。烃源岩有机质丰度(TOC)与黏土(图 14)、碳酸盐矿物(图 15)组分含量的分析结果显示有机质的赋存与黏土和碳酸盐矿物之间无显著关系,表明烃源岩中黏土和碳酸盐矿物对生物有机质富集的控制作用较弱。
4.2 石英与有机质赋存关系
微观镜下观察发现,石炭系泥质烃源岩样品除黏土矿物、有机质(OM)和隐晶质矿物外,还发育大量粒径为1~100 μm的硅质生屑颗粒,呈圆球状或似球状且顺层状定向分布(图 16a);单个硅质生屑颗内可见规则化生物腔体,腔体内充填生物有机质(图 16b)。
图 16 石炭系泥质烃源岩镜下照片Qtz—石英;OM—有机质;BSi—生物硅;Kln—高岭石;I/S—伊/蒙混层
a—泥岩,C2zh,柏树沟剖面;b—泥岩,C2k,QDC-1,3580 m;c—泥岩,C2k,石灰沟剖面;d—泥岩,C2k,QDC-1,3580 mFigure 16. Photomicrographs of the Carboniferous source rocks(a) Mudstone, C2zh, outcrop Baishugou; (b) Mudstone, C2k, Well QDC-1, 3580 m; (c) Mudstone, C2k, outcrop Shihuigou; (d) Mudstone, C2k, Well QDC-1, 3580 m
Qtz-Quartz; OM-Organic matter; BSi-Biogenic sillica; Kln-Kaolinite; I/S-Illite/Smectite mixed clay硅质生屑是放射虫、海绵、硅藻及硅鞭毛藻等海洋浮游硅质生物残骸所组成,又称为生物硅(SiO2·nH2O),原始成分多为蛋白石,成岩过程中逐渐从蛋白石A(无定形)演化成蛋白石CT(无序形)、玉髓(隐晶)、燧石(微晶石英)等(臧家业等, 2020)。据统计(Tréguer and De La Rocha, 2013),硅质生物供给海洋约50%以上的初级生产力,在边缘海-近岸地区该比例高达75%,是海洋初级生产力的重要来源。
扫描电镜(SEM)下显示石炭系泥质烃源岩中富含放射虫微体化石(图 16c、16d),中心囊和格子壳(网格状)内常半充填有机质,说明有机质赋存和富集应该受到硅质生物的影响。
4.3 硅质成因
海相泥页岩中硅质(SiO2)一般具有陆源、热液和生物共3种来源(Hesse, 1989),热液沉积区沉积物Fe、Mn元素较富集,而反映陆源物质的Al、Ti元素含量相对变小。纯热水来源硅质沉积物Al/(Al+Fe+Mn)比值约为0.01,而纯远洋生物硅沉积的相关元素比值增到0.60,基于此通过Al-Fe-Mn三角成因判别图解是有效识别热液成因硅质和生物成因硅质的有效方法(Adachi et al., 1986)。文中挑选了全岩XRD石英矿物含量大于50%的石炭系硅质烃源岩样品(N=10样次),利用Al-Fe-Mn三角成因判别图解(图 17)发现这些硅质泥/页岩样品中SiO2主要为生物成因,说明柴东地区欧南凹陷及其周缘地区石炭系海-陆交互陆棚相泥页岩或碳酸盐岩烃源岩中发育生物成因硅质及相对应的海洋生物有机质。
根据孙娇鹏等(2017)研究认识,石炭纪时期,欧南凹陷处于宗务隆裂陷槽(向北)和柴达木古陆(向南)之间,形成“南山-北海”的古地理格局,受到柴达木古陆陆源碎屑供给和宗务隆海槽自北向南海侵超覆的影响。南边古陆不仅向凹陷及周边提供陆源碎屑物质,还供给陆源高等植物沉积有机质;北边海槽的海洋硅质生物残骸或富硅洋流通过上升流被输入至欧南凹陷,堆积了海洋低等水生物沉积有机质(图 18)。海洋硅质生物(放射虫为主,图 16c、16d)的参与显著提高了石炭系沉积物初级生产力,是石炭系泥页岩富集海相生物有机质的重要影响因素。
由于柴东欧南凹陷及周边地区石炭系为海-陆过渡型沉积物,靠近古陆附近的(粉砂质)泥页岩虽然石英矿物含量较高(>50%),但可能富含陆源石英颗粒,有机质含量(TOC值)相对较低;受海洋硅质生物活动影响较大的区域不仅石英矿物含量高(生物硅),有机质丰度也高(图 13)。
石炭纪是全球重要聚煤期,发育典型混合海洋和陆地生物有机质的烃源岩,以Ⅰ和Ⅱ型干酪根为主的海相有机质生烃效率和潜力显著高于以Ⅲ型干酪根为主体的陆相有机质(秦建中等, 2009; Gross et al., 2015)。海洋硅质生物的繁盛与Si输入源、海洋地形、水介质条件、气候温度、生物活动等诸多因素相关,Si是维持海洋硅质壳体浮游生物群落的必需营养元素,Si输入源及输送路径对硅质生物的生长繁盛起到关键影响作用(臧家业等, 2020)。基于此认识,明确石炭纪柴东欧南凹陷的Si输入源(陆地、大气和热液)可能是认识石炭系海相有机质富集规律并预测优质烃源岩分布的关键突破口,对石炭系区域性油气勘探具有一定指导意义。
5. 结论
(1) 柴达木盆地东部欧南凹陷及周缘地区石炭系主要发育“差—中等”级别和少量“好”级别以上泥页岩和碳酸盐岩烃源岩(TOC峰值0.2%~1.0%),泥页岩烃源岩富石英矿物组分;石炭系烃源岩干酪根整体处于“成熟—高成熟阶段”(RO均值1.58%),残留Ⅲ型干酪根,烃源岩抽提的氯仿沥青“A”主要来自于Ⅱ型干酪根。
(2) 研究区石炭系烃源岩形成于咸水、干热、弱还原—弱氧化过渡带的海陆交互陆棚沉积环境,分散有机质由海相(Ⅱ型干酪根为主)和陆相(Ⅲ型干酪根为主)混源型生物有机质组成,高丰度(TOC>5%)烃源岩有机质丰度随石英矿物组分增大而升高。
(3) 研究区石炭系泥质烃源岩中富含硅质生物化石(放射虫等),生物腔体内充填有机质,高硅质(SiO2>50%)烃源岩中硅质为生物成因,推测石炭纪硅质生物的参与引起海相生物有机质的富集并极大提高了沉积物初级生产力。
(4) Si是维持海洋硅质壳体浮游生物群落的必需营养元素,以研究区石炭纪Si输入源及输送路径为突破口可能是认识石炭系海相有机质富集规律并预测优质烃源岩分布的有效途径,对石炭系区域性油气勘探具有一定指导意义。
-
图 1 华北克拉通早前寒武纪基底地质图(图中给出了2.6 ~ 3.0 Ga岩石空间分布和图2、图4、图7、图11、图14、图19、图23和图25的位置)
BB—蚌埠;CD—承德;DQS—大青山;DF—登封;EH—冀东;ES—胶东;FP—阜平;HA—怀安;HB—鹤壁;HS—恒山;HL—和龙;HQ—霍邱;LL—吕梁;LS—鲁山;MY—密云;NL—辽北;SJ—吉南;SL—辽南;WL—辽西;WS— 鲁西;WT—五台;XQL—小秦岭;YS—阴山;ZH—赞皇;ZJK—张家口;ZT—中条
Figure 1. Geological map of the early Precambrian basement of the North China Craton(showing spatial distribution of 2.6~3.0 Ga rocks and locations of figures 2, 4, 7, 11, 14, 19, 23 and 25)
BB–Bengbu; CD–Chengde; DQS–Daqingshan; DF–Dengfeng; EH–eastern Hebei; ES–eastern Shandong; FP–Fuping; HA–Huai’an; HB–Hebi; HS–Hengshan; HL–Helong; HQ–Huoqiu; LL–Lvliang; LS–Lushan; MY–Miyun; NL–northern Liaoning; SJ–southern Jilin; SL–southern Liaoning; WL–weastern Liaoning; WS–western Shandong; WT–Wutai; XQL–Xiaoqinling; YS–Yinshan; ZH–Zanhuang; ZJK–Zhangjiakou; ZT–Zhongtiao
图 2 吉南‒辽北地区地质图(图中给出了2.6~3.0 Ga岩石定年样品分布,据Bao et al.,2022修改)
Figure 2. Geological map of the southern Jilin–northern Liaoning area, showing the spatial distribution of 2.6 ~ 3.0 Ga dated rock samples (modified from Bao et al., 2022)
图 3 吉南‒辽北地区新太古代早期岩石的锆石CL图像和U-Pb谐和图
a、b—2.73 Ga英云闪长质片麻岩,歪头山(16BX03-3;Bao et al., 2022);c、d—2.68 Ga TTG,白山西北(13JN45-2;Bao et al., 2022);e、f—2.69 Ga英云闪长质片麻岩,清原东(14SJ02-1;Wu et al., 2021);g、h—2.78 Ga奥长花岗质片麻岩,夹皮沟西北(14SJ06-1;Wu et al., 2021)
Figure 3. CL images and SHRIMP U-Pb concordia diagrams for zircons from the early Neoarchean rocks in the southern Jilin–northern Liaoning area
(a) and (b) 2.73 Ga tonalitic gneiss , Waitoushan, (16BX03-3; Bao et al., 2022); (c) and (d) 2.68 Ga TTG, northwest of Baishan (13JN45-2; Bao et al., 2022); (e) and (f) 2.69 Ga tonalitic gneiss, east of Qingyuan (14SJ02-1; Wu et al., 2021); (g) and (h) 2.78 Ga trondhjemitic gneiss (14SJ06-1; Wu et al., 2021)
图 4 铁架山‒弓长岭地区地质图(底图据Dong et al., 2017a;图中给出了2.9~3.0 Ga富钾花岗岩定年样品位置,数据来源Dong et al., 2017a;王伟等, 2022)
Figure 4. Geological map of the Tiejiashan–Gongchangling area (Dong et al., 2017a), showing the locations of dated 2.9~3.0 Ga K-rich granite samples (Dong et al., 2017a; Wang et al., 2022)
图 5 铁架山‒弓长岭地区中太古代花岗质岩石的野外照片
a—2.95 Ga正长花岗质片麻岩(A0502,铁架山‒弓长岭富钾花岗岩),铁架山北(Dong et al., 2017a);b—2.92 Ga糜棱岩化细粒正长花岗岩(A1211,铁架山‒弓长岭富钾花岗岩),小岭子西(Dong et al., 2017a);c—2.92 Ga糜棱岩化细粒正长花岗岩(A1211)与2.91 Ga糜棱岩化细粒正长花岗岩(A1212)界线,与图5b位置相同(Dong et al., 2017a);d—2.99 Ga 二长花岗质片麻岩(A0533,东鞍山花岗岩),东鞍山东野外照片中,笔的长度为14 cm,硬币的直径为2 cm;下同
Figure 5. Field photographs of the Mesoarchean granitoids in the Tiejiashan–Gongchangling area
(a) 2.95 Ga syenogranitic gneiss (A0502, Tiejiashan–Gongchangling K-riched granite), north of Tiejiashan (Dong et al., 2017a); (b) 2.92 Ga mylonitized fine-grained syenogranite (A1211, Tiejiashan–Gongchangling K-riched granite), west of Xiaolingzi (Dong et al., 2017a); (c) Boundary between the 2.92 Ga mylonitized fine-grained syenogranite (A1211) and the 2.91 Ga mylonitized fine-grained syenogranite (A1212), same location as Fig.5b (Dong et al., 2017a); (d) 2.99 Ga monzogranitic gneiss (A0533), east of Donganshan Samples A0502 and A1211 are from the Tiejiashan–Gongchangling K-rich granite, and sample A0533 is from the Donganshan granite. The pen is 14 cm in length, whereas the coin is 2 cm in diameter, the same below.
图 6 铁架山‒弓长岭地区中太古代花岗质岩石的锆石阴极发光图像和U-Pb谐和图
a、b—2.95 Ga正长花岗质片麻岩,铁架山北(A0502;Dong et al., 2017a);c、d—2.92 Ga糜棱岩化细粒正长花岗岩,小岭子西(A1211;Dong et al., 2017a);e、f—2.99 Ga 二长花岗质片麻岩,东鞍山东(A0533)
Figure 6. CL images and SHRIMP U-Pb concordia diagrams for zircons from the Mesoarchean granitoids in the Tiejiashan–Gongchangling area
(a) and (b) 2.95 Ga syenogranitic gneiss, north of Tiejiashan (A0502; Dong et al., 2017a); (c) and (d) 2.92 Ga mylonitized fine-grained syenogranite, west of Xiaolingzi (A1211; Dong et al., 2017a); (e) and (f) 2.99 Ga monzogranitic gneiss, east of Donganshan (A0533)
图 7 冀东地区地质图(底图据Nutman et al., 2011;图中给出了2.6~3.0 Ga 定年岩石样品的位置,数据来源Nutman et al., 2011;Liou et al., 2019)
Figure 7. Geological map of eastern Hebei (Nutman et al., 2011), showing the locations of dated 2.6~3.0 Ga rock samples (Nutman et al., 2011; Liou et al., 2019)
图 8 冀东草场地区中太古代表壳岩的野外照片(Liou et al., 2019)
a—表壳岩剖面;b、c—铁镁质片麻岩与长英质片麻岩互层,图8b中粗粒浅色体岩脉与铁镁质片麻岩平行化;d、e—浅色长英质片麻岩
Figure 8. Field photographs of the Mesoarchean supracrustal rocks in the Caochang region, eastern Hebei (Liou et al., 2019)
(a) Supracrustal rock section; (b) and (c) Mafic gneisses interbedded with felsic gneisses; a coarse-grained leucosome dyke parallels to the mafic gneisses in Fig.8b; (d) and (e) Leucocratic felsic gneisses
图 9 冀东地区新太古代早期—中太古代晚期岩石的锆石阴极发光图像和U-Pb谐和图
a、b—2.91 Ga长英质片麻岩,草场(LP103;Liou et al., 2019);c、d—2.92 Ga长英质片麻岩,与样品LP103同一位置(LP100;Liou et al., 2019);e、f—2.94 Ga英云闪长质片麻岩,曹庄(J0602; Nutman et al., 2011);g、h—2.59 Ga奥长花岗质片麻岩,刘皮庄(J1308)
Figure 9. CL images and SHRIMP U-Pb concordia diagrams for the zircons from the late Mesoarchean– early Neoarchean rocks in eastern Hebei
(a) and (b) 2.91 Ga felsic gneiss, Caochang (LP103; Liou et al., 2019); (c) and (d) 2.92 Ga felsic gneiss (LP100; Liou et al., 2019), same location as the sample LP103; (e) and (f) 2.94 Ga tonalitic gneiss, Caozhuang (J0602; Nutman et al., 2011); (g) and (h) 2.59 Ga trondhjemitic gneiss, Liupizhuang (J1308)
图 10 冀东地区新太古代早期—中太古代晚期岩石的野外照片
a—2.94 Ga英云闪长质片麻岩,曹庄(J0602;Nutman et al., 2011);b—2.59 Ga奥长花岗质片麻岩,刘皮庄(J1308)
Figure 10. Field photographs of the late Mesoarchean–early Neoarchean granitoids in eastern Hebei
(a) 2.94 Ga tonalitic gneiss, Caozhuang (J0602; Nutman et al., 2011); (b) 2.59 Ga trondhjemitic gneiss, Liupizhuang (J1308)
图 11 白云鄂博‒固阳地区地质图(底图据Jian et al.,2012修改;图中给出了新太古代早期定年岩石样品的位置,数据来源董晓杰等,2012;马铭株等,2013;董春艳等,2021)
Figure 11. Geological map of the Bayan Obe–Guyang area (modified after Jian et al.,2012), showing the locations of the dated early Neoachean rock samples (Dong et al.,2012; Ma et al., 2013; Dong et al., 2021)
图 12 白云鄂博‒固阳地区新太古代早期岩石的野外照片
a—2.70 Ga英云闪长质片麻岩(NM1322),包裹变质超基性岩,固阳东北;b—2.68 Ga二长花岗质片麻岩(NM1325-2),合教东;c—2.60 Ga奥长花岗质片麻岩(NM1234),固阳东北;d—2.63 Ga英云闪长质片麻岩(BY1331),白云鄂博东南(董春艳等,2021)
Figure 12. Field photographs of the early Neoarchean rocks in the Bayan Obe–Guyang area
(a) 2.70 Ga tonalitic gneiss (NM1322), containing a meta-ultra-mafic rock enclave, northeast of Guyang; (b) 2.68 Ga monzogranitic gneiss (NM1325-2), east of Hejiao; (c) 2.60 Ga trondhjemitic gneis (NM1234), northeast of Guyang; (d) 2.63 Ga tonalitic gneiss (BY1331), southeast of the Bayan–Obe area (Dong et al., 2021)
图 13 白云鄂博‒固阳地区新太古代早期岩石的锆石阴极发光图像和U-Pb谐和图
a、b—2.70 Ga英云闪长质片麻岩(NM1322),固阳东北;c、d—2.68 Ga二长花岗质片麻岩(NM1325-2),合教东;e、f—2.60 Ga奥长花岗质片麻岩(NM1234),固阳东北;g、h—2.63 Ga英云闪长质片麻岩(BY1331),白云鄂博东南(董春艳等,2021)
Figure 13. CL images and SHRIMP U-Pb concordia diagrams for the zircons from the early Neoarchean rocks in the Bayan Obe–Guyang area
(a) and (b) 2.70 Ga tonalitic gneiss (NM1322), containing a meta-ultra-mafic rock enclave, northeast of Guyang; (c) and (d) 2.68 Ga monzogranitic gneiss (NM1325-2), east of Hejiao; (e) and (f) 2.60 Ga trondhjemitic gneiss (NM1234), northeast of Guyang; (g) and (h) 2.63 Ga tonalitic gneiss (BY1331), southeast of the Bayan–Obe area (Dong et al., 2021)
图 14 胶东地区地质图(Wan et al., 2015;图中给出了太古宙岩石定年样品空间分布(栖霞地区除外)和图15的位置)
Figure 14. Geological map of eastern Shandong Province, North China Craton (Wan et al., 2015), showing the spatial distribution of the dated Archean rock samples (except the Qixia area) and the location of Fig.15
图 15 栖霞地区地质图(万渝生等,2017;Wan et al., 2021;图中给出了太古宙定年样品位置,三角、方框和圆圈分别代表2.9 Ga、2.7 Ga和2.5 Ga岩石样品)
Figure 15. Geological map of the Qixia area (Wan et al., 2017; Wan et al., 2021), showing the spatial distribution of the dated Archean rocks, with triangle, square and circle represent 2.9 Ga, 2.7 Ga and 2.5 Ga rock samples, respectively
图 16 栖霞地区太古宙岩浆岩的Nd-Hf同位素组成(Wan et al., 2021)
a—全岩εNd(t)−年龄图;b—锆石εHf(t)−年龄图
Figure 16. Nd-Hf isotopic composition of the Archean magmatic rocks in the Qixia area (Wan et al., 2021)
(a) Whole-rock εNd(t) vs. age diagram; (b) zircon εHf(t) vs. age diagram
图 17 胶东莱州地区太古宙岩石的野外照片(万渝生等,2019a)
a—2.88 Ga带状英云闪长岩(JD1423),下埠东;b—2.92 Ga 闪长质片麻岩(JD1424),与样品JD1423位置相同;c—2.73 Ga条带状英云闪长岩(JD1422),张家埠;d—2.70 Ga英云闪长质片麻岩(JD1427),包裹变质辉长岩包体,下埠南
Figure 17. Field photographs of the Archean rocks in the Laizhou area, eastern Shandong (Wan et al., 2019a)
(a) 2.88 Ga banded tonalite (JD1423), east of Xiafu; (b) 2.92 Ga dioritic gneiss (JD1424), same location as the sample JD1423; (c) 2.73 Ga banded tonalite (JD1422), Zhangjiafu; (d) 2.70 Ga tonalitic gneiss (JD1427), containing meta-gabbro enclaves, south of Xiafu
图 18 胶东莱州地区太古宙岩石的锆石阴极发光图像和U-Pb谐和图(万渝生等,2019a)
a、b—2.88 Ga带状英云闪长岩(JD1423),下埠东;c、d—2.92 Ga 闪长质片麻岩(JD1424),与样品JD1423位置相同;e、f—2.73 Ga条带状英云闪长岩(JD1422),张家埠;g、h—2.70 Ga英云闪长质片麻岩(JD1427),下埠南
Figure 18. CL images and SHRIMP U-Pb concordia diagrams for zircons from the Archean rocks in the Laizhou area, eastern Shandong (Wan et al., 2019a)
(a) and (b) 2.88 Ga banded tonalite (JD1423), east of Xiafu; (c) and (d) 2.92 Ga dioritic gneiss (JD1424), same location as the sample JD1423; (e) and (f) 2.73 Ga banded tonalite (JD1422), Zhangjiafu; (g) and (h) 2.70 Ga tonalitic gneiss (JD1427), south of Xiafu
图 19 鲁西七星台地区地质图(底图据Bai et al., 2020;图中给出了新太古代早期定年样品位置,数据来源马铭株等,2020)
Figure 19. Geological map of the Qixingtai area, western Shandong (Bai et al., 2020), showing the locations of the dated early Neoachean rock samples (Ma et al., 2020)
图 20 鲁西地区新太古代早期侵入岩的锆石年龄变化(马铭株等,2020)
黑线和红色虚线分别代表岩浆年龄和变质年龄
Figure 20. Zircon age variation for the early Neoarchean magmatic rocks in west Shandong (Ma et al., 2020)
Black line and red dotted line represent magmatic and metamorphic ages, respectively
图 21 鲁西七星台地区新太古代早期变质超基性岩—中性岩的野外照片(马铭株等,2020)
a—2.66 Ga变质闪长岩(16L4D2-2),被包裹在~2.6 Ga 奥长花岗质片麻岩中,官营西南;b—变质辉长岩‒辉石岩侵入新太古代早期柳杭岩组斜长角闪岩,界线附近又有伟晶岩脉侵入,官营东;c—2.68 Ga变质辉长岩(16L9D3-2),与变质辉石岩空间上共生,位置同图21b;d—变质辉长岩和变质辉石岩空间上共生,~2.6 Ga变质辉长闪长岩(17L11D2-2)取自该露头附近,东野坡南
Figure 21. Field photographs of the early Neoarchean meta-ultramafic to intermediate rocks in the Qixingtai area, western Shandong (Ma et al., 2020)
(a) 2.66 Ga meta-diorite (16L4D2-2), occurring as enclaves in ~2.6 Ga trondhjemitic gneiss, southwest of Guanying; (b) Meta-gabbro–pyroxenite, intruding the amphibolite of the early Neoarchean Liuhang Group, and cut by pegmatite dyke near the boundary, east of Guanying; (c) 2.68 Ga meta-gabbro (16L9D3-2), contacting with meta-pyroxenite, same location as Fig 21b; (d) Meta-gabbro, contacting with meta-pyroxenite, ~2.6 Ga meta-gabbro sample 17L11D2-2 is taken near the outcrop, south of Dongyepo
图 22 鲁西七星台地区新太古代早期变质超基性岩—中性岩的锆石阴极发光图像和U-Pb谐和图(马铭株等,2020)
a、b—2.66 Ga变质闪长岩(16L4D2-2),官营西南;c、d—2.68 Ga变质辉长岩(16L9D3-2),官营东;e、f—~2.6 Ga变质辉长闪长岩(17L11D2-2),东野坡南
Figure 22. CL images and SHRIMP U-Pb concordia diagrams for the zircons from the early Neoarchean meta-ultramafic to intermediate rocks in the Qixingtai area, western Shandong (Ma et al., 2020)
(a) and (b) 2.66 Ga meta-diorite (16L4D2-2), southwest of Guanying; (c) and (d) 2.68 Ga meta-gabbro (16L9D3-2), east of Guanying; (e) and (f) ~2.6 Ga meta-gabbro (17L11D2-2), south of Dongyepo
图 23 蚌埠地区地质图(底图据刘贻灿等,2015;图中给出了中太古代晚期定年样品位置,数据来源Liu et al., 2019)
Figure 23. Geological map of the Bengbu area (Liu et al., 2015) , showing the locations of the dated late Mesoarchean rock samples (Liu et al., 2019)
图 24 蚌埠地区中太古代晚期花岗质岩石的锆石阴极发光图像和U-Pb谐和图(Liu et al., 2019)
a、b—2.93 Ga 花岗闪长质片麻岩(14BB44-1),凤阳东南;c、d—2.83 Ga 花岗闪长质片麻岩(14BB35-1),五河南a、c中白色圆圈(50 μm和35 μm)分别为Lu-Hf和U-Pb分析位置;数字为207Pb/206Pb年龄和εHf(t)值
Figure 24. CL images and SHRIMP U-Pb concordia diagrams for the zircons from the late Mesoarchean granitoids in the Bengbu area (Liu et al., 2019)
(a) and (b) 2.93 Ga granodioritic gneiss (14BB44-1), southeast of Fengyang; (c) and (d) 2.83 Ga granodioritic gneiss (14BB35-1), south of Wuhe. Circles (50 μm and 35 μm) show the positions of Lu-Hf and U-Pb analytical sites, respectively, with 207Pb/206Pb ages and εHf(t) values shown
图 25 鲁山地区地质图(底图据Liu et al., 2009a;图中给出了新太古代早期—中太古代晚期定年样品位置,数据来源Liu et al., 2009a;Diwu et al., 2010;Zhou et al., 2014; Jia et al., 2020)
Figure 25. Geological map of the Lushan area (Liu et al., 2009a), showing the locations of the dated late Mesoarchean–early Neoarchean rock samples (Liu et al., 2009a; Diwu et al., 2010; Zhou et al., 2014; Jia et al., 2020)
图 26 鲁山地区中太古代岩石的野外照片(Liu et al., 2009a)
a—2.84 Ga层状斜长角闪岩(LS0417-1),瓦屋东北;b—2.83 Ga片麻状英云闪长岩(LS0417-2),背深熔浅色体细脉切割,瓦屋东北
Figure 26. Field photographs of the Mesoarchean rocks in the Lushan area (Liu et al., 2009a)
(a) 2.84 Ga interlayered amphibolite (LS0417-1), northeast of Wawu; (b) 2.83 Ga gneissic tonalite (LS0417-2) cut by thin anatectic dykes, field of view is 1.3 m wide, northeast of Wawu
图 27 鲁山地区中太古代岩石的锆石阴极发光图像和U-Pb谐和图(Liu et al., 2009a)
a、b—2.84 Ga层状斜长角闪岩(LS0417-1),瓦屋东北;c、d—2.83 Ga片麻状英云闪长岩(LS0417-2),瓦屋东北
Figure 27. CL images and SHRIMP U-Pb concordia diagrams for the zircons from the Mesoarchean rocks in the Lushan area (Liu et al., 2009a)
(a) and (b) 2.84 Ga interlayered amphibolite (LS0417-1), northeast of Wawu; (c) and (d) 2.83 Ga gneissic tonalite (LS0417-2), northeast of Wawu
图 31 华北克拉通新太古代早期—中太古代晚期花岗质岩石的Sr/Y-Y和La/Yb-Yb图解(Moyen, 2011)
Figure 31. Sr/Y-Y diagram and La/Yb-Yb diagram (for the late Mesoarchean–early Neoarchean granitoids in the North China Craton( Moyen, 2011)
图 36 华北克拉通新太古代早期—中太古代晚期岩石的Nd-Hf同位素组成
a—全岩Nd一阶段模式年龄‒年龄图;b—岩浆锆石Hf一阶段模式年龄‒年龄图
Figure 36. Nd-Hf isotopic compositions of the late Mesoarchean–early Neoarchean rocks in the North China Craton
(a) Whole-rock two-stage Nd model age versus formation age diagram; (b) Magmatic zircon two-stage Hf model age versus formation age
图 39 华北克拉通新太古代早期—中太古代晚期花岗质岩石的Nb-Y和Ta-Yb图解(底图据Pearce et al., 1984)
syn-COLG—碰撞花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩;ORG—洋脊花岗岩;虚线代表来自异常洋脊的ORG上部边界
Figure 39. Nb–Y and Ta–Yb diagrams from Pearce et al. (1984) for the late Mesoarchean–early Neoarchean granitoids in the North China Craton
syn-COLG—Syn-collision granites; VAG—Volcanic arc granites; WPG—With plate granites; ORG—Ocean ridge granites. The dashed line represents the upper compositional boundary for ORG from anomalous ridge segments
图 40 华北克拉通大陆地壳生长线(万渝生,2018;不同的全球大陆地壳生长线引自Cawood et al.,2013)
Figure 40. Crustal growth curve of the North China Craton (Wan, 2018), also showing the global crustal growth curves from different authors (Cawood et al., 2013)
1–Goodwin, 1996; 2–Hurley and Rand, 1969; 3–Allégre and Rousseau, 1984; 4–Condie and Aster, 2010; 5–Belousova et al., 2010; 6–Taylor and McLennan, 1985; 7–Dhuime et al., 2012; 8–Armstrong, 1981
-
BAI W Q, DONG C Y, NUTMAN A P, et al. , 2019. Timing of late Neoarchean to late Paleoproterozoic events in the North China Craton: SHRIMP U-Pb dating and LA-ICP-MS Hf isotope analysis of zircons from magmatic and metamorphic rocks in the Santunying area, eastern Hebei[J]. Gondwana Research, 76: 348-372. doi: 10.1016/j.gr.2019.06.005 BAI W Q, DONG C Y, SONG Z Y, et al. , 2020. Late Neoarchean granites in the Qixingtai region, western Shandong: further evidence for the recycling of early Neoarchean juvenile crust in the North China Craton[J]. Geological Journal, 55(9): 6462-6486. doi: 10.1002/gj.3824 BAO H, LIU S W, WAN Y S, et al. , 2022. Neoarchean granitoids and tectonic regime of lateral growth in northeastern North China Craton[J]. Gondwana Research, 107: 176-200. doi: 10.1016/j.gr.2022.02.015 CAWOOD P A, HAWKESWORTH C J, DHUIME B, 2013. The continental record and the generation of continental crust[J]. GSA Bulletin, 125(1-2): 14-32. doi: 10.1130/B30722.1 CAO G Q, 1996. Early Precambrian Geology of western Shandong[M]. Geological Publishing House, Beijing, 1–210 (in Chinese with English abstract) CLARK C, COLLINS A S, TIMMS N E, et al. , 2009. SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India[J]. Gondwana Research, 16(1): 27-36. doi: 10.1016/j.gr.2008.11.001 CONDIE K C, 2000. Episodic continental growth models: afterthoughts and extensions[J]. Tectonophysics, 322(1-2): 153-162. doi: 10.1016/S0040-1951(00)00061-5 CONDIE K C, BEYER E, BELOUSOVA E, et al. , 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust[J]. Precambrian Research, 139(1-2): 42-100. doi: 10.1016/j.precamres.2005.04.006 CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. , 2009. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 15(3-4): 228-242. doi: 10.1016/j.gr.2008.06.001 DIWU C R, SUN Y, LIN C L, et al. , 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton[J]. Chinese Science Bulletin, 55(23): 2557-2571. doi: 10.1007/s11434-010-3273-6 DIWU C R, SUN Y, GUO A L, et al. , 2011. Crustal growth in the North China Craton at ~2.5 Ga: evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex[J]. Gondwana Research, 20(1): 149-170. doi: 10.1016/j.gr.2011.01.011 DIWU C R, WANG T Y, YAN J H, 2020. New evidence for Neoarchean (ca. 2.7 Ga) crustal growth in the North China Craton[J]. Precambrian Research, 350: 105921. doi: 10.1016/j.precamres.2020.105921 DONG C Y, WAN Y S, XIE H Q, et al. , 2017a. The Mesoarchean Tiejiashan-Gongchangling potassic granite in the Anshan-Benxi area, North China Craton: origin by recycling of Paleo- to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies[J]. Lithos, 290-291: 116-135. doi: 10.1016/j.lithos.2017.08.009 DONG C Y, XIE H Q, KRÖNER A, et al. , 2017b. The complexities of zircon crystllazition and overprinting during metamorphism and anatexis: an example from the late Archean TTG terrane of western Shandong Province, China[J]. Precambrian Research, 300: 181-200. doi: 10.1016/j.precamres.2017.07.034 DONG C Y, BAI W Q, XIE H Q, et al. , 2021. Early Neoarchean oceanic crust in the North China Craton: evidence from geology, geochemistry and geochronology of greenstone belts in western Shandong[J]. Lithos, 380-381: 105888. doi: 10.1016/j.lithos.2020.105888 DONG C Y, MA M Z, XIE H Q, et al. , 2021. Magmatism and metamorphism of the early Precambrian basement in the Bayan Obo area, Inner Mongolia: zircon SHRIMP U-Pb Dating and LA-MC-ICPMS Hf analysis[J]. Acta Petrologica Sinica, 37(2): 417-432. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.02.06 DONG X J, XU Z Y, LIU Z H, et al. , 2012. 2.7 Ga granitic gneiss in the Northern Foot of Daqingshan Mountain, Central Inner Mongolia, and its geological implications[J]. Earth Science—Journal of China University of Geosciences, 37(S1): 20-27. (in Chinese with English abstract) DONG X J, XU Z Y, LIU Z H, et al. , 2012. Zircon U-Pb geochronology of Archean high-grade metamorphic rocks from Xi Ulanbulang area, central Inner Mongolia[J]. Science China Earth Sciences, 55(2): 204-212. doi: 10.1007/s11430-011-4360-5 DRÜPPEL K, MCCREADY A J, STUMPFL E F, 2009. High-K granites of the Rum Jungle Complex, N-Australia: insights into the Late Archean crustal evolution of the North Australian Craton[J]. Lithos, 111(3-4): 203-219. doi: 10.1016/j.lithos.2009.04.007 DU C Y, LIU Z H, LI P C, et al. , 2017. LA-ICP-MS zircon U-Pb dating, geochemical characteristics and geological significance of tonalitic gneisses from Banshigou area of southern Jilin[J]. Global Geology, 36(3): 734-750. (in Chinese with English abstract) DU L L, ZHUANG Y X, YANG C H, et al. , 2003. Characters of zircons in the Mengjiatun formation in Xintai of Shandong and their chronological significance[J]. Acta Geologica Sinica, 77(3): 359-366. (in English with Chinese abstract) DU L L, ZHUANG Y X, YANG C H, et al. , 2005. SHRIMP U-Pb zircon chronology of fine-grained amphibolite in the Mengjiatun area, western Shandong[J]. Acta Geoscientica Sinica, 26(5): 429-434. (in English with Chinese abstract) DU L L, YANG C H, ZHUANG Y X, et al. , 2010. Hf isotopic compositions of zircons from 2.7 Ga metasedimentary rocks and biotite-plagioclase gneiss in the Mengjiatun Formation Complex, western Shandong Province[J]. Acta Geologica Sinica, 84(7): 991-1001. (in Chinese with English abstract) DUAN R H, LIU C H, SHI J R, 2021. Late Neoarchean magmatic arc extends westward in the southern of Yinshan Block: evidence from geochronology and geochemistry of the Wulatezhongqi and Wulatehouqi area[J]. Acta Petrologica Sinica, 37(5): 1372-1404. (in Chinese with English abstract) FAN H R, YANG K F, HU F F, et al. , 2010. Zircon geochronology of basement rocks from the Bayan Obo area, Inner Mongolia, and tectonic implications[J]. Acta Petrologica Sinica, 26(5): 1342-1350. (in Chinese with English abstract) FU J H, LIU S W, CHEN X, et al. , 2016. Petrogenesis of taxitic dioritic-tonalitic gneisses and Neoarchean crustal growth in Eastern Hebei, North China Craton[J]. Precambrian Research, 284: 64-87. doi: 10.1016/j.precamres.2016.08.002 GENG Y S, DU L L, REN L D, 2012. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes[J]. Gondwana Research, 21(2-3): 517-529. doi: 10.1016/j.gr.2011.07.006 GUAN H, SUN M, WILDE S A, et al. , 2002. SHRIMP U-Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton[J]. Precambrian Research, 113(1-2): 1-18. doi: 10.1016/S0301-9268(01)00197-8 GUO B R, LIU S W, ZHANG J, et al. , 2015. Zircon U-Pb-Hf isotope systematics and geochemistry of Helong granite-greenstone belt in Southern Jilin Province, China: implications for Neoarchean crustal evolution of the northeastern margin of North China Craton[J]. Precambrian Research, 271: 254-277. doi: 10.1016/j.precamres.2015.10.009 HAN B F, XU Z, REN R, et al. , 2012. Crustal growth and intracrustal recycling in the middle segment of the Trans-North China Orogen, North China Craton: a case study of the Fuping Complex[J]. Geological Magazine, 149(4): 729-742. doi: 10.1017/S0016756811001014 HUANG X L, NIU Y L, XU Y G, et al. , 2010. Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: implications for late Archean crustal accretion[J]. Precambrian Research, 182(1-2): 43-56. doi: 10.1016/j.precamres.2010.06.020 JAHN B M, LIU D Y, WAN Y S, et al. , 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 308(3): 232-269. doi: 10.2475/03.2008.03 JAYANANDA M, MOYEN J F, MARTIN H, et al. , 2000. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry[J]. Precambrian Research, 99(3-4): 225-254. doi: 10.1016/S0301-9268(99)00063-7 JIA X L, ZHU X Y, ZHAI M G, et al. , 2016. Late Mesoarchean crust growth event: evidence from the ca. 2.8 Ga Granodioritic gneisses of the Xiaoqinling area, southern North China Craton[J]. Science Bulletin, 61(12): 974-990. doi: 10.1007/s11434-016-1094-y JIA X L, ZHAI M G, XIAO W J, et al. , 2020. Mesoarchean to Paleoproterozoic crustal evolution of the Taihua Complex in the southern North China Craton[J]. Precambrian Research, 337: 105451. doi: 10.1016/j.precamres.2019.105451 JIAN P, ZHANG Q, LIU D Y, et al. , 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia[J]. Acta Petrologica Sinica, 21(1): 151-157. (in Chinese with English abstract) JIAN P, KRÖNER A, WINDLEY B F, et al. , 2012. Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton: zircon ages of magmatic and metamorphic rocks from the Yinshan Block[J]. Precambrian Research, 222-223: 230-254. doi: 10.1016/j.precamres.2012.03.002 JIANG N, GUO J H, ZHAI M G, et al. , 2010. ~2.7 Ga crust growth in the North China craton[J]. Precambrian Research, 179(1-4): 37-49. doi: 10.1016/j.precamres.2010.02.010 KEMP A I S, WILDE S A, HAWKESWORTH C J, et al. , 2010. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons[J]. Earth and Planetary Science Letters, 296(1-2): 45-56. doi: 10.1016/j.jpgl.2010.04.043 KRÖNER A, COMPSTON W, ZHANG G W, et al. , 1988. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating[J]. Geology, 16(3): 211-215. doi: 10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2 KRÖNER A, WILDE S A, O‘BRIEN P J O, et al. , 2005a. Field relationships, geochemistry, zircon ages and evolution of a late Archaean to Palaeoproterozoic lower crustal section in the Hengshan terrain of northern China[J]. Acta Geologica Sinica (English Edition), 79(5): 605-629. KRÖNER A, WILDE S A, LI J H, et al. , 2005b. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China[J]. Journal of Asian Earth Sciences, 24(5): 577-595. doi: 10.1016/j.jseaes.2004.01.001 LI Y, XIE H Q, DONG C Y, et al. , 2022. Source characteristics of Late Neoarchean diatexite in the Yishan area, western Shandong[J]. Acta Petrologica Sinica, 38(3): 598-618. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.03.02 LI Y, XIE H Q, DONG C Y, et al., 2022. Zircon evolution from migmatite to crustally-derived granite: a case study of late Neoarchean migmatite in the Yishan area, western Shandong, North China Craton[J]. Gandwana Research (in press) LI Z, WEI C J, CHEN B, et al. , 2020. Late Neoarchean reworking of the Mesoarchean crustal remnant in northern Liaoning, North China Craton: a U-Pb-Hf-O-Nd perspective[J]. Gondwana Research, 80: 350-369. doi: 10.1016/j.gr.2019.10.020 LIOU P, GUO J H, HUANG G Y, et al. , 2019. 2.9 Ga magmatism in Eastern Hebei, North China Craton[J]. Precambrian Research, 326: 6-23. doi: 10.1016/j.precamres.2017.11.002 LIU C H, ZHAO G C, LIU F L, et al. , 2019. A Palaeoarchean–Mesoarchean micro-continent entrained in the Jiao-Liao-Ji Belt at the southeastern North China Craton: evidence from the zircon record in the Bengbu area[J]. Geological Magazine, 156(9): 1565-1586. doi: 10.1017/S0016756818000869 LIU D Y, NUTMAN A P, COMPSTON W, et al. , 1992. Remnants of≥3800 Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 20(4): 339-342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 LIU D Y, WILDE S A, WAN Y S, et al. , 2009a. Combined U–Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean–Early Neoarchean[J]. Chemical Geology, 261(1-2): 140-154. doi: 10.1016/j.chemgeo.2008.10.041 LIU F, GUO J H, LU X P, et al. , 2009b. Crustal growth at ~2.5 Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane[J]. Chinese Science Bulletin, 54(24): 4704-4713. LIU J, LIU Z H, ZHAO C, et al. , 2017. Petrogenesis and zircon LA-ICP-MS U-Pb dating of newly discovered Mesoarchean gneisses on the northern margin of the North China Craton[J]. International Geology Review, 59(12): 1575-1589. doi: 10.1080/00206814.2017.1285729 LIU J H, LIU F L, LIU P H, et al. , 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area: evidences from the zircon U-Pb dating of TTG and granitic gneisses[J]. Acta Petrologica Sinica, 27(4): 943-960. (in Chinese with English abstract) LIU S J, DONG C Y, XU Z Y, et al. , 2013. Palaeoproterozoic episodic magmatism and high-grade metamorphism in the North China Craton: evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area[J]. Geological Journal, 48(5): 429-455. doi: 10.1002/gj.2453 LIU Y C, WANG C C, ZHANG P G, et al. , 2015. Granulite facies metamorphism, partial melting and metasomatism in the Wuhe complex at the southeastern margin of the North China Block[J]. Journal of Earth Sciences and Environment, 37(1): 1-11. (in Chinese with English abstract) LU S N, CHEN Z H, XIANG Z Q, 2008. The world geopark of Taishan: geochronological framework of Ancient Intrusives[M]. Beijng: Geological Publishing House: 1-90. (in Chinese) LU X P, WU F Y, LIN J Q, et al. , 2004. Geochronological successions of the early Precambrian granitic magmatism in southern Liaodong peninsula and its constraints on tectonic evolution of the North China Craton[J]. Chinese Journal of Geology, 39(1): 123-138. (in Chinese with English abstract) LU Z L, SONG H X, DU L L, et al. , 2014. Delineation of the ca. 2.7Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance[J]. Acta Petrologica Sinica, 30(10): 2872-2884. (in Chinese with English abstract) MA M Z, XU Z Y, ZHANG L C, et al. , 2013. SHRIMP dating and Hf isotope analysis of zircons from the Early Precambrian basement in the Xi Ulanbulang area, Wuchuan, Inner Mongolia[J]. Acta Petrologica Sinica, 29(2): 501-516. (in Chinese with English abstract) MA M Z, ZHANG Y X, XIE H Q, et al. , 2013. SHRIMP U-Pb dating and LA-ICPMS Hf isotope analysis of detrital zircons from medium-to coarse-grained sandstones of the Bayan Obo Group and Sailinhudong Group and its geological significances[J]. Acta Petrologica Sinica, 30(10): 2973-2988. (in Chinese with English abstract) MA M Z, WAN Y S, XIE H Q, et al. , 2020. Neoarchean mafic magmatism in Qixingtai area, west Shandong: formation ages and compositions of meta-gabbros[J]. Earth Science, 45(7): 2610-2628. (in Chinese with English abstract) MA X D, FAN H R, GUO J H, 2013. Neoarchean magmatism, metamorphism in the Yinshan Block: implication for the genesis of BIF and crustal evolution[J]. Acta Petrologica Sinica, 29(7): 2329-2339. (in Chinese with English abstract) MA X D, FAN H R, SANTOSH M, et al. , 2013a. Geochemistry and zircon U-Pb chronology of charnockites in the Yinshan Block, North China Craton: tectonic evolution involving Neoarchaean ridge subduction[J]. International Geology Review, 55(13): 1688-1704. doi: 10.1080/00206814.2013.796076 MA X D, GUO J H, LIU F, et al. , 2013b. Zircon U-Pb ages, trace elements and Nd-Hf isotopic geochemistry of Guyang sanukitoids and related rocks: implications for the Archean crustal evolution of the Yinshan Block, North China Craton[J]. Precambrian Research, 230: 61-78. doi: 10.1016/j.precamres.2013.02.001 MA X D, FAN H R, SANTOSH M, et al. , 2014a. Chronology and geochemistry of Neoarchean BIF-type iron deposits in the Yinshan Block, North China Craton: implications for oceanic ridge subduction[J]. Ore Geology Reviews, 63: 405-417. doi: 10.1016/j.oregeorev.2014.02.010 MA X D, FAN H R, SANTOSH M, et al. , 2014b. Origin of sanukitoid and hornblendite enclaves in the Dajitu pluton from the Yinshan Block, North China Craton: product of Neoarchaean ridge subduction?[J]. International Geology Review, 56(10): 1197-1212. doi: 10.1080/00206814.2014.929055 MOYEN J F, 2011. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 123(1-4): 21-36. doi: 10.1016/j.lithos.2010.09.015 NUTMAN A P, WAN Y S, DU L L, et al. , 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei[J]. Precambrian Research, 189(1-2): 43-65. doi: 10.1016/j.precamres.2011.04.005 PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 POLAT A, LI J, FRYER B, et al. , 2006. Geochemical characteristics of the Neoarchean (2800-2700 Ma) Taishan greenstone belt, North China Craton: evidence for plume-craton interaction[J]. Chemical Geology, 230(1-2): 60-87. doi: 10.1016/j.chemgeo.2005.11.012 QIAN C, CHEN H J, LU L, et al. , 2018. The discovery of Neoarchean granite in Longjiang area, Heilongjiang Province[J]. Acta Geoscientica Sinica, 39(1): 27-36. (in Chinese with English abstract) REN P, XIE H Q, WANG S J, et al. , 2016. A ca. 2.60 Ga tectono-thermal event in Western Shandong Province, North China Craton from zircon U–Pb–O isotopic evidence: plume or convergent plate boundary process[J]. Precambrian Research, 281: 236-252. doi: 10.1016/j.precamres.2016.05.016 SHAN H X, ZHAI M G, WANG F, et al. , 2013. Geochemical characteristics and petrogenesis of the two types of Neoarchean gneisses from the Jiaobei terrane[J]. Acta Petrologica Sinica, 29(7): 2295-2312. (in Chinese with English abstract) SHAO J, LI Y F, ZHOU Y H, et al. , 2015. Neo-archaean magmatic event in erguna massif of Northeast China: evidence from the zircon LA-ICP-MS dating of the gneissic monzogranite from the drill[J]. Journal of Jilin University (Earth Science Edition), 45(2): 364-373. (in Chinese with English abstract) SHAO J, LI Y L, WANG D L, et al. , 2021. Geochemical and Nd-Hf Isotopic Constraints on the Petrogenesis of an Archean Granitoid in the Erguna Massif, NE China[J]. Acta Geologica Sinica (English Edition), 95(6): 2033-2044. doi: 10.1111/1755-6724.14645 SHEN Q H, GENG Y S, SONG B, et al. , 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze Blocks, and Qinling-Dabie Orogenic Belt[J]. Acta Geologica Sinica, 79(5): 616-627. (in Chinese with English abstract) SHI Y R, ZHAO X T, 2017. Early Neoarchean magmatic and Paleoproterozoic metamorphic events in the Northern North China Craton: SHRIMP zircon dating and Hf isotopes of Archean rocks from the Miyun area, Beijing[J]. Acta Geologica Sinica (English Edition), 91(3): 988-1002. doi: 10.1111/1755-6724.13320 SUN H Y, YANG Y, WANG C C, et al. , 2021. Petrogenesis and tectonic significance of Neoarchean (~2.6 Ga) alkaline ultrapotassic granitic gneisses from the southeastern margin of the North China Craton: constraints from U-Pb dating, Hf isotope and petrogeochemistry[J]. Lithos, 398-399: 106324. doi: 10.1016/j.lithos.2021.106324 SUN G Z, LIU S W, GAO L, et al. , 2020. Origin of late Neoarchean granitoid diversity in the Western Shandong province, North China Craton[J]. Precambrian Research, 339: 105620. doi: 10.1016/j.precamres.2020.105620 SUN H Y, XIE H Q, LIU S J, et al. , 2016. Archean magmatism and metamorphism in the Huangbaiyu-Yangyashan area, eastern Hebei Province: evidence from SHRIMP zircon U-Pb dating[J]. Geological Bulletin of China, 35(1): 27-42. (in Chinese with English abstract) TANG J, ZHENG Y F, WU Y B, et al. , 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: constraints on its tectonic affinity in the Sulu orogen[J]. Precambrian Research, 152(1-2): 48-82. doi: 10.1016/j.precamres.2006.09.001 VALLEY J W, LACKEY J S, CAVOSIE A J, et al., 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contribution to Mineralogy and Petrology 150, 561–580. VAVRA G, SCHMID R, GEBAUER D , 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea zone (southern Alps). Contributions to Mineralogy and Petrology 134: 380–404. VEEVERS J J, SAEED A, 2009. Permian–Jurassic Mahanadi and Pranhita-Godavari Rifts of Gondwana India: provenance from regional paleoslope and U-Pb/Hf analysis of detrital zircons[J]. Gondwana Research, 16(3-4): 633-654. doi: 10.1016/j.gr.2009.05.013 WAN Y S, LIU D Y, 1993. Ages of zircons from Mid-Archaean gneissic granite and fuchsite quartzite in the Gongchangling area, Liaoning[J]. Geological Review, 39(2): 124-129. (in Chinese with English abstract) WAN Y S, LIU D Y, WU J S, et al. , 1998. The origin of mesoarchaean granitic rocks from Anshan Benxi area: constraints of geochemistry and ND isotope[J]. Acta Petrologica Sinica, 14(3): 278-288. (in Chinese with English abstract) WAN Y S, WILDE S A, LIU D Y, et al. , 2006. Further evidence for ~1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province[J]. Gondwana Research, 9(1-2): 189-197. doi: 10.1016/j.gr.2005.06.010 WAN Y S, DONG C Y, WANG W, et al. , 2010a. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China Craton: evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology[J]. Acta Geologica Sinica (English Edition), 84(1): 91-104. doi: 10.1111/j.1755-6724.2010.00173.x WAN Y S, LIU D Y, WANG S J, et al. , 2010b. Juvenile magmatism and crustal recycling at the end of the Neoarchean in Western Shandong Province, North China Craton: evidence from SHRIMP zircon dating[J]. American Journal of Science, 310(10): 1503-1552. doi: 10.2475/10.2010.11 WAN Y S, LIU D Y, WANG W, et al. , 2011a. Provenance of Meso- to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: an integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry[J]. Gondwana Research, 20(1): 219-242. doi: 10.1016/j.gr.2011.02.009 WAN Y S, LIU D Y, WANG S J, et al. , 2011b. ~2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon[J]. Precambrian Research, 186(1-4): 169-180. doi: 10.1016/j.precamres.2011.01.015 WAN Y S, WANG S J, LIU D Y, et al. , 2012. Redefinition of depositional ages of Neoarchean supracrustal rocks in western Shandong Province, China: SHRIMP U-Pb zircon dating[J]. Gondwana Research, 21(4): 768-784. doi: 10.1016/j.gr.2011.05.017 WAN Y S, XIE S W, YANG C H, et al. , 2014a. Early Neoarchean (~2.7 Ga) tectono-thermal events in the North China Craton: a synthesis[J]. Precambrian Research, 247: 45-63. doi: 10.1016/j.precamres.2014.03.019 WAN Y S, DONG C Y, WANG S J, et al. , 2014b. Middle Neoarchean magmatism in western Shandong, North China Craton: SHRIMP zircon dating and LA-ICP-MS Hf isotope analysis[J]. Precambrian Research, 255: 865-884. doi: 10.1016/j.precamres.2014.07.016 WAN Y S, LIU D Y, DONG C Y, et al., 2015. Formation and evolution of Archean continental crust of the North China Craton[M]//ZHAI M G. Precambrian geology of China. Berlin: Springer: 59-136. WAN Y S, SONG Z Y, WANG L M, et al. , 2017. Early Precambrian evo-lution of the Qixia area, eastern North China Craton: evidence from geological mapping and SHRIMP U-Pb zircon dating[J]. Geological Bulletin of China, 36(11): 1927-1941. (in Chinese with English abstract) WAN Y S, 2018. Massive growth of early Archean continental core and Neoarchean continental crust[M]//ZHAI M G, ZHANG L C, CHEN B. Major precambrian geological events and mineralization in the North China craton. Beijing: Science Press: 39-55. (in Chinese) WAN Y S, GUO R P, TIAN J X, et al. , 2019a. Discovery of Mesoarchean-early Neoarchean TTG rocks in Laizhou area in eastern Shandong of North China Craton: SHRIMP U-Pb zircon dating[J]. Shandong Land and Resources, 35(4): 1-16, 37. (in Chinese with English abstract) WAN Y S, XIE H Q, DONG C Y, et al. , 2019b. Report of geological map (1: 50000) of the Qixingtai area, Shandong Province[R]. (in Chinese) WAN Y S, XIE H Q, DONG C Y, et al. , 2020. Timing of tectonothermal events in Archean basement of the North China Craton[J]. Earth Science, 45(9): 3119-3160. (in Chinese with English abstract) WAN Y S, LIU S J, SONG Z Y, et al. , 2021. The complexities of Mesoarchean to late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: geology, geochemistry and SHRIMP U-Pb zircon dating[J]. American Journal of Science, 321(1-2): 1-82. doi: 10.2475/01.2021.01 WAN Y S, XIE H Q, WANG H C, et al. , 2021a. Discovery of ~3.8Ga TTG rocks in eastern Hebei, North China Craton[J]. Acta Geologica Sinica, 95(5): 1321-1333. (in Chinese with English abstract) WAN Y S, XIE H Q, WANG H C, et al. , 2021b. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, North China Craton[J]. Acta Geologica Sinica, 95(2): 277-291. (in Chinese with English abstract) WANG C Y, MENG E, LI Y G, et al. , 2017a. A new discovery of ~2.7 Ga granitic magmatism in southeastern Jilin province, China[J]. Acta Geologica Sinica (English Edition), 91(5): 1919-1923. doi: 10.1111/1755-6724.13424 WANG H C, KANG J L, REN Y W, et al. , 2015. Identification of ~2.7Ga BIF in North China Craton: evidence from geochronology of iron-bearing formation in Laizhou-Changyi area, Jiaobei terrane[J]. Acta Petrologica Sinica, 31(10): 2991-3011. (in Chinese with English abstract) WANG L M, 1989. Geological map of Qixia county sheet (1: 50000)[R]. Geological Publishing House. (in Chinese) WANG M J, LIU S W, FU J H, et al. , 2017b. Neoarchean DTTG gneisses in southern Liaoning Province and their constraints on crustal growth and the nature of the Liao-Ji Belt in the Eastern Block[J]. Precambrian Research, 303: 183-207. doi: 10.1016/j.precamres.2017.03.017 WANG W, TIAN Z H, LIU F L, 2022. The research progress of the Paleoarchean granite in the Gongchangling area: evidence from geology and zircon U-Th-Pb-Hf isotopic composition[J]. Acta Petrologica et Mineralogica, 41(2): 359-370. (in Chinese with English abstract) WANG X, HUANG X L, YANG F, et al. , 2017c. Late Neoarchean magmatism and tectonic evolution recorded in the Dengfeng Complex in the southern segment of the Trans-North China Orogen[J]. Precambrian Research, 302: 180-197. doi: 10.1016/j.precamres.2017.10.005 WILDE S A, VALLEY J W, KITA N T, et al. , 2008. SHRIMP U-Pb and CAMECA 1280 Oxygen isotope results from ancient detrital zircons in the Caozhuang Quartzite, Eastern Hebei, North China Craton: evidence for crustal reworking 3.8 Ga ago[J]. American Journal of Science, 308(3): 185-199. doi: 10.2475/03.2008.01 WU F Y, YANG J H, LIU X M, et al. , 2005a. Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: implications for early crustal evolution of the North China Craton[J]. Chinese Science Bulletin, 50(21): 2473-2480. doi: 10.1360/982005-629 WU F Y, ZHAO G C, WILDE S A, et al. , 2005b. Nd isotopic constraints on crustal formation in the North China Craton[J]. Journal of Asian Earth Sciences, 24(5): 523-545. doi: 10.1016/j.jseaes.2003.10.011 WU J S, GENG Y S, SHEN Q H, et al., 1998. Archaean geology characteristics and tectonic evolution of China-Korea Paleo-Continent[M]. Beijing: Geological Publishing House: 1-212. (in Chinese) WU M L, ZHAO G C, SUN M, et al. , 2014. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane: implications for the crustal evolution of the Eastern Block of the North China Craton[J]. Lithos, 190-191: 71-84. doi: 10.1016/j.lithos.2013.12.004 WU M L, LIN S F, WAN Y S, et al. , 2016. Crustal evolution of the Eastern Block in the North China Craton: constraints from zircon U-Pb geochronology and Lu-Hf isotopes of the Northern Liaoning complex[J]. Precambrian Research, 275: 35-47. doi: 10.1016/j.precamres.2015.12.013 WU M L, LIN S F, WAN Y S, et al. , 2021. Episodic Archean crustal accretion in the North China Craton: insights from integrated zircon U-Pb-Hf-O isotopes of the Southern Jilin Complex, northeast China[J]. Precambrian Research, 358: 106150. doi: 10.1016/j.precamres.2021.106150 WU X W, ZHANG C, ZHANG Y J, et al. , 2018. 2.7 Ga monzogranite on the Songnen Massif and its geological implications[J]. Acta Geologica Sinica (English Edition), 92(3): 1265-1266. doi: 10.1111/1755-6724.13609 XIE S W, XIE H Q, WANG S J, et al. , 2014. Ca. 2.9 Ga granitoid magmatism in eastern Shandong, North China Craton: zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry[J]. Precambrian Research, 255: 538-562. doi: 10.1016/j.precamres.2014.09.006 XIE S W, WANG S J, XIE H Q, et al. , 2015. Petrogenesis of ca. 2.7Ga TTG rocks in the Jiaodong terrane, North China craton and its geological implications[J]. Acta Petrologica Sinica, 31(10): 2974-2990. (in Chinese with English abstract) YANG C, WEI C J, 2017. Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: records from mafic granulites[J]. Precambrian Research, 301: 49-64. doi: 10.1016/j.precamres.2017.09.005 YANG C H, DU L L, REN L D, et al. , 2013. Delineation of the ca. 2.7 Ga TTG gneisses in the Zanhuang Complex, North China Craton and its geological implications[J]. Journal of Asian Earth Sciences, 72: 178-189. doi: 10.1016/j.jseaes.2012.09.031 ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018 ZHAI M G, SANTOSH M, 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005 ZHANG R Y, ZHANG C L, DIWU C R, et al. , 2012. Zircon U-Pb geochronology, geochemistry and its geological implications for the Precambrian granitoids in Zhongtiao Mountain, Shanxi Province[J]. Acta Petrologica Sinica, 28(11): 3559-3573. (in Chinese with English abstract) ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al. , 2009. Neoarchean (2.7-2.8 Ga) accretion beneath the North China Craton: U-Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites[J]. Lithos, 112(3-4): 188-202. doi: 10.1016/j.lithos.2009.02.003 ZHENG J P, GRIFFIN W L, MA Q, et al. , 2012. Accretion and reworking beneath the North China Craton[J]. Lithos, 149: 61-78. doi: 10.1016/j.lithos.2012.04.025 ZHENG J P, 2020. Internal and external factors in continental lithosphere mantle replacement in eastern China[J]. Journal of Geomechanics, 26(5): 742-758. ZHONG F D. 1984. Geochronological study of Archaean granite-gneisses in Anshan area, northeast China[J]. Geochimica(3): 195-205. (in Chinese with English abstract) ZHOU Y Y, ZHAO T P, XUE L W, et al. , 2009. Petrological, geochemical and chronological constraints for the origin and geological significance of Neoarchean TTG gneiss in the Songshan area, North China Craton[J]. Acta Petrologica Sinica, 25(2): 331-347. (in Chinese with English abstract) ZHOU Y Y, ZHAO T P, ZHAI M G, et al. , 2014. Petrogenesis of the Archean tonalite-trondhjemite-granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: implications for crustal accretion and transformation[J]. Precambrian Research, 255: 514-537. doi: 10.1016/j.precamres.2014.06.023 ZHOU Y Y, ZHAO T P, SUN Q Y, et al. , 2018. Geochronological and geochemical constraints on the petrogenesis of the 2.6-2.5 Ga amphibolites, low- and high-Al TTGs in the Wangwushan area, southern North China Craton: implications for the Neoarchean crustal evolution[J]. Precambrian Research, 307: 93-114. doi: 10.1016/j.precamres.2018.01.013 ZHU X Y, ZHAI M G, CHEN F K, et al. , 2013. ~2.7-Ga crustal growth in the North China Craton: evidence from zircon U-Pb ages and Hf isotopes of the Sushui Complex in the Zhongtiao terrane[J]. The Journal of Geology, 121(3): 239-254. doi: 10.1086/669977 ZUO R, LONG X P, ZHAI M G, et al. , 2021. Geochemical characteristics of the early Neoarchean komatiite from the North China Craton: evidence for plume–craton interaction[J]. Precambrian Research, 357: 106143. doi: 10.1016/j.precamres.2021.106143 曹国权, 1996. 鲁西早前寒武纪地质[M]. 北京: 地质出版社, 1-193 董春艳, 马铭株, 颉颃强, 等, 2021. 白云鄂博地区早前寒武纪基底岩浆作用和变质作用: 锆石SHRIMP U-Pb定年和LA-MC-ICPMS Hf同位素分析[J]. 岩石学报, 37(2): 417-432. doi: 10.18654/1000-0569/2021.02.06 董晓杰, 徐仲元, 刘正宏, 等. 2012. 内蒙古大青山北麓2.7 Ga花岗质片麻岩的发现及其地质意义[J]. 地球科学——中国地质大学学报, 37(S1): 20-27. 杜传业, 刘正宏, 李鹏川, 等, 2017. 吉南板石沟地区英云闪长质片麻岩LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义[J]. 世界地质, 36(3): 734-750. doi: 10.3969/j.issn.1004-5589.2017.03.009 杜利林, 庄育勋, 杨崇辉, 等, 2003. 山东新泰孟家屯岩组锆石特征及其年代学意义[J]. 地质学报, 77(3): 359-366. doi: 10.3321/j.issn:0001-5717.2003.03.007 杜利林, 庄育勋, 杨崇辉, 等, 2005. 鲁西孟家屯一种细粒斜长角闪岩的锆石SHRIMP年代学[J]. 地球学报, 26(5): 429-434. doi: 10.3321/j.issn:1006-3021.2005.05.006 杜利林, 杨崇辉, 庄育勋, 等, 2010. 鲁西新泰孟家屯2.7Ga变质沉积岩与黑云斜长片麻岩锆石Hf同位素特征[J]. 地质学报, 84(7): 991-1001. 段瑞涵, 刘超辉, 施建荣, 2021. 阴山陆块南缘新太古代末岩浆弧的向西延伸: 来自乌拉特中旗和乌拉特后旗地质年代学和地球化学的证据[J]. 岩石学报, 37(5): 1372-1404. 范宏瑞, 杨奎锋, 胡芳芳, 等, 2010. 内蒙古白云鄂博地区基底岩石锆石年代学及对构造背景的指示[J]. 岩石学报, 26(5): 1342-1350. 简平, 张旗, 刘敦一, 等, 2005. 内蒙古固阳晚太古代赞岐岩(sanukite): 角闪花岗岩的SHRIMP定年及其意义[J]. 岩石学报, 21(1): 151-157. doi: 10.3321/j.issn:1000-0569.2005.01.015 李源, 颉颃强, 董春艳, 等, 2022. 鲁西沂山地区新太古代晚期高级深熔混合岩的源区特征[J]. 岩石学报, 38(3): 598-618. doi: 10.18654/1000-0569/2022.03.02 刘建辉, 刘福来, 刘平华, 等, 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件: 来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据[J]. 岩石学报, 27(4): 943-960. 刘贻灿, 王程程, 张品刚, 等, 2015. 华北板块东南缘五河杂岩的麻粒岩相变质、部分熔融与交代作用[J]. 地球科学与环境学报, 37(1): 1-11. doi: 10.3969/j.issn.1672-6561.2015.01.001 陆松年, 陈志宏, 相振群, 2008. 泰山世界地质公园古老侵入岩系年代格架[M]. 北京: 地质出版社: 1-90. 路增龙, 宋会侠, 杜利林, 等, 2014. 华北克拉通阜平杂岩中~2.7Ga TTG片麻岩的厘定及其地质意义[J]. 岩石学报, 30(10): 2872-2884. 马铭株, 徐仲元, 张连昌, 等, 2013. 内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成[J]. 岩石学报, 29(2): 501-516. 马铭株, 章雨旭, 颉颃强, 等, 2014. 华北克拉通北缘白云鄂博群和腮林忽洞群底部碎屑锆石U-Pb定年、Hf同位素分析及其地质意义[J]. 岩石学报, 30(10): 2973-2988. 马铭株, 万渝生, 颉颃强, 等, 2020. 鲁西七星台地区新太古代基性岩浆作用: 变质辉长岩的时代和组成[J]. 地球科学, 45(7): 2610-2628. 马旭东, 范宏瑞, 郭敬辉. 2013. 阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示[J]. 岩石学报, 29(7): 2329-2339. 钱程, 陈会军, 陆露, 等, 2018. 黑龙江省龙江地区新太古代花岗岩的发现[J]. 地球学报, 39(1): 27-36. doi: 10.3975/cagsb.2017.122001 单厚香, 翟明国, 王芳, 等, 2013. 胶北新太古代两类片麻岩的岩石地球化学特征和成因指示[J]. 岩石学报, 29(7): 2295-2312. 邵军, 李永飞, 周永恒, 等, 2015. 中国东北额尔古纳地块新太古代岩浆事件: 钻孔片麻状二长花岗岩锆石LA-ICP-MS测年证据[J]. 吉林大学学报(地球科学版), 45(2): 364-373. 沈其韩, 耿元生, 宋彪, 等, 2005. 华北和扬子陆块及秦岭—大别造山带地表和深部太古宙基底的新信息[J]. 地质学报, 79(5): 616-627. doi: 10.3321/j.issn:0001-5717.2005.05.006 孙会一, 颉颃强, 刘守偈, 等, 2016. 冀东黄柏峪—羊崖山地区太古宙岩浆作用和变质作用: SHRIMP锆石U-Pb定年[J]. 地质通报, 35(1): 27-42. doi: 10.3969/j.issn.1671-2552.2016.01.004 万渝生, 刘敦一, 1993. 辽宁弓长岭中太古代片麻状花岗岩和铬云母石英岩的锆石年龄[J]. 地质论评, 39(2): 124-129. doi: 10.3321/j.issn:0371-5736.1993.02.005 万渝生, 刘敦一, 伍家善, 等, 1998. 辽宁鞍山-本溪地区中太古代花岗质岩石的成因: 地球化学及Nd同位素制约[J]. 岩石学报, 14(3): 278-288. 万渝生, 宋志勇, 王来明, 等, 2017. 华北克拉通太古宙典型地区栖霞县幅1: 5万地质图修编: 野外地质调查和SHRIMP锆石U-Pb定年[J]. 地质通报, 36(11): 1927-1941. doi: 10.3969/j.issn.1671-2552.2017.11.004 万渝生, 2018. 太古宙早期陆核和新太古代陆壳巨量生长[M]//翟明国, 张连昌, 陈斌. 华北克拉通前寒武纪重大地质事件与成矿. 北京: 科学出版社: 39-55. 万渝生, 郭瑞朋, 田京祥, 等, 2019a. 华北克拉通胶东莱州地区中太古代-新太古代早期TTG岩石的发现: 锆石SHRIMP U-Pb定年[J]. 山东国土资源, 35(4): 1-16, 37. 万渝生, 颉颃强, 董春艳, 等, 2019b. 鲁西七星台地区地质报告(1: 50000)[R]. 北京: 中国地质调查局. 万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化[J]. 地球科学, 45(9): 3119-3160. 万渝生, 颉颃强, 王惠初, 等, 2021a. 冀东地区~3.8 Ga TTG岩石发现[J]. 地质学报, 95(5): 1321-1333. 万渝生, 颉颃强, 王惠初, 等, 2021b. 冀东地区始太古代早期—冥古宙锆石发现[J]. 地质学报, 95(2): 277-291. doi: 10.19762/j.cnki.dizhixuebao.2021130 王惠初, 康健丽, 任云伟, 等, 2015. 华北克拉通~2.7Ga的BIF: 来自莱州-昌邑地区含铁建造的年代学证据[J]. 岩石学报, 31(10): 2991-3011. 王来明, 1989. 1: 50000栖霞县幅地质图及说明书[R]. 济南: 山东省地质矿产局. 王伟, 田忠华, 刘福来, 2022. 辽宁鞍山弓长岭地区古太古代花岗岩研究进展: 来自野外地质和锆石U-Th-Pb-Hf同位素的证据[J]. 岩石矿物学杂志, 41(2): 359-370. doi: 10.3969/j.issn.1000-6524.2022.02.010 伍家善, 耿元生, 沈其韩, 等, 1998. 中朝古大陆太古宙地质特征及构造演化[M]. 北京: 地质出版社: 1-212. 谢士稳, 王世进, 颉颃强, 等, 2015. 华北克拉通胶东地区~2.7Ga TTG岩石的成因及地质意义[J]. 岩石学报, 31(10): 2974-2990. 张瑞英, 张成立, 第五春荣, 等, 2012. 中条山前寒武纪花岗岩地球化学、年代学及其地质意义[J]. 岩石学报, 28(11): 3559-3573. 郑建平, 2020. 中国东部大陆岩石圈地幔置换作用的内外原因[J]. 地质力学学报, 26(5): 742-758. doi: 10.12090/j.issn.1006-6616.2020.26.05.061 钟富道, 1984. 鞍山铁甲山地区花岗片麻岩同位素年代学研究[J]. 地球化学(3): 195-205. 周艳艳, 赵太平, 薛良伟, 等, 2009. 河南嵩山地区新太古代TTG质片麻岩的成因及其地质意义: 来自岩石学、地球化学及同位素年代学的制约[J]. 岩石学报, 25(2): 331-347. 期刊类型引用(8)
1. 李立果,杨曙光,田继军,李鑫,王大兴,许润泽,马骥. 吐哈盆地十三间房地区侏罗系水西沟群有机质聚集环境及富集机理. 地质科学. 2025(01): 44-61 . 百度学术
2. 马勇,陈践发,辛志源,罗情勇,罗超,张海鹏,钟可塑,车世琦,马健斌,秦长彩. 非常规天然气中氦资源潜力及富集机制. 石油学报. 2025(02): 440-455+482 . 百度学术
3. 陈程,吴珍汉,赵为永,王利,季长军,赵珍,张浩,龚赞. 北羌塘胜利河地区布曲组优质烃源岩形成环境与有机质富集机制. 地质学报. 2024(02): 530-543 . 百度学术
4. 陈程,王利,赵为永,唐建超,魏小洁,方欣欣,张浩. 柴东地区欧南凹陷上石炭统地震相及沉积展布特征. 地质力学学报. 2024(03): 408-418 . 本站查看
5. Chang Zhong,Hui Shi,Xiao-Yin Tang,Hao Zhang,Yuan-Yuan Yang,Jun-Jie Hu,Xiao-Jie Wei,Jia-Qi Wang. Reconstruction of the thermal evolution since the late paleozoic in the Ounan Sag, Eastern Qaidam Basin, NW China: New constraints from vitrinite reflectance data and(U-Th)/He thermochronology. Petroleum Science. 2024(05): 2984-3000 . 必应学术
6. 施辉,李宗星,彭博,孙玉琦,张浩,杨元元,胡俊杰,方欣欣,魏小洁. 柴达木盆地欧南凹陷上石炭统克鲁克组海陆过渡型烃源岩有机质组成及生烃特征. 地质学报. 2023(01): 179-196 . 百度学术
7. 刘金,王剑,谭静强,崔海骕,刘淼,郑雨,宋雪琪,元强. 吉木萨尔凹陷芦草沟组沉积古环境与有机质富集. 地质力学学报. 2023(05): 631-647 . 本站查看
8. 施辉,胡俊杰,杨元元,李宗星,张浩,方欣欣. 柴达木盆地东部上石炭统海陆过渡相烃源岩生烃特征:来自天然气地球化学的证据. 天然气工业. 2023(11): 72-82 . 百度学术
其他类型引用(1)
-