Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

造山带双层结构的厘定及意义

王根厚 李典 梁晓 唐宇

徐琴如,董有浦,谢志鹏,等,2024. 川滇地块东部老鹰山的构造地貌特征及其揭示的地块隆升和旋转运动[J]. 地质力学学报,30(4):535−546 doi: 10.12090/j.issn.1006-6616.2023087
引用本文: 王根厚,李典,梁晓,等,2022. 造山带双层结构的厘定及意义[J]. 地质力学学报,28(5):705−727 doi: 10.12090/j.issn.1006-6616.20222814
XU Q R,DONG Y P,XIE Z P,et al.,2024. Tectonic and geomorphological characteristics of Laoyingshan in the eastern Sichuan-Yunnan block:Insights into the uplift and rotation of the blocks[J]. Journal of Geomechanics,30(4):535−546 doi: 10.12090/j.issn.1006-6616.2023087
Citation: WANG G H,LI D,LIANG X,et al.,2022. Determination of the double-layer structure in orogenic belts and its geological significance[J]. Journal of Geomechanics,28(5):705−727 doi: 10.12090/j.issn.1006-6616.20222814

造山带双层结构的厘定及意义

doi: 10.12090/j.issn.1006-6616.20222814
基金项目: 国家自然科学基金面上项目(42172259)
详细信息
    作者简介:

    王根厚 (1968—),男,博士生导师,教授,从事构造地质学和区域构造地质研究研究。E-mail: wgh@cugb.edu.cn

  • 中图分类号: P542

Determination of the double-layer structure in orogenic belts and its geological significance

Funds: This research is financially supported by the National Natural Science Foundation of China(Grant No. 42172259)
  • 摘要: 当前,增生型造山带和碰撞型造山带的研究均取得了丰富的成果和创新性认识。二者过渡期间常常发生陆壳俯冲。然而,该俯冲具有什么样的构造变形特点,并如何影响造山带演化过程,长期未受到足够的关注。基于此,文中选择曾发生了陆壳俯冲的两个新生代时期的造山带(中国台湾造山带和雅鲁藏布江造山带)和一个中生代时期的造山带(羌塘造山带)开展研究,以期阐明陆壳俯冲的独特构造变形特征以及和造山过程的交互作用。研究发现,陆壳俯冲常常在造山带形成双层结构,上部为一套由史密斯地层组成的逆冲叠瓦扇构造体系,下部为一套具“岩块–基质”结构特征的俯冲杂岩。双层结构的上下部分物质组成相似,均以斜坡相–海底扇相沉积为主,也有陆棚相沉积。因此,由于构造变形时间相近,双层结构应是由同一套被动陆缘物质俯冲形成的深浅不同的构造体系。研究认为,在陆壳俯冲过程中,早期的斜坡–海底扇俯冲是形成双层结构的主要因素。后续的陆棚俯冲则对碰撞作用的发生起到了主导作用,从而使应变逐渐向克拉通内部扩展,形成前陆褶皱–冲断带。随着碰撞作用的持续,双层结构常常遭到构造破坏,深部的俯冲杂岩因此得以剥露至浅表。因此,文章的研究强调了陆壳俯冲和深俯冲物质的折返在造山带演化中的重要意义。

     

  • 新生代以来,印−欧大陆板块的持续碰撞与挤压造成了青藏高原的隆升和地壳缩短,在青藏高原东南缘形成了高黎贡断裂、哀牢山−红河断裂、鲜水河−小江断裂等大型走滑断裂(Wang et al.,1998)。其中,川滇地块受鲜水河−小江左行走滑断裂和哀牢山−红河右行走滑断裂的影响,向东南方向发生了大规模挤出逃逸和顺时针旋转(Wang et al.,1998Tapponnier et al.,2001Tong et al.,2015王恒和杨振宇,2019),因此,川滇地块是研究青藏高原东南缘新生代构造旋转的理想地区。

    相关学者利用古地磁方法针对西昌、会东、白路、楚雄、元谋、剑川、大姚以及大理等地区对川滇地块旋转运动进行了研究,认为从新生代以来川滇地块北部西昌的逆时针旋转(13.9°± 6.2°),向南逐渐变化为楚雄的顺时针旋转(36.4° ± 18°)(Huang et al.,1992Yoshioka et al.,2003Tamai et al.,2004Zhu et al.,2008Li et al.,20132015Tong et al.,2015王恒和杨振宇,2019)。由于滇中地块东部主要出露古生界,新生界出露较少,目前对滇中地块东部开展的古地磁研究相对较少。构造地貌学方法对揭示构造变形具有很好的作用(曹鹏举等,2021关雪等,2021),河流地貌分析是还原地块构造演化历史的一个有效方法。河流作为陆地地形地貌演化过程中最活跃的影响因子之一,通常能对地块抬升、沉降(Fox et al.,2014王乃瑞等,2015段佳鑫等,2021)或旋转(Castelltort et al.,2012Goren et al.,2015Yıldırım and Tüysüz,2017)做出很好地响应。因此,该研究主要利用构造地貌学方法来揭示川滇地块东部老鹰山的旋转特征,进一步认识整个川滇地块新生代晚期的隆升与旋转构造变形过程。

    鲜水河−小江断裂是一个长约2000 km的左行走滑断裂,其与哀牢山−红河右行断裂共同构成了川滇菱形地块的边界。南部的小江断裂呈南北走向,全长约为400 km。小江断裂在东川以南30 km处,分为东、西2支,2支断裂大致平行,间距约为15 km(Shen et al.,2003)。其中,西支断裂走滑速率为6.4 mm/a,东支断裂走滑速率为4.8 mm/a(宋方敏等,1998李西,2015)。在东、西支断裂之间,发育了大量北东走向的新生代断裂及褶皱。在小江断裂西侧还发育有近乎平行的南北走向的元谋−绿汁江断裂和易门断裂和普渡河断裂等(余华玉等,2023图1)。

    老鹰山地区位于小江断裂东、西2支断裂之间(图2),其山脉水系呈南北向延伸,边界被四甲河、大白河、功山大河以及摆宰河围限,主要出露二叠系玄武岩以及茅口组灰岩、白云岩,局部出露寒武系页岩及灰岩。元古代地层少量出露,部分河流中发育有新生代地层(图2)。研究区自古近纪—早更新世时期构造运动以整体间歇抬升为主,在这一时期发育有多个盆地,如晚更新世发育的甸沙盆地、中更新世发育的沧溪盆地、阿旺盆地、功山盆地以及金所盆地(图2宋方敏等,1998Shen et al.,2003郑立龙等,2019)。

    图  2  老鹰山地区地质图(据覃胜荣,1978修改)
    Figure  2.  Geological map of Laoyingshan (modified from Qin, 1978)

    基于30 m分辨率的数字高程模型(DEM),研究利用ArcGIS 10.7和Matlab 2015b提取了老鹰山地区的22条流域,获得了相关的构造地貌参数。

    区域地形起伏度指单位面积内最大相对高程差,可反映地面相对高差,能够反映区域地表的切割剥蚀程度,是描述地貌形态的定量指标(张会平等,2006刘静等,2006)。其计算公式如下:

    R=HmaxHmin
    (1)

    式中:R—地形起伏度;Hmax—单位面积内最大高程值;Hmin—单位面积内最小高程值。通过ArcGIS工具箱中的焦点统计工具,在给定的采样空间窗口(如1 km × 1 km)中分别获取该窗口内的最大高程和最小高程值,最后利用DEM栅格数据的插值运算,实现局部地形起伏的定量化(张会平等,2006Yıldırım and Tüysüz,2017)。研究中,区域地形起伏度采用2 km × 2 km的采样窗口(包含研究流域的一个山脊和山谷组合,可以反映山谷到山脊的起伏特征),利用焦点邻域工具,采用公式(1)对该窗口进行计算,获得研究区的局部地形起伏度。

    在稳定的气候及构造条件下,河流纵剖面为平滑下凹形态(Whipple,2001Yıldırım and Tüysüz,2017),但是当岩性、气候、沉积物通量以及活动构造发生变化时都会导致河流处于瞬态的不平衡状态(Kirby et al.,2003),在河流纵剖面上出现上凸的异常部位,即裂点(戴岩等,2016)。当河流流域面积未发生变化时,现存河流出水口的高程与在裂点处稳态时河流投影出水处的高程差揭示了自隆起开始以来的地表隆升量(Kirby and Whipple,2012Yıldırım and Tüysüz,2017)。河流纵剖面的特征作为侵蚀作用和构造隆升相互竞争的结果,在不同的构造、气候和岩性条件下会呈现出不同的形态,因此通过对河流纵剖面的形态特征进行定量研究可以很好地指示区域隆升过程及相关的构造变形特征(Kirby and Whipple,2001张东越等,2023)。其中,河流陡峭指数可以反映基岩隆升速率的空间分布特征(Goren et al.,2014余华玉等,2023)。在构造隆升地区,由于河流纵剖面高程变化通常是河道隆升与下切之间竞争的结果,河道某点在一定时间(dt)内的高程变化(dz)是由岩石隆升速率(U)和侵蚀速率(E)共同决定的(Goren et al.,2014Fox et al.,2015):

    dz/dt=UE
    (2)

    另外,河道侵蚀速率(E)可以表示为流域面积(A)与河流局部坡度(S)的函数:

    E=KAmSn
    (3)

    式中,K—侵蚀系数,由气候和岩石性质决定(Willett,1999);mn是描述河道侵蚀速率对流域面积和河道坡度相关性的正指数(Whipple and Tucker,1999)。当岩石隆升速率等于侵蚀速率时,河道的高程不随时间变化,因此,河道坡度为:

    S=(U/K)1/nAm/n
    (4)

    在均一的岩性、隆升速率和气候条件下,河流坡度(S)与流域面积(A)呈幂律关系:

    S=KsAθ
    (5)

    式中,Ks—河道陡峭指数,θ—河道凹曲度指数。利用DEM计算出河道坡度和流域面积,将数据投在双对数图上,稳定态的河段数据呈直线分布,线性拟合获得的斜率与截距就是河道凹曲度指数(θ)和陡峭指数(Ks),为了对不同大小的流域之间进行比较,Ks通常被归一化,归一化河流陡峭指数为KsnWhipple and Tucker,1999)。

    研究表明可以利用参考凹曲度指数(θref)对公式(5)计算得到归一化陡峭指数(Ksn),Ksn可以用来反映构造抬升速率的相对大小(Trauerstein et al.,2013王乃瑞等,2015)。Ksn可靠性在于其不受坡度−面积线性拟合的截距以及下游面积变化的影响(王乃瑞等,2015),并且已经在不同研究区域得到验证(Snyder et al.,2000Wobus et al.,20032006Yıldırım and Tüysüz,2017张东越等,2023)。因为凹曲度在不同地貌中往往变化不大,陡度指数通常使用参考凹曲度指数(θref)计算(Snyder et al.,2000Wobus et al.,20032006Yıldırım and Tüysüz,2017)。将θref设定为0.45(Wobus et al.,20032006Yıldırım and Tüysüz,2017),其程序代码来自http://www.geomorphtools.org,根据其相关数据提取了研究区归一化河道陡峭指数(Ksn)。因归一化河道陡峭指数(Ksn)受岩性和气候影响,故采用型号HT-225回弹仪测量了研究区岩性的硬度,来判断岩性对Ksn的影响(Cruslock et al.,2010王乃瑞等,2015Bernard et al.,2019)。

    流域盆地的方位角用于定义流域方向,可以用来确定块体的旋转量。流域方位角(BA)是流域主河道的源头和出口之间的投影中线的方位。未受构造作用时,BA垂直于分水岭的方向发育,其随着持续的构造作用而发生旋转(Ramsey et al.,2007Castelltort et al.,2012Goren et al.,2015Guerit et al.,2016Yıldırım and Tüysüz,2017)。以流域中线作为对象,如果流域旋转,中线的方向必须偏离初始变形区和流域分水岭之间的垂线,流域中线和垂直于分水岭方位之间的夹角即为该区域的旋转量。依据Goren et al.(2015)对黎巴嫩流域和Yıldırım and Tüysüz(2017)对Almacık地块提取流域方位角方法对大白河及功山大河周围的流域进行提取(Goren et al.,2015Yıldırım and Tüysüz,2017)。

    老鹰山地区低起伏区域主要位于老鹰山西侧四甲河以及摆宰河附近,高起伏区域主要位于老鹰山东侧大白河及功山大河附近(图3),即大白河及功山大河周围地形的起伏度大于老鹰山西侧四甲河周围的地形起伏度。根据区域地形起伏度的方法得出老鹰山地区的平均高程差为324 m(图3)。

    图  3  老鹰山地区地形起伏图
    Figure  3.  Local topographical relief map of the Laoyingshan region

    老鹰山地区流域归一化河流陡峭指数(Ksn)的范围为0 m0.9~ 1282 m0.9Ksn值整体分布趋势由北向南逐渐降低,高值区(> 260 m0.9)主要分布在阿旺镇和金源乡附近,与小江断裂东、西2支断裂相重合,低值区(< 65 m0.9)主要分布在研究区老鹰山顶部以及摆宰河南部(图4)。

    图  4  老鹰山地区Ksn值分布图
    Figure  4.  Distribution diagram of Ksn in the Laoyingshan

    研究中共选择了22条河流(图5),通过用稳定状态和瞬时状态的河流纵剖面的高差来估计地表隆升(具体河流纵剖面图可扫描文后OSID码查看)。老鹰山分水岭东部河流(h1—h12,河流h9未发现裂点)的地表隆升量分别为200 m、220 m、500 m、290 m、300 m、140 m、250 m、200 m、350 m、400 m和180 m,东部地表隆升量为140 ~ 500 m;老鹰山分水岭西部河流(h13—h22)的地表隆升量分别为260 m、260 m、360 m、810 m、650 m、640 m、400 m、360 m、300 m和440 m,西部地表隆升量在260 ~ 440 m之间,局部流域的地表隆升较高,如h16流域的地表隆升量高达810 m,老鹰山北部的地表隆升量平均低于南部的隆升量。由此可知该地区整体的平均表面隆升为358 ± 200 m,这与表明局部区域地形起伏分析相吻合。

    图  5  老鹰山地区22条河流纵剖面分布情况
    Figure  5.  Longitudinal profile distribution of 22 rivers in the Laoyingshan

    为确定老鹰山地区的旋转量,测定了研究区大白河及功山大河西侧和东侧的流域方位角(图6a),并根据其方位角制作了玫瑰图(图6b、6c)。大白河、功山大河西侧流域方位角揭示出其逆时针旋转量约为15°(表1);大白河、功山大河东侧流域方位角揭示出其逆时针旋转量约为12°(表2)。

    图  6  大白河、功山大河两侧流域方位角及生成的玫瑰图
    a—大白河、功山大河两侧生成的流域方位角;b—大白河、功山大河西侧流域方位角生成的玫瑰图;c—大白河、功山大河东侧流域方位角生成的玫瑰图
    Figure  6.  The azimuth of the basins on both sides of Dabai River and Gongshan River and the generated rose diagram
    (a) Basin azimuth generated on both sides of Dabai River and Gongshan River;(b) Rose diagram of the basin azimuth analysis on the western side of Dabai River and Gongshan River;(c) Rose diagram of the basin azimuth analysis on the east side of Dabai River and Gongshan River
    表  1  大白河、功山大河西侧流域方位角
    Table  1.  Basin azimuth on the western side of Dabai River and Gongshan River
    河流 流域中线方位角/
    (°)
    垂线方位角/
    (°)
    旋转量/
    (°)
    平均旋转量/
    (°)
    1 47.4035 35.5030 11.9005 14.9956
    2 56.8472 39.2746 17.5726
    3 61.7182 43.5887 18.1295
    4 36.7287 24.0545 12.6742
    5 34.9060 23.0075 11.8985
    6 18.4842 8.4548 10.0294
    7 30.4826 13.6866 16.7960
    8 31.1446 14.6053 16.5393
    9 29.4522 21.8166 7.6356
    10 30.9373 14.6053 16.3320
    11 26.3950 0.9501 25.4449
    下载: 导出CSV 
    | 显示表格
    表  2  大白河、功山大河东侧流域方位角
    Table  2.  Basin azimuth on the eastern side of Dabai River and Gongshan River
    河流 流域中线方位角/
    (°)
    垂线方位角/
    (°)
    旋转量/
    (°)
    平均旋转量/
    (°)
    1 222.3619 206.4810 15.8809 12.2181
    2 213.5884 208.1903 5.3981
    3 219.7653 208.5652 11.2002
    4 229.0780 211.4550 17.6230
    5 230.8436 220.5600 10.2836
    6 216.6224 203.6995 12.9229
    下载: 导出CSV 
    | 显示表格

    大白河、功山大河地区岩性大多为二叠系玄武岩,回弹值约为46.97,四甲河流域岩性相对复杂,除二叠系玄武岩,局部有寒武系灰岩、砂岩、白云岩以及页岩,结果显示其不同岩性硬度的差别较小(图7),回弹值主要集中在46.97 ~ 64.38之间。

    图  7  老鹰山地区Schmidt hammer回弹值柱状图
    Figure  7.  Bar chart of Schmidt hammer rebound values in the Laoyingshan region

    河流陡峭指数受岩性和气候影响(Snyder et al.,2000Wobus et al.,20032006张东越等,2023),根据硬度测试结果,不同岩性的硬度差异较小,表明岩性对老鹰山地区河流陡峭指数的影响较低;同时研究区范围较小,可忽略气候对其产生的影响。因此,在排除岩性、气候影响后河流陡峭指数可视为抬升速率,老鹰山地区顶部河流陡峭指数较高,表明其抬升速率较小,可能是高海拔低起伏的古残留面(宋方敏等,1998冯金良等,2004)。大白河、功山大河附近以及四甲河附近河流的陡峭指数较高,且分布在小江东、西支断裂附近,表示该地区的抬升速率较大,其河流陡峭指数主要受构造活动影响。研究表明老鹰山地区产生了324 m的局部起伏作为地表隆起的响应(图3),且高起伏度区域主要分布在断裂附近(图3),说明研究区地表隆起主要受断裂构造的影响,这与其河流陡峭指数数据相吻合。河流纵剖面显示老鹰山东侧的垂直位移量由北向南逐渐增大,平均隆起量为358 m。同时河流的纵剖面结果表明河流h16、h17、h18的隆起量较高(图5),分别为810 m、650 m和640 m,因为其地理位置位于金源乡附近的沧溪拉分盆地周围,并且根据野外地质观察及图5河流和断裂分布,发现河流h16附近有部分断裂以及褶皱,说明该地区构造运动较活跃,故河流h16、h17、h18地表隆起量较高的原因可能是盆地局部伸展构造的结果。

    研究区地处青藏高原东南缘,位于川滇菱形地块的边界处,因此该地区的新构造运动与青藏高原隆升、挤压密切相关。始新世、上新世、早更新世区内发育有多个盆地,反映地壳运动在间歇性抬升的背景下,局部还存在垂直差异运动特征(林向东,2009),因此,研究区内盆地、河流及湖泊等是地壳升降运动形成的地貌(宋方敏等,1998)。研究区内河流与小江断裂重合,暗示两者的形成时间应大致相当。以往研究表明小江断裂开始活动的时间在中新世晚期(Roger et al.,1995Li et al.,2015Zhang et al.,2017),因此老鹰山地区的隆升时间开始于晚中新世,暗示老鹰山地区晚中新世以来的隆升量为358 m。研究基于河流地貌得到的隆升结果与滇中地区先锋盆地利用古植物恢复古高程的研究结果(Jacques et al.,2014Li et al.,2015)相吻合。

    自印−欧大陆碰撞以来,导致川滇地块的侧向逃逸与旋转(Wang et al.,1998Zhu et al.,2008高亮,2013Li et al.,2013吴中海等,2015Tong et al.,2015王恒和杨振宇,2019)。但是由于地壳物质组成和结构构造的复杂性,这种旋转并不表现为简单均一的运动。川滇地块中部和西部(丽江−小金河断裂以南、元谋断裂以西)的研究表明剑川地区始新世以来的顺时针旋转量约为20°(Tong et al.,2015);楚雄盆地核部、剑川盆地以及渔泡江断裂东侧三岔河镇以南白垩纪以来的顺时针旋转量约为20°(王恒和杨振宇,2019);对宁蒗地区古新统宁蒗组进行古地磁研究发现该地区顺时针旋转量为16.7° ± 6°(高亮,2013);大理地区新近纪晚期以来的顺时针旋转量为4.4° ± 2.5°(Li et al.,2013)。

    流域方位角研究表明,老鹰山地区河流经历了大约15°的顺时针旋转(图6)。由于大白河、功山大河和四甲河主要沿小江断裂发育(图2),推断老鹰山地区的河流发生的逆时针旋转是由断裂走滑造成的。川滇地块东部(元谋断裂以东)以逆时针旋转为主,例如,元谋盆地4.9 ~ 1.4 Ma发生了约12°的逆时针旋转运动(Li et al.,2015);Huang et al.(1992)对会东地区古新世地层的古地磁研究表明该地区逆时针旋转了6.1° ± 7.2°(Huang et al.,1992);Li et al.(2015)发现小龙潭盆地晚中新世地层逆时针旋转了8° ± 3°(Li et al.,2015),上述研究结果与文中基于河流地貌得到的地块旋转方向和旋转量相一致。因此,研究推测川滇地块内元谋断裂以西受走滑断裂影响较小,主要发生顺时针旋转;元谋断裂以东地层受走滑断裂等强烈的左行走滑影响,发生了逆时针旋转并伴随着差异隆升。

    始新世以来,在印−欧板块的碰撞作用下,青藏高原向东挤出,受华南块体的阻挡,使高原东部发生了显著的构造变形,主要表现为一系列北北西向的大型走滑断裂和褶皱带以及北北东向的褶皱逆冲带(Chen and Wilson,1996Wang et al.,1998Roger et al.,2004陶亚玲等,2020),如鲜水河−小江断裂、哀牢山−红河断裂等,这些大型断裂控制着青藏高原东缘的构造及地貌特征(陶亚玲等,2020)。鲜水河–小江断裂是青藏高原东缘的大型走滑断裂之一,对高原的差异性变形及东构造节东侧地块顺时针旋转具有重要的调节作用(图8Wang et al.,1998Schoenbohm et al.,2006)。以往研究发现鲜水河−小江断裂不同段开始活动的时间不同,Roger et al.(1995)和 Zhang et al.(2004)根据花岗岩锆石U-Pb测年和云母39Ar/40Ar测年表明,鲜水河断裂活动开始于12.8 Ma,随后逐渐演变为边界断裂,之后青藏高原持续隆升造成其川滇地块向东南方向侧向逃逸,鲜水河断裂通过安宁河−则木河断裂逐渐向南发展;Liu et al.(2015)根据元谋断裂南、北两侧正长石锆石U-Pb测年数据,认为元谋断裂的活动时间在11 ~ 12 Ma,据此可以推测在上新世以前川滇地块的边界为鲜水河−安宁河−则木河−元谋断裂(图8a);Tong et al.(2015)根据白垩系和古近系古地磁资料表明元谋−绿汁江断裂西侧经历了15°~20°的顺时针旋转,之后随着地块继续向东南方向挤出,旋转变形也继续向东南扩展;在上新世以后,小江断裂逐渐取代元谋−绿汁江断裂,成为川滇地块的东边界(图8bTong et al.,2015)。

    图  8  川滇地块构造活动演变(Tong et al.,2015吴中海等,2015
    a—b—17 Ma以来川滇地块的构造演化过程;c—老鹰山地区受力旋转过程
    Figure  8.  Evolution of tectonic activity in the Sichuan-Yunnan block (modified according to Tong et al., 2015; Wu et al., 2015)
    (a)—(b) Tectonic evolution of the Sichuan-Yunnan block since 17 Ma;(c) Rotational stress process in Laoyingshan region

    因老鹰山地区正处于小江断裂中段东、西2支断裂中间,在高原隆升活动早期,小江断裂的活动性质以挤压为主,小江断裂中段区间表现为垂直差异运动,导致小江断裂区间形成南北向的地块隆起(宋方敏等,1998冯金良等,2004);之后受小江断裂东、西2支断裂左行走滑的影响,老鹰山地区受到挤压应力作用,发生了15°逆时针旋转以及358 m左右的差异隆升,以此来调节该应力作用(图8c)。

    (1)老鹰山地区的区域地形起伏、河流陡峭指数以及河流纵剖面结果显示,受构造活动影响其自晚中新世以来发生了358 m左右的隆升,总体呈西北高、东南低的趋势。

    (2)根据老鹰山地区流域方位角表明,大白河和功山大河附近流域对研究区的旋转很敏感,并且该地区受小江断裂影响较大,产生了15°左右的逆时针旋转。

    (3)川滇地块内元谋断裂以西地区受走滑断裂影响较小,以印度向欧亚大陆强烈的北东向挤压为主,主要发生顺时针旋转;元谋断裂以东地区受强烈的左行走滑断裂影响,通过调节地块内部的应力差异,发生逆时针旋转并伴随着差异隆升。

  • 图  1  西藏羌塘造山带地质简图(据李典等,2021修改)

    Figure  1.  Simplified geological map of the Qiangtang orogenic belt in Tibet(modified from Li et al., 2021

    图  2  羌塘造山带物质组成示意图

    Figure  2.  Schematic diagram of the composition of the Qiangtang accretionary orogenic belt

    图  3  羌塘造山带双层构造体系示意图

    Figure  3.  Schematic diagram of the double-layer structure in the Qiangtang accretionary complex

    图  4  雅鲁藏布江造山带地质简图

    Figure  4.  Simplified geological map of the Yarlung Zangbo River orogenic belt

    图  5  加查增生杂岩物质组成示意图

    Figure  5.  Schematic diagram of the composition of the Jiacha accretionary complex

    图  6  雅鲁藏布江造山带双层构造体系示意图及中央直立带

    Figure  6.  Schematic diagram of the double-layer structure in the Yarlung Zangbo River orogenic belt and the central steep belt

    图  7  中国台湾造山带地质简图(据Huang et al.,2000修改)

    Figure  7.  Simplified geological map of the Taiwan orogenic belt in China (modified from Huang et al., 2000)

    图  8  中国台湾造山带地质剖面简图(剖面AB位置见图7;据Huang et al.,2000修改)

    Figure  8.  Simplified geological profile of the Taiwan orogenic belt in China (modified from Huang et al., 2000)

    图  9  中央山脉变质岩系片岩变形特征

    a—褶劈理S2;b—石英透镜体,具有右行剪切变形;c—构造片理被置换;d—长英质脉体揉流褶皱

    Figure  9.  Deformation characteristics of the schists in the Central Range complex

    (a) Crenulation S2; (b) Quartz vein lens with dextral shear sense; (c) Schistose foliation was imposed; (d) Flow folds of felsic veins

    图  10  中国台湾中央山脉变质岩系中大理岩变形特征

    a—XY面不对称褶皱;b、c—YZ面鞘褶皱;d—大理岩转折端流变加厚

    Figure  10.  Sheath folds of the marbles in the Central Range complex of Taiwan, China

    (a) Asymmetric fold on the XY profile; (b) and (c) Sheath fold on the YZ profile; (d) The hinge zone of the sheath fold was thickened

    图  11  中国台湾造山带深部结构示意图(据Huang et al. ,2015Chen et al. ,2019修改)

    Figure  11.  Schematic diagram of the deep structure of the orogenic belt in Taiwan, China (modified from Huang et al., 2015; Chen, 2019)

    图  12  陆壳两阶段俯冲过程示意图

    Figure  12.  Schematic diagram of the two-stage continental subduction process during the continent and ocean transformation

  • AIKMAN A B, HARRISON TM, LIN D, 2008. Evidence for early (> 44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth and Planetary Science Letters, 274(1-2): 14-23. doi: 10.1016/j.jpgl.2008.06.038
    BEYSSAC O, SIMOES M, AVOUAC J P, et al. , 2007. Late Cenozoic metamorphic evolution and exhumation of Taiwan[J]. Tectonics, 26(6): TC6001.
    BEYSSAC O, NEGRO F, SIMOES M, et al. , 2008. High‐pressure metamorphism in Taiwan: from oceanic subduction to arc‐continent collision?[J]. Terra Nova, 20(2): 118-125. doi: 10.1111/j.1365-3121.2008.00796.x
    CHAI B H T, 1972. Structure and tectonic evolution of Taiwan[J]. American Journal of Science, 272(5): 389-422. doi: 10.2475/ajs.272.5.389
    CHANG C P, ANGELIER J, LEE T Q, et al. , 2003. From continental margin extension to collision orogen: structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan[J]. Tectonophysics, 361(1-2): 61-82. doi: 10.1016/S0040-1951(02)00561-9
    CHANG L S, 1964. A biostratigraphic study of the Tertiary in the Hengchun peninsula, Taiwan, based on smaller Foraminifera (I. Northern Part)[J]. Proceedings of the Geological Society of China(7): 48-62.
    CHANG L S, 1966. A biostratigraphic study of the Tertiary in the Hengchun Peninsula, Taiwan, based on smaller foraminifera (III: Southern part)[J]. Proceedings of the Geological Society of China(9): 55-63.
    CHEN, A. T. , SHEN, C. C. , BYRNE, T. B. , et al. , 2019. Mantle fluids associated with crustal-scale faulting in a continental subduction setting, Taiwan. Scientific reports, 9(1), 1-7.
    CHEN C T, LEE J C, CHAN Y C, et al. , 2014. Elucidating the geometry of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan, and the reactivation relationship with preexisting orogen structures[J]. Tectonics, 33(12): 2400-2418. doi: 10.1002/2013TC003502
    CHENG W B, WANG C, SHYU C T, et al. , 2002. Crustal structure of the convergent plate-boundary zone, eastern Taiwan, assessed by seismic tomography[M]//BYRNE T B, LIU C S. Geology and geophysics of an arc-continent collision, Taiwan. Boulder: Geological Society of America: 161-176.
    CHI W R, NAMSON J, SUPPE J, 1981. Stratigraphic record of the plate interactions of the Coastal Range of eastern Taiwan[J]. Memoir of the Geological Society of China, 4: 155-194.
    CHOPIN C, 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences[J]. Contributions to Mineralogy and Petrology, 86(2): 107-118. doi: 10.1007/BF00381838
    CLOOS M, 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J]. GSA Bulletin, 105(6): 715-737. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2
    DAN W, WANG Q, LI X H, et al. , 2019. Low δ18O magmas in the carboniferous intra-oceanic arc, central Tibet: implications for felsic magma generation and oceanic arc accretion[J]. Lithos, 326-327: 28-38. doi: 10.1016/j.lithos.2018.12.011
    DENG X G, DING L, LIU X H, et al. , 2000. Petrology and 40Ar/39Ar isotopic ages of blueschists in Gangmar, central Qiangtang, northern Tibet[J]. Chinese Science Bulletin, 46(5): 423-427. (in Chinese with English abstract)
    DENG X G, DING L, LIU X H, et al. , 2002. Geochemical characteristics of the blueschists and its tectonic significance in the central Qiangtang area, Tibet[J]. Acta Petrologica Sinica, 18(4): 517-525. (in Chinese with English abstract)
    DEWEY J F, 1980. Episodicity, sequence and style at convergent plate boundaries[M]//STRANGWAY D W. The continental crust and its mineral deposits. St. John’s: Geological Association of Canada: 553-573.
    DEWEY J F, RYAN P D, ANDERSEN T B, 1993. Orogenic uplift and collapse, crustal thickness, fabrics and metamorphic phase changes: the role of eclogites[J]. Geological Society, London, Special Publications, 76(1): 325-343. doi: 10.1144/GSL.SP.1993.076.01.16
    DITULLIO L, LAUGHLAND M M, BYRNE T, 1993. Thermal maturity and constraints on deformation from illite crystallinity and vitrinite reflectance in the shallow levels of an accretionary prism: eocene-oligocene Shimanto Belt, Southwest Japan[M]. Geological Society of America: 63-82.
    DONG Y S, ZHANG X Z, SHI J R, et al. , 2009. Petrology and metamorphism of garnet-muscovite schist from high pressure metamorphic belt in central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 28(9): 1201-1206. (in Chinese with English abstract)
    ERNST W G, 2010. Subduction-zone metamorphism, calc-alkaline magmatism, and convergent-margin crustal evolution[J]. Gondwana Research, 18(1): 8-16. doi: 10.1016/j.gr.2009.05.010
    FANG D R, WANG G H, HISADA K I, et al. , 2019. Provenance of the Langjiexue Group to the South of the Yarlung-Tsangpo suture zone in southeastern Tibet: insights on the evolution of the Neo-Tethys Ocean in the Late Triassic[J]. International Geology Review, 61(3): 341-360. doi: 10.1080/00206814.2018.1425924
    FANG D R, ZHANG J, HISADA K I, et al. , 2020. Geological anatomy of the Upper Triassic sequence in southeastern Tibet: implication for tectonic evolution of the eastern Himalayan Orogen[J]. Geological Journal, 55(10): 6607-6624. doi: 10.1002/gj.3831
    FULLER C W, WILLETT S D, FISHER D, et al. , 2006. A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry[J]. Tectonophysics, 425(1-4): 1-24. doi: 10.1016/j.tecto.2006.05.018
    GRAHAM C M, POWELL R, 1984. A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California[J]. Journal of Metamorphic Geology, 2(1): 13-31. doi: 10.1111/j.1525-1314.1984.tb00282.x
    HATCHER JR R D, WILLIAMS R T, 1986. Mechanical model for single thrust sheets Part I: taxonomy of crystalline thrust sheets and their relationships to the mechanical behavior of erogenic belts[J]. GSA Bulletin, 97(8): 975-985. doi: 10.1130/0016-7606(1986)97<975:MMFSTS>2.0.CO;2
    HESSAMI K, KOYI H A, TALBOT C J, et al. , 2001. Progressive unconformities within an evolving foreland fold–thrust belt, Zagros Mountains[J]. Journal of the Geological Society, 158(6): 969-981. doi: 10.1144/0016-764901-007
    HETLAND E A, WU F T, 2001. Crustal structure at the intersection of the Ryukyu trench with the arc-continent collision in Taiwan: results from an offshore-onshore seismic experiment[J]. Terrestrial, Atmospheric and Oceanic Sciences, 12(S2): 231-248.
    HO C S, 1988. An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan; Central Geological Survey, Ministry of Economic Affairs: Taipei City.
    HOU Q L . 2018. Advanced Structural Geologyvolume II: New Theories and Applications. Beijing: Science Press. (in Chinese with English abstract)
    HU P Y, LI C, YANG H T, et al. , 2010. Characteristic, zircon dating and tectonic significance of Late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China[J]. Geological Bulletin of China, 29(12): 1825-1832. (in Chinese with English abstract)
    HUANG C Y, WU W Y, CHANG C P, et al. , 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan[J]. Tectonophysics, 281(1-2): 31-51. doi: 10.1016/S0040-1951(97)00157-1
    HUANG C Y, YUAN P B, LIN C W, et al. , 2000. Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica[J]. Tectonophysics, 325(1-2): 1-21. doi: 10.1016/S0040-1951(00)00128-1
    HUANG C Y, YUAN P B, TSAO S J, 2006. Temporal and spatial records of active arc-continent collision in Taiwan: a synthesis[J]. GSA Bulletin, 118(3-4): 274-288. doi: 10.1130/B25527.1
    HUANG C Y, YEN Y, ZHAO Q H, et al. , 2012. Cenozoic stratigraphy of Taiwan: window into rifting, stratigraphy and paleoceanography of South China Sea[J]. Chinese Science Bulletin, 57(24): 3130-3149. doi: 10.1007/s11434-012-5349-y
    HUANG C Y, 2017. Geological ages of Taiwan stratigraphy and tectonic events[J]. Scientia Sinica Terrae, 47(4): 394-405. (in Chinese with English abstract) doi: 10.1360/N072017-00023
    HUANG T Y, GUNG Y, KUO B Y, et al. , 2015. Layered deformation in the Taiwan orogen[J]. Science, 349(6249): 720-723. doi: 10.1126/science.aab1879
    ISHIZAKI K, 1942. Geological observation in the hills region to the west of Kosyun[J]. Taiwan Tigaku Kizi, 13: 241-247.
    KAPP P, YIN A, MANNING C E, et al. , 2000. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 28(1): 19-22.
    KAPP P, YIN A, MANNING C E, et al. , 2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 22(4): 1043.
    KOONS P O, 1990. Two-sided orogen: collision and erosion from the sandbox to the Southern Alps, New Zealand[J]. Geology, 18(8): 679-682.
    KUSKY T M, WINDLEY B F, SAFONOVA I, et al. , 2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion[J]. Gondwana Research, 24(2): 501-547. doi: 10.1016/j.gr.2013.01.004
    LESTER R, MCINTOSH K, VAN AVENDONK H J A, et al. , 2013. Crustal accretion in the Manila trench accretionary wedge at the transition from subduction to mountain-building in Taiwan[J]. Earth and Planetary Science Letters, 375: 430-440. doi: 10.1016/j.jpgl.2013.06.007
    LI C, ZHAI Q G, DONG Y S, et al. , 2006. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet[J]. Chinese Science Bulletin, 51(9): 1095-1100. (in Chinese with English abstract) doi: 10.1007/s11434-006-1095-3
    LI D, WANG G H, GAO J H, et al. , 2019. The continental subduction in the evolution of central Qiangtang mélange belt and its tectonic significance[J]. International Geology Review, 61(9): 1143-1170. doi: 10.1080/00206814.2018.1499450
    LI D, WANG G H, BONS P D, et al. , 2020. Subduction reversal in a divergent double subduction zone drives the exhumation of southern Qiangtang blueschist–bearing mélange, central Tibet[J]. Tectonics, 39(4): e2019TC006051.
    LI D, WANG G H, LIU Z Y, et al. , 2021. Subduction of the Paleozoic intra-oceanic arc terrane as an important mechanism for the formation of the South Qiangtang accretionary complex: evidence from riwanchaka intra-oceanic arc[J]. Sedimentary Geology and Tethyan Geology, 41(2): 176-189. (in Chinese with English abstract)
    LI G M, LI J X, ZHAO J X, et al. , 2015. Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: evidence from U-Pb ages, petrochemistry and Sr-Nd-Hf isotopes[J]. Journal of Asian Earth Sciences, 105: 443-455. doi: 10.1016/j.jseaes.2015.02.017
    LI X R, WANG J, CHENG L L, et al. , 2018. New insights into the Late Triassic Nadigangri Formation of northern Qiangtang, Tibet, China: constraints from U-Pb ages and Hf isotopes of detrital and magmatic zircons[J]. Acta GeologicaSinica (English Edition), 92(4): 1451-1467. doi: 10.1111/1755-6724.13637
    LI J C, ZHAO Z B, ZHENG Y L, et al. , 2015. The magmatite evidences in southern Qiangtang for paleo-Tethys ocean subducting collision: Gangtang-co granites in Rongma, Tibet[J]. Acta Petrologica Sinica, 31(7): 2078-2088. (in Chinese with English abstract)
    LIANG X, WANG G H, YUAN G L, et al. , 2012. Structural sequence and geochronology of the Qomo Ri accretionary complex, central Qiangtang, Tibet: implications for the Late Triassic subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 22(2): 470-481. doi: 10.1016/j.gr.2011.11.012
    LIN A T, WATTS A B, HESSELBO S P, 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region[J]. Basin Research, 15(4): 453-478. doi: 10.1046/j.1365-2117.2003.00215.x
    LIN A T, Yang C C, Wang M H, et al. , 2021. Oligocene-Miocene sequence stratigraphy in the northern margin of the South China Sea: An example from Taiwan[J]. Journal of Asian Earth Sciences, 213(15): 1-25.
    LIN C H, 2002. Active continental subduction and crustal exhumation: the Taiwan orogeny[J]. Terra Nova, 14(4): 281-287. doi: 10.1046/j.1365-3121.2002.00421.x
    LIOU J G, HO C O, YEN T P, 1975. Petrology of some glaucophane schists and related rocks from Taiwan[J]. Journal of Petrology, 16(1): 80-109. doi: 10.1093/petrology/16.1.80
    LIOU J G, 1981. Petrology of metamorphosed oceanic rocks in the Central Range of Taiwan[J]. Memoir of the Geological Society of China(4): 291-341.
    LIU C S, Deffontaines B, LU C Y, et al. , 2004. Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan[J]. Marine Geophysical Researches, 25(1): 123-137.
    LIU H, WANG B D, MA L, et al. , 2016. Late Triassic syn-exhumation magmatism in central Qiangtang, Tibet: evidence from the sangehu adakitic rocks[J]. Journal of Asian Earth Sciences, 132: 9-24. doi: 10.1016/j.jseaes.2016.10.009
    MALAVIEILLE J, TRULLENQUE G, 2009. Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: insights from analogue modeling[J]. Tectonophysics, 466(3-4): 377-394. doi: 10.1016/j.tecto.2007.11.016
    MASSONNE H J, SCHREYER W, 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz[J]. Contributions to Mineralogy and Petrology, 96(2): 212-224. doi: 10.1007/BF00375235
    MATTE P, MATTAUER M, OLIVET J M, et al. , 1997. Continental subductions beneath Tibet and the Himalayan orogeny: a review[J]. Terra Nova, 9(5-6): 264-270. doi: 10.1111/j.1365-3121.1997.tb00026.x
    MCINTOSH K, NAKAMURA Y, WANG T K, et al. , 2005. Crustal-scale seismic profiles across Taiwan and the western Philippine Sea[J]. Tectonophysics, 401(1-2): 23-54. doi: 10.1016/j.tecto.2005.02.015
    MCINTOSH K, VAN AVENDONK H, LAVIER L, et al. , 2013. Inversion of a hyper-extended rifted margin in the southern Central Range of Taiwan[J]. Geology, 41(8): 871-874. doi: 10.1130/G34402.1
    MUKOYOSHI H, HARA H, OHMORI-IKEHARA K, 2007. Quantitative estimation of temperature conditions for illite crystallinity: comparison to vitrinite reflectance from the Chichibu and Shimanto accretionary complexes, eastern Kyushu, Southwest Japan[J]. Bulletin of the Geological Survey of Japan, 58(1-2): 23-31. doi: 10.9795/bullgsj.58.23
    NIE Z T, SONG Z M, 1983. Fusulinids of lower Permian tunlonggongba formation from rutog of Xizang (Tibet), China[J]. Earth Science—Journal of Wuhan College of Geology(1): 43-55. (in Chinese with English abstract)
    PAGE B M, LAN C Y, 1983. The Kenting Mélange and its record of tectonic events[J]. Memoir of the Geological Society of China(5): 227-248.
    PELLETIER B, STEPHAN J F, 1986. Middle miocene deduction and late miocene beginning of collision registered in the hengchun peninsula: geodynamic implications for the evolution of Taiwan[J]. Tectonophysics, 125(1-3): 133-160. doi: 10.1016/0040-1951(86)90011-9
    PULLEN A, KAPP P, GEHRELS G E, et al. , 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 36(5): 351-354. doi: 10.1130/G24435A.1
    RAU R J, WU F T, 1995. Tomographic imaging of lithospheric structures under Taiwan[J]. Earth and Planetary Science Letters, 133(3-4): 517-532. doi: 10.1016/0012-821X(95)00076-O
    REED D L, LUNDBERG N, LIU C S, et al. , 1992. Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics[J]. Acta Geologica Taiwanica(30): 105-122.
    RIDOLFI F, RENZULLI A, PUERINI M, 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 160(1): 45-66. doi: 10.1007/s00410-009-0465-7
    ROKKAKU H, MAKIYAMA T, 1934. Report on the geologic survey of Hengchun oilfield, Kaoshiung Prefecture[J]. Bureau of Productive Industries, Government General of Taiwan.
    SHYU J B H, SIEH K, CHEN Y G, 2005. Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements[J]. Earth and Planetary Science Letters, 233(1-2): 167-177. doi: 10.1016/j.jpgl.2005.01.018
    SIBUET J C, HSU S K, 2004. How was Taiwan created?[J]. Tectonophysics, 379(1-4): 159-181. doi: 10.1016/j.tecto.2003.10.022
    SMITH D C, 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics[J]. Nature, 310(5979): 641-644. doi: 10.1038/310641a0
    SUN X F, 2016. Study on the middle paleozoic-devonian sedimentary facies and environment in Rongma, Tibet[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    SUNG Q, 1991. Geological Map and the explanatory text for Hengchun peninsula, South Taiwan, on scale 1: 50, 000[J]. Central Geological Survey, MOEA, Taiwan.
    SUPPE J, 1984. Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan[J]. Memoir of the Geological Society of China(6): 21-33.
    TIAN Z X, YAN Y, HUANG C Y, 2019. Geochemistry and geochronology of the accreted mafic rocks from the Hengchun Peninsula, southern Taiwan: origin and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 124(3): 2469-2491. doi: 10.1029/2018JB016562
    TRELOAR P J, IZATT C N, 1993. Tectonics of the Himalayan collision between the Indian Plate and the Afghan Block: a synthesis[J]. Geological Society London, 74(1): 69-87. doi: 10.1144/GSL.SP.1993.074.01.06
    VON HUENE R, SCHOLL D W, 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust[J]. Reviews of Geophysics, 29(3): 279-316. doi: 10.1029/91RG00969
    WANG G H, HAN F L, YANG Y J, et al. , 2009. Discovery and geologic significance of Late Paleozoic accretionary complexes in central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 28(9): 1181-1187. (in Chinese with English abstract)
    WANG J, FU X G, CHEN W X, et al. , 2008. Chronology and geochemistry of the volcanic rocks in Woruo Mountain region, northern Qiangtang depression: implications to the Late Triassic volcanic-sedimentary events[J]. Science in China Series D: Earth Sciences, 51(2): 194-205. doi: 10.1007/s11430-008-0010-y
    WANG X M, LIOU J G, MAO H K, 1989. Coesite-bearing eclogite from the Dabie Mountains in central China[J]. Geology, 17(12): 1085-1088. doi: 10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2
    WANG Z B, GAO J H, WANG G H, 2017. Non-fusuline foraminifers from the longge formation in rongma township, nyima county, Tibet and Their geological significance[J]. Journal of Stratigraphy, 41(4): 392-400. (in Chinese with English abstract)
    WILLETT S, BEAUMONT C, FULLSACK P, 1993. Mechanical model for the tectonics of doubly vergent compressional orogens[J]. Geology, 21(4): 371-374. doi: 10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2
    WU F T, LIANG W T, LEE J C, et al. , 2009. A model for the termination of the Ryukyu subduction zone against Taiwan: a junction of collision, subduction/separation, and subduction boundaries[J]. Journal of Geophysical Research: Solid Earth, 114(B7): B07404.
    WU H, LI C, CHEN J W, et al. , 2016. Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithosphere, 8(2): 141-149. doi: 10.1130/L468.1
    YUI T F, LO C H, 1989. High-pressure metamorphosed ophiolitic rocks from the Wanjung area, Taiwan[J]. Proceedings of the Geological Society of China, 32(1): 47-62.
    ZHAI Q G, LI C, HUANG X P, 2006. Geochemistry of Permian basalt in the Jiaomuri area, central Qiangtang, Tibet, China, and its tectonic significance[J]. Geological Bulletin of China, 25(12): 1419-1427. (in Chinese with English abstract)
    ZHAI Q G, LI C, 2007. Zircon SHRIMP dating of volcanic rock from the Nadigangri Formation in Juhuashan, Qiangtang, northern Tibet and its geological significance[J]. Acta Geologica Sinica, 81(6): 795-800. (in Chinese with English abstract)
    ZHAI Q G, CAI L, HUANG X P, 2007. The fragment of Paleo-Tethys ophiolite from central Qiangtang, Tibet: geochemical evidence of metabasites in Guoganjianian[J]. Science in China Series D: Earth Sciences, 50(9): 1302-1309. doi: 10.1007/s11430-007-0051-7
    ZHAI Q G, LI C, WANG J, et al. , 2009. Petrology, mineralogy and 40Ar/39Ar chronology for rongma blueschist from central Qiangtang, northern Tibet[J]. Acta Petrologica Sinica, 25(9): 2281-2288. (in Chinese with English abstract)
    ZHAI Q G, JAHN B M, ZHANG R Y, et al. , 2011a. Triassic subduction of the Paleo-Tethys in northern Tibet, China: evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block[J]. Journal of Asian Earth Sciences, 42(6): 1356-1370. doi: 10.1016/j.jseaes.2011.07.023
    ZHAI Q G, ZHANG R Y, JAHN B M, et al. , 2011b. Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic PT path[J]. Lithos, 125(1-2): 173-189. doi: 10.1016/j.lithos.2011.02.004
    ZHAI Q G, JAHN B M, WANG J, et al. , 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. GSA Bulletin, 128(3-4): 355-373. doi: 10.1130/B31296.1
    ZHANG K J, CAI J X, ZHANG Y X, et al. , 2006. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters, 245(3-4): 722-729. doi: 10.1016/j.jpgl.2006.02.025
    ZHANG K J, TANG X C, WANG Y, et al. , 2011. Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China: constraints on the exhumation of the central Qiangtang metamorphic belt[J]. Lithos, 121(1-4): 167-175. doi: 10.1016/j.lithos.2010.10.015
    ZHANG X C, YAN Y, HUANG C Y, et al. , 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance[J]. Journal of Asian Earth Sciences, 85: 26-39. doi: 10.1016/j.jseaes.2014.01.021
    ZHANG X Z, DONG Y S, LI C, et al. , 2010. Identification of the eclogites with different ages and their tectonic significance in central Qiangtang, Tibetan Plateau: constraints from 40Ar-39Ar geochronology[J]. Geological Bulletin of China, 29(12): 1815-1824. (in Chinese with English abstract)
    ZHANG Z M, ZHAO G C, SANTOSH M, et al. , 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 17(4): 615-631. doi: 10.1016/j.gr.2009.10.007
    ZHENG Y F, ZHAO Z F, CHEN Y X, 2013. Continental subduction channel processes: plate interface interaction during continental collision[J]. Chinese Science Bulletin, 58(35): 4371-4377. doi: 10.1007/s11434-013-6066-x
    ZHENG Y F, CHEN Y X, 2016. Continental versus oceanic subduction zones[J]. National Science Review, 3(4): 495-519. doi: 10.1093/nsr/nww049
    ZHOU Z Y. , LIAO Z T. , 2005. The model for the subduction and collision of the Indian plate with the Eurasian plate and its implications for the tectonic evolution of the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology, 25(4), 27-32. (in Chinese with English abstract)
    邓希光, 丁林, 刘小汉, 等, 2000. 青藏高原羌塘中部冈玛日地区蓝闪石片岩及其40Ar/39Ar年代学[J]. 科学通报, 45(21): 2322-2326. doi: 10.3321/j.issn:0023-074X.2000.21.015
    邓希光, 丁林, 刘小汉, 2002. 青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义[J]. 岩石学报, 18(4): 517-525. doi: 10.3969/j.issn.1000-0569.2002.04.010
    董永胜, 张修政, 施建荣, 等, 2009. 藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征[J]. 地质通报, 28(9): 1201-1206. doi: 10.3969/j.issn.1671-2552.2009.09.007
    侯泉林, 2018. 高等构造地质学(第二卷): 新理论与应用[M]. 北京: 科学出版社.
    胡培远, 李才, 杨韩涛, 等, 2010. 青藏高原羌塘中部果干加年山一带晚三叠世花岗岩的特征、锆石定年及其构造意义[J]. 地质通报, 29(12): 1825-1832. doi: 10.3969/j.issn.1671-2552.2010.12.010
    黄奇瑜, 2017. 台湾岛的年龄[J]. 中国科学: 地球科学, 47(4): 394-405.
    李才, 1997. 西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J]. 科学通报, 42(4): 448.
    李才, 翟庆国, 董永胜, 等, 2006. 青藏高原羌塘中部榴辉岩的发现及其意义[J]. 科学通报, 51(1): 70-74. doi: 10.3321/j.issn:0023-074X.2006.01.014
    李典, 王根厚, 刘正勇, 等, 2021. 古岛弧地体的俯冲是南羌塘增生杂岩形成的重要机制: 来自日湾茶卡洋岛的证据[J]. 沉积与特提斯地质, 41(2): 176-189.
    李静超, 赵中宝, 郑艺龙, 等, 2015. 古特提斯洋俯冲碰撞在南羌塘的岩浆岩证据: 西藏荣玛乡冈塘错花岗岩[J]. 岩石学报, 31(7): 2078-2088.
    聂泽同, 宋志敏, 1983. 西藏阿里地区日土县下二叠统吞龙共巴组的(虫筳)类[J]. 地球科学—武汉地质学院学报(1): 43-55.
    孙霄飞, 2016. 西藏荣玛乡中奥陶统—泥盆系沉积相及沉积环境研究[D]. 北京: 中国地质大学(北京).
    王根厚, 韩芳林, 杨运军, 等, 2009. 藏北羌塘中部晚古生代增生杂岩的发现及其地质意义[J]. 地质通报, 28(9): 1181-1187. doi: 10.3969/j.issn.1671-2552.2009.09.003
    王忠宝, 高金汉, 王根厚, 2017. 西藏尼玛县荣玛乡二叠系龙格组小有孔虫及地质意义[J]. 地层学杂志, 41(4): 392-400. doi: 10.19839/j.cnki.dcxzz.2017.04.005
    翟庆国, 李才, 黄小鹏, 2006. 西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J]. 地质通报, 25(12): 1419-1427. doi: 10.3969/j.issn.1671-2552.2006.12.010
    翟庆国, 李才, 王军, 等, 2009. 藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学[J]. 岩石学报, 25(9): 2281-2288.
    张修政, 董永胜, 李才, 等, 2010. 青藏高原羌塘中部不同时代榴辉岩的识别及其意义: 来自榴辉岩及其围岩40Ar-39Ar 年代学的证据[J]. 地质通报, 29(12): 1815-1824. doi: 10.3969/j.issn.1671-2552.2010.12.009
    周征宇, 廖宗廷. , 2005. 印度板块向欧亚板块俯冲碰撞的新模式及其对青藏高原构造演化的影响. 沉积与特提斯地质, 25(4), 27-32.
  • 期刊类型引用(2)

    1. 王根厚,李典,梁晓. 南羌塘印支期增生造山带组成、结构及演化. 地学前缘. 2023(03): 242-261 . 百度学术
    2. 李超,王根厚,赵中宝,杨锋,李典,闻俊豪,王仕林,李海兵. 西藏羌塘中部猫耳山石榴角闪岩的岩石学、地球化学及年代学研究. 岩石学报. 2023(12): 3661-3684 . 百度学术

    其他类型引用(0)

  • 加载中
图(12)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  185
  • PDF下载量:  207
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-25
  • 修回日期:  2022-08-10
  • 预出版日期:  2022-11-02

目录

/

返回文章
返回