留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势

王登红 代鸿章 刘善宝 李建康 王成辉 娄德波 杨岳清 李鹏

王登红,代鸿章,刘善宝,等,2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报,28(5):743−764 doi: 10.12090/j.issn.1006-6616.20222811
引用本文: 王登红,代鸿章,刘善宝,等,2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报,28(5):743−764 doi: 10.12090/j.issn.1006-6616.20222811
WANG D H,DAI H Z,LIU S B,et al.,2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics,28(5):743−764 doi: 10.12090/j.issn.1006-6616.20222811
Citation: WANG D H,DAI H Z,LIU S B,et al.,2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics,28(5):743−764 doi: 10.12090/j.issn.1006-6616.20222811

中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势

doi: 10.12090/j.issn.1006-6616.20222811
基金项目: 国家重点研发计划专项项目(2021YFC2901900);中国地质调查局地质调查项目(DD20221695, DD20190379, DD20160346)
详细信息
    作者简介:

    王登红(1967—),男,博士,二级研究员,主要从事矿产资源研究。E-mail: wangdenghong@vip.sina.com

    通讯作者:

    代鸿章(1985—),男,博士,副研究员,主要从事战略性矿产调查评价。E-mail: Daihz_cags@163.com

  • 中图分类号: P618.71; P612

New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade

Funds: This research is financially supported by the National key R & D plan (Grant 2021 YFC2901900) and the Project of China Geological Survey (Grants DD20221695, DD20190379, DD20160346)
  • 摘要: 中国锂矿资源丰富,其中盐湖锂矿虽然储量巨大,但开发利用技术尚待发展,目前开发的主要是硬岩型锂矿。硬岩型锂矿以伟晶岩型为主,集中分布在新疆和四川等地;成矿时代以中生代最为重要;成矿背景以强烈造山运动之后相对稳定的构造环境最为有利。经过十年来的勘查实践与理论研究,中国锂矿的类型已不再单一,卤水型从地表卤水扩展到浅部卤水与深部卤水并重,硬岩型从花岗伟晶岩型一枝独秀到蚀变花岗岩型、伟晶岩型、角砾岩筒型、沉积型等多种类型并重;成矿时代从中新生代拓展到古生代等多个期次;成矿区带从12个增加到16个,并在川西的甲基卡、可尔因及新疆的大红柳滩、砂锂沟等地探获了一批新的矿产地,新的资源格局正在形成;找矿方法与勘查技术也从单一的地表踏勘填图发展到遥感定区(远景区)—地质定型(类型)—化探定性(矿种)—物探定位(孔位)—钻探定量(资源量)及生物找矿、深穿透深部探矿等新技术新方法成体系化的新时代。鉴于战略性新兴产业快速发展对于锂资源的刚性需求,建议加强对以锂云母为主要工业矿物的新类型锂资源及以含锂黏土为主的沉积型锂资源的调查研究与开发利用;除了中生代之外,加强对古生代乃至前寒武纪锂矿的研究与找矿;加强阿尔金、喜马拉雅、冈底斯、大兴安岭西坡等新的锂矿成矿区带的勘查力度;加强对市场经济条件下锂资源动态管理的新机制研究;加强对锂同位素作为可控核聚变原材料的超前研究与资源储备,为开发高端矿业作出示范和引领。

     

  • 图  1  中国主要成锂带分布简图(据陈毓川等,2010a2015李建康等,2014王登红等,2020修改)

    Figure  1.  Distribution of the main lithium metallogenic belts in China(modified after Chen et al., 2010a, 2015; Li et al., 2014; Wang et al., 2020

    图  2  中国锂矿的成矿体系

    岩浆期与地壳演化阶段的划分依据程裕淇(1994);地质时代的绝对年龄依据全国地层委员会(2002);矿床成矿系列或矿床成矿系列组以编号简称标示,依据陈毓川等(2007),新发现者尚未编号

    Figure  2.  Lithium mineralization series in China

    The division of magmatic and crustal evolution stages refers to Cheng et al., 1994;Absolute geological ages according to National Stratigraphic Commission(2002);Mineralization series or series groups are marked by abbreviation of serial number (Chen et al., 2007

    图  3  新疆和田县大红柳滩锂矿田509道班西-507锂矿矿产地质图(据梁婷等,2021修改)

    1—雪被区;2—第四系冲积物;3—巴颜喀拉山群上组;4—巴颜喀拉山群中组;5—巴颜喀拉山群下组;6—中细粒石英闪长岩;7—黑云母二长花岗岩;8—石英脉;9—未矿化伟晶岩脉;10—矿体及编号;11—矿区范围

    Figure  3.  Mineral geological map of the Track 509 West-Track 507 lithium deposit in the Dahongliutan ore field in Hetian,Xinjiang(Modified after Liang et al., 2021

    1−Snow area; 2−Quaternary alluvial deposits; 3−Upper Formation of Bayankhara Mountain Group; 4−Middle Formation of Bayankhara Mountain Group; 5−Lower Formation of Bayankhara Mountain Group; 6−Medium-fine grained quartz diorite; 7−Biotite monzogranite; 8−Quartz vein; 9−Unmineralized pegmatite dike; 10−Ore body and number; 11−Scope of mining area

    图  4  新疆阿尔金成锂带典型含锂伟晶岩矿石

    a—新疆阿尔金砂锂沟矿区锂云母伟晶岩岩心;b—新疆阿尔金塔木切矿区锂辉石伟晶岩手标本;c—新疆阿尔金塔木切矿区锂云母锂电气石伟晶岩

    Figure  4.  Typical lithium-bearing pegmatite ores in the Altyn Tagh Li-metallogenic belt, Xinjiang

    (a) Drilling core of lepidolite pegmatite from the Shaligou deposit;(b) Hand specimen of spodumene pegmatite from the Tamuqie deposit;(c) Hand specimen of lepidolite-elbaite pegmatite from the Tamuqie deposit

    表  1  中国成锂带简表

    Table  1.   Main lithium metallogenic belts in China

    编号成锂带名称典型矿床主要成矿时代相关成矿区带相关成矿区带名称构造背景
    Li1 阿尔泰锂成矿带 可可托海 海西−燕山期 Ⅲ-01 北阿尔泰稀有−Pb−Zn−Au−白云母−宝石成矿带 阿尔泰造山带
    Li2 唐巴勒锂成矿带 合什哈西哈力 Ⅲ-04 唐巴勒−卡拉麦里Cr−Cu−Au−Sn−硫铁矿−
    石墨−石棉−水晶成矿带
    准噶尔地块及周缘造山带
    Li3 西天山锂成矿带 沙音图拜 Ⅲ-09 伊犁微板块北东缘(造山带)Au−Cu−Mo−Pb−Zn−Fe−W−Sn−P石墨成矿带 古生代为主造山带
    Li4 东天山锂成矿带 镜儿泉 海西−印支期 Ⅲ-08 觉罗塔格−黑鹰山Fe−Cu−Ni−Au−Ag−Mo−W−石膏−硅灰石−膨润土−煤成矿带 多旋回造山带
    Li5 西昆仑锂成矿带 大红柳滩 印支–燕山期 Ⅲ-27 西昆仑Fe−Cu−Pb−Zn−RM−REE−硫铁矿−
    水晶−白云母−宝玉石成矿带
    多旋回造山带
    Li6 藏北锂成矿带 扎布耶 第四纪 第四纪封闭的高蒸发环境
    Li7 柴达木锂成矿带 察尔汗 第四纪 Ⅲ-25 柴达木盆地Li−B−K−Na−Mg−盐类−石膏−
    油气成矿区
    第四纪封闭的高蒸发环境
    Li8 松潘−甘孜锂成矿带 甲基卡 印支−燕山期 Ⅲ-30 北巴颜喀拉−马尔康Au−Ni−Pt−Fe−Mn−Pb−Zn−Li−Be−云母成矿带 造山带
    Li9 四川盆地锂成矿带 自贡 三叠纪 Ⅲ-74 四川盆地Fe−Cu−Au−石油−天然气−石膏−钙芒硝−盐−煤和煤成气成矿区 凹陷盆地
    Li10 秦岭锂成矿带 官坡 加里东期 Ⅲ-66 东秦岭Au−Ag−Mo−Cu−Pb−Zn−Sb−
    非金属成矿带
    多旋回造山带
    Li11 潜江凹陷锂锂成矿带 潜江 第三纪 Ⅲ-72 江汉–洞庭(断陷)石膏−盐−石油−天然气成矿区 断陷盆地
    Li12 华南锂成矿带 宜春 印支–燕山期
    印支–燕山期
    II-12 华南成矿省 板内多旋回造山带
    南平 加里东期 Ⅲ-71 武功山–杭州湾Cu−Pb−Zn−Ag−Au−W−Sn−Nb−Ta−Mn−
    海泡石−萤石−硅灰石成矿带
    Li13 阿尔金成锂带 砂锂沟 加里东期 Ⅲ-19 阿尔金Au−Cu−Cr−Fe−Pb−Zn−石棉−玉石成矿带 多旋回造山带
    Li14 冈底斯成锂带 念青唐古拉、羊八井 喜马拉雅期 Ⅲ-42 班戈–腾冲(岩浆弧)Sn−W−Be−Li−Fe−Pb−Zn成矿带 板块缝合带两侧
    Li15 喜马拉雅成锂带 库局 喜马拉雅期 Ⅲ-45 喜马拉雅(造山带)Au−Sb−Fe−白云母成矿带 板内造山带
    Li16 大兴安岭西坡成锂带 维拉斯托 燕山晚期 Ⅲ-50 突泉–翁牛特Pb−Zn−Ag−Fe−Sn−REE成矿带 多旋回陆内造山带
    注: 此表在李建康等(2014)、陈毓川等(2015)基础上加以补充,相关成矿区带的代号及名称依据徐志刚等(2008)。需要注意到是,单矿种的成矿区带与单矿种综合性成矿区带的范围不完全一致。
    下载: 导出CSV

    表  2  中国主要硬岩型锂矿床及相关地质单元的同位素年代数据

    Table  2.   Isotopic age data of main hard-rock lithium deposits in China

    矿床名称矿床或岩石类型定年方法年龄/Ma参考文献
    福建南平 花岗伟晶岩型 K−Ar 364~412 仇年铭和杨岳清,1985
    广西恭县栗木 花岗岩型 白云母Ar−Ar 214 杨锋等,2009
    河南卢氏南阳山 花岗伟晶岩型 K−Ar 396 陈西京,1976
    湖南道县正冲 云英岩型 全岩Rb−Sr 14~153 陈廷愚等,1986李耀菘等,1986
    湖南临武尖峰岭 花岗岩型 K−Ar 167 黄蕴慧等,1988
    湖南幕府山断峰山 花岗伟晶岩型 白云母Ar−Ar 127.7~130.5 李鹏等,2017
    湖南幕府山仁里 花岗伟晶岩型 白云母Ar−Ar 136.6 黄小强等,2021
    湖南幕府山 幕府山复式花岗岩体 122~155 转引自李鹏等,2020
    湖南白沙窝 花岗伟晶岩型 辉钼矿Re−Os 140 ±6.7 文春华等,2020
    江西广昌西港 花岗伟晶岩型 白云母Ar−Ar 150~160 研究中资料
    江西宜春雅山 花岗岩型 K−Ar 131~157 林传仙,1994
    江西于都上坪 石英脉型 K−Ar 177 袁忠信和白鸽,2001
    陕西宝鸡杨家湾 花岗伟晶岩型 K−Ar 132 陈好寿,1975
    四川甲基卡 花岗伟晶岩型 白云母Ar−Ar 195~199 王登红等,2005Li et al., 2013
    四川甲基卡104号锂辉石伟晶岩 花岗伟晶岩型 白云母Ar−Ar 195.7 ± 0.1 王登红等,2005
    四川甲基卡134号锂辉石伟晶岩 花岗伟晶岩型 白云母 Ar−Ar 198.9 ± 0.4 王登红等,2005
    四川甲基卡 二云母花岗岩 锆石U−Pb 223 ± 1 郝雪峰等,2015
    四川甲基卡新3号锂辉石伟晶岩 花岗伟晶岩型 铌钽铁矿U−Pb 214 ± 2 郝雪峰等,2015
    四川可尔因 花岗伟晶岩型 白云母Ar−Ar 152~176 李建康等,2007b
    四川可尔因 白云母钠长石伟晶岩 白云母 Ar−Ar 159 ± 1 Li et al., 2019
    四川可尔因 二云母花岗岩 锆石 U−Pb 207 ± 1 Zhao et al., 2019
    四川可尔因 黑云母二长花岗岩 锆石 U−Pb 206.7~229 赵永久,2007岳相元等,2019
    四川可尔因 石英闪长岩 锆石 U−Pb 206.4~223.8 岳相元等,2019; Zheng et al., 2020
    四川可尔因 二云母花岗岩 锆石 U−Pb 202~219 研究中资料
    四川可尔因党坝 花岗伟晶岩型 锡石U−Pb 199~208 费光春等,2020
    四川可尔因李家沟 花岗伟晶岩型 锆石 U−Pb 198 ± 3 Fei et al., 2018
    四川可尔因加达 花岗伟晶岩型 铌钽铁矿U−Pb 195~206 研究中资料
    四川雪宝顶 石英脉型 白云母 Ar−Ar 195 ± 1 Zhang et al., 2014
    四川雪宝顶 伟晶岩 白云母 Ar−Ar 190 ± 2 李建康等,2007a
    四川雪宝顶 羊拱海花岗岩 锆石 U−Pb 221 ± 4 Zhang et al., 2006
    四川扎乌龙 花岗伟晶岩型 白云母Ar−Ar 236 四川省地矿局,1987
    四川扎乌龙14号伟晶岩 花岗伟晶岩型 白云母 Ar−Ar 180 ± 2 Li et al., 2019
    四川扎乌龙14号伟晶岩 花岗伟晶岩型 铌钽铁矿 U−Pb 205 ± 2 Li et al., 2019
    四川扎乌龙97号伟晶岩 花岗伟晶岩型 白云母 Ar−Ar 174 ± 2 Li et al., 2019
    四川扎乌龙 白云母花岗岩 锆石 U−Pb 212 ± 5 Li et al., 2019
    四川打枪沟 花岗伟晶岩型 锆石 U−Pb 147.5 ± 2.3 胡军亮,2020
    青海茶卡北山 花岗伟晶岩型 锆石 U−Pb 217 王秉璋等,2020
    青海草陇 花岗伟晶岩型 独居石U−Pb 200~204 李五福等,2021
    新疆大红柳滩102号伟晶岩 花岗伟晶岩型 白云母 Ar−Ar 187.0 ± 1.1 Li et al., 2019
    新疆大红柳滩90号伟晶岩 花岗伟晶岩型 铌钽铁矿 U−Pb 211.9 ± 2.4 闫庆贺等,2017Yan et al., 2018
    新疆大红柳滩90号伟晶岩 花岗伟晶岩型 白云母 Ar−Ar 189.4 ± 1.1 Li et al., 2019
    新疆大红柳滩 二云母花岗岩 锆石 U−Pb 217~220 乔耿彪等,2020
    新疆大喀拉苏 花岗伟晶岩型 白云母Ar−Ar 248 王登红等,2002
    新疆镜儿泉 花岗伟晶岩型 白云母Ar−Ar 243 陈郑辉等,2006
    新疆柯鲁木特 花岗伟晶岩型 K−Ar 198~220 邹天人等,1980
    新疆可可托海 花岗伟晶岩型 白云母Ar−Ar 178~182 王登红等,2002
    新疆塔拉提 花岗伟晶岩型 锆石U−Pb 385.9 ± 3.5 Lv et al.,2018
    新疆阿木拉宫 花岗伟晶岩型 锆石U−Pb 358.3 ±4.6 Lv et al.,2018
    新疆拜城 花岗伟晶岩型 锆石U−Pb 275.5 ± 4.2 任宝琴等,2011; 张辉等,2019
    新疆小喀拉苏 花岗伟晶岩型 锆石U−Pb 241.5+3.1 张辉等,2019
    新疆磨什尕 花岗伟晶岩型 锆石U−Pb 249+2.9 张辉等,2019
    新疆萨尔加克 花岗伟晶岩型 锆石U−Pb 252.7 ± 2.1 张辉等,2019
    新疆切木尔切克 花岗伟晶岩型 锆石U−Pb 253.5 ± 3.2 张辉等,2019
    新疆库儒尔特 花岗伟晶岩型 锆石U−Pb 180.7±0.5 任宝琴等,2011; 张辉等,2019
    新疆小虎斯特 花岗伟晶岩型 锆石U−Pb 190.6±1.2 任宝琴等,2011; 张辉等,2019
    新疆佳木开 花岗伟晶岩型 锆石U−Pb 199.1±1.0 任宝琴等,2011; 张辉等,2019
    新疆卡鲁安 花岗伟晶岩型 铌铁矿、锆石U−Pb 198~223 马占龙等,2015; Feng et al.,2019
    新疆库卡拉盖 花岗伟晶岩型 锆石U−Pb 211.3 ± 2.4 马占龙等,2015
    新疆别也萨麻斯 花岗伟晶岩型 锆石U−Pb 157.2±0.5 吕正航等,2015
    新疆蒙库喀拉苏 花岗伟晶岩型 白云母Ar−Ar 252~268 邹天人和李庆昌,2006
    新疆阿克塔斯 花岗伟晶岩型 白云母Ar−Ar 144 ± 4.3 乔耿彪等,2020
    新疆505锂矿 花岗伟晶岩型 锡石U−Pb 223.5 ±7.9 彭海练等,2018李侃等,2019
    新疆白龙山 花岗伟晶岩型 钽铁矿U−Pb 208 Wang et al.,2020
    新疆砂锂沟 花岗伟晶岩型 白云母Ar−Ar 402~405 研究中资料
    新疆吐格曼 花岗伟晶岩型 锆石U−Pb 459.9 ± 3.7 徐兴旺等,2019
    新疆吐格曼北 花岗伟晶岩型 锡石、锆石U−Pb 454~468 李杭等,2020
    西藏琼嘉岗 花岗伟晶岩型 独居石、铌钽铁矿U−Pb 24~25 赵俊兴等,2021
    西藏普士拉 花岗伟晶岩型 锡石、铌钽铁矿U−Pb 23~25 Liu et al., 2020
    下载: 导出CSV

    表  3  中国主要省(自治区)查明锂矿资源储量、消耗资源储量和保有资源储量一览表(陈毓川等,2015

    Table  3.   List of the identified, consumed and retained lithium mineral resources in China (Chen et al., 2015)

    省(自治区)查明资源储量消耗资源储量保有资源储量查明资源储量所占比例/%
    Li2O/tLiCl/×104 t折合金属锂/tLi2O/tLiCl/×104 tLi2O/tLiCl/×104 t折合金属锂/t
    新疆 138006 64114 63368 74638 34675 1.07
    西藏 822.0 1346341 1 821.0 1344703 22.39
    青海 2135.0 3496209 19 2115.0 3464686 58.15
    陕西 121 56 121 56 0.00
    四川 1259386 2.4 589022 1259386 2.4 589021 9.80
    河南 18455 8574 18455 8573 0.14
    湖南 350806 162976 350806 162976 2.71
    江西 737059 342420 149695 587364 272875 5.70
    福建 5004 2325 5004 2324 0.04
    合计 2508837 2960.0 6012037 213083 20 2296595 2939.0 5879892 100.00
    下载: 导出CSV

    表  4  中国主要锂矿床资源信息

    Table  4.   Resources of the main lithium deposits in China

    矿产地名称储量规模平均品位/%利用情况
    Li2OBeONb2O5Ta2O5
    江西宜春钽铌锂矿 超大 超大 0.389 0.010 0.010 在用
    河南卢氏铌钽矿床 0.650 待用
    湖北潜江凹陷卤水矿 超大 待用
    湖南临武香花铺尖峰山铌钽矿床 0.299 0.012 0.013 未用
    湖南道县湘源正冲锂铷多金属矿床 0.557 未用
    湖南平江传梓源铍钽铌矿床 0.022 0.010 0.007 曾用
    云南龙陵黄莲沟铍矿床 0.049 曾用
    四川金川–马尔康可尔因锂铍矿床 1.200~1.271 0.040~0.045 在用
    四川康定甲基卡锂铍矿床 超大 1.203 0.040 在用
    四川石渠扎乌龙锂矿 1.109 未用
    四川金川县李家沟 超大型 1.300 在用
    青海柴达木一里坪盐湖锂矿 LiCl,2.20 g/L 在用
    青海柴达木东台吉乃盐湖锂矿床 超大 LiCl,2.57 g/L 在用
    青海柴达木西台吉乃盐湖锂矿床 LiCl,3.12 g/L 在用
    西藏扎布耶盐湖锂矿 超大 在用
    新疆富蕴可可托海锂铍铌钽矿床 超大 0.982 0.051 0.006 0.024 已用
    新疆富蕴柯鲁木特锂铍铌钽矿床 0.987 0.049 0.026 0.011 停用
    新疆福海库卡拉盖锂矿床 1.100 未用
    注:据陈毓川等(2015)补充;其中,四川金川县李家沟经四川省地质矿产勘查开发局化探队补充勘探后,由四川省矿产资源储量评审中心评审认定新增Li2O资源储量为51.22×104 t
    下载: 导出CSV

    表  5  中国锂矿主要预测类型

    Table  5.   Main predicted lithium resource types in China

    预测类型矿床式大地构造分区成矿区带含矿岩系矿床成因矿床规模成矿时代共生矿产预测要素
    伟晶岩型 可可托海式 哈龙早古生代岩浆弧 北阿尔泰成矿带 花岗伟晶岩脉 花岗伟晶岩型 中型 C—T Be、Nb、Ta 中生代花岗岩,
    伟晶岩脉
    伟晶岩型 甲基卡式 巴颜喀拉–
    松潘造山带
    北巴颜喀拉−
    马尔康成矿带
    花岗伟晶岩脉 花岗伟晶岩型 超大型 印支晚期 Be、Nb、Ta 印支晚期花岗岩,
    伟晶岩脉
    花岗岩型 宜春式 武功山–
    玉华山隆起
    武功山−
    杭州湾成矿带
    燕山期雅山花岗岩体 花岗岩型 超大型 K1 Nb、Ta 燕山期花岗岩,
    蚀变
    沉积型 柴达木式 柴达木地块 柴达木盆地成矿区 第四纪湖相沉积 盐湖沉积型 超大型 Q K、B 第四纪盐湖
    沉积型 扎布耶式 拉萨地块 拉萨地块成矿带 第四纪湖相沉积 盐湖沉积型 大型 Q K、B 第四纪盐湖
    沉积型 自贡式 四川盆地 四川盆地成矿区 三叠纪沉积 沉积型 小型 T K、石盐 地下卤水
    下载: 导出CSV
  • CHEN H S, 1975. On the isotopic ages of some granites and metamorphic rocks from Northwest China[J]. Acta Geological Sinica, 49(1): 45-60. (in Chinese with English abstract)
    CHEN T Y, WANG X Y, REN J S, et al. , 1986. Isotopic geochronology of the Jiuyishan and Baimashan composite granitic intrusions, Hunan[J]. Geological Review, 32(5): 433-439. (in Chinese with English abstract)
    CHEN X J, 1976. Deep-seated magmatic differentiation and the formation of granite pegmatites in a certain district, China[J]. Geochimica, 5(3): 213-229. (in Chinese with English abstract)
    CHEN Y C, WANG D H, ZHU Y S, et al. , 2007. Chinese mineralization system and assessment of regional mineralization[M]. Beijing: Geological Publishing House: 1-1005. (in Chinese)
    CHEN Y C, WANG D H, XU Z G, et al. , 2010a. Technical requirements for research on regional metallogenetic regularity of important minerals in China[M]. Beijing: Geological Publishing House: 1-179. (in Chinese)
    CHEN Y C, WANG D H, LI H M, et al. , 2010b. Classification scheme of important mineral prediction types[M]. Beijing: Geological Publishing House: 1-222. (in Chinese)
    CHEN Y C, WANG D H, XU Z G, et al. , 2015. Important mineral and regional metallogenic regularity in China[M]. Beijing: Geological Publishing House: 1-795. (in Chinese)
    CHEN Z H, WANG D H, GONG Y F, et al. , 2006. 40Ar-39Ar isotope dating of muscovite from Jingerquan pegmatite rare metal deposit in Hami, Xinjiang, and its geological significance[J]. Mineral Deposits, 25(4): 470-476. (in Chinese with English abstract)
    CHENG Y Q, 1994. Concise regional geology of China[M]. Beijing: Geological Publishing House: 1-517. (in Chinese)
    DAI J J, WANG D H, DAI H Z, et al. , 2017. Geological mapping and ore-prospecting study using remote sensing technology in Jiajika area of Western Sichuan Province[J]. Geology in China, 44(2): 389-398. (in Chinese with English abstract)
    FEI G C, TIAN J J, YANG J Y, et al. , 2018. New zircon U-Pb age of the super-large Lijiagou spodumene deposit in Songpan Garze Fold Belt, Eastern Tibet: implications for Early Jurassic rare-metal polymetallic event[J]. Acta Geologica Sinica - English Edition, 92(3): 1274-1275. doi: 10.1111/1755-6724.13613
    FEI G C, YANG Z, YANG J Y, et al. , 2020. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating[J]. Acta Geologica Sinica, 94(3): 836-849. (in Chinese with English abstract)
    FENG Y G, LIANG T, ZHANG Z, et al. , 2019. Columbite U-Pb geochronology of Kalu’an lithium pegmatites in northern Xinjiang, China: implications for genesis and emplacement history of rare-element pegmatites[J]. Minerals, 9(8): 456. doi: 10.3390/min9080456
    FU X F, YUAN L P, WANG D H, et al. , 2015. Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan[J]. Mineral Deposits, 34(6): 1172-1186. (in Chinese with English abstract)
    GUO W M, MA S C, SUN Y, et al. , 2019. Characteristics and significance of rare metal mineralization in hot-springs of Tengchong area, Yunnan[J]. Acta Geologica Sinica, 93(6): 1321-1330. (in Chinese with English abstract)
    HAO X F, FU X F, LIANG B, et al. , 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J]. Mineral Deposits, 34(6): 1199-1208. (in Chinese with English abstract)
    HU J L, 2020. Geological-geochemical, geochronology and resourcet prospect analysis for the lithium and beryllium deposit in Daqianggou, Jiulong, Western Sichuan, China[D]. Chengdu: Chengdu University of Technology: 1-59. (in Chinese with English abstract)
    HUANG X Q, LI P, ZHANG L P, et al. , 2021. Geochemical characteristics and metallogenic age of No. 36 pegmatite in Renli rare metal ore field, Hunan Province, and their significance[J]. Mineral Deposits, 40(6): 1248-1266. (in Chinese with English abstract)
    HUANG Y H, DU S H, ZHOU X Z, 1988. Xianghualing rock deposit and minerals[M]. Beijing: Beijing Science and Technology Press: 4-11. (in Chinese)
    JINDALEE Resources Limited. McDermitt lithium project[EB/OL]. https://www.jindalee.net/site/projects/usa/us-lithium.
    LI H, HONG T, YANG Z Q, et al. , 2020. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: a case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 36(9): 2869-2892. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.09.16
    LI J K, LIU S B, WANG D H, et al. , 2007a. Metallogenic epoch of Xubaoding W-Sn-Be deposit in northwest Sichuan and its tectonic tracing significance[J]. Mineral Deposits, 26(5): 557-562. (in Chinese with English abstract)
    LI J K, WANG D H, ZHANG D H, et al. , 2007b. Mineralizing mechanism and continental geodynamics of typical pegmatite deposit in Western Sichuan, China[M]. Beijing: Atomic Energy Publishing House: 1-182. (in Chinese)
    LI J K, WANG D H, CHEN Y C, 2013. The ore-forming mechanism of the Jiajika pegmatite-type rare metal deposit in Western Sichuan Province: evidence from isotope dating[J]. Acta Geologica Sinica - English Edition, 87(1): 91-101. doi: 10.1111/1755-6724.12033
    LI J K, LIU X F, WANG D H, 2014. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 88(12): 2269-2283. (in Chinese with English abstract)
    LI K, GAO Y B, TENG J X, et al. , 2019. Metallogenic geological characteristics, mineralization age and resource potential of the granite-pegmatite-type rare metal deposits in Dahongliutan area, Hetian County, Xinjiang[J]. Northwestern Geology, 52(4): 206-221. (in Chinese with English abstract)
    LI J K, 2021. Annual progress report 2021 of National Key research and development Program“Metallogenic regularity and prediction and evaluation of lithium, beryllium and other strategic metal mineral resources”[R]. (in Chinese)
    LI P, LI J K, PEI R F, et al. , 2017. Multistage magmatic evolution and Cretaceous peak metallogenic epochs of Mufushan composite granite mass: constrains from geochronological evidence[J]. Earth Science, 42(10): 1684-1696. (in Chinese with English abstract)
    LI P, LI J K, CHOU I M, et al. , 2019. Mineralization epochs of granitic rare-metal pegmatite deposits in the Songpan-Ganzê Orogenic Belt and their implications for orogeny[J]. Minerals, 9(5): 280. doi: 10.3390/min9050280
    LI P, ZHOU F C, LI J K, et al. , 2020. Zircon U-Pb ages and Hf isotopic compositions of the concealed granite of Renli-Chuanziyuan deposit, NE Hunan and geological significance[J]. Geotectonica et Metallogenia, 44(3): 486-500. (in Chinese with English abstract)
    LI W F, LI S P, WANG B Z, et al. , 2021. Discovery of the (beryl-bearing) spodumene pegmatite in the Caolong area in the Sanjiang Northern section of the Qinghai: implications for Li-Be mineralization[J]. Geotectonica et Metallogenia: 1-25,doi: 10.16539/j.ddgzyckx.2021.05.021. (in Chinese with English abstract)
    LI Y S, ZHU J C, ZHENG M G, et al. , 1986. Rb-Sr chronology and genesis of Jiuyishan granite complex, south China[J]. Uranium Geology, 2(5): 257-264. (in Chinese with English abstract)
    LIANG T, TENG J X, WANG D H, et al. , 2021. The Dahongliutan lithium-beryllium rare metal deposit, Xinjiang[M]. Beijing: Geological Publishing House: 1-262. (in Chinese)
    LIN C X, LIU Y M, WANG Z G, et al. , 1994. Rare metal and rare earth element deposits in China[M]//SONG S H. Beijing: Geological Publishing House: 296-299. (in Chinese)
    LIU C, WANG R C, WU F Y, et al. , 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: lithium mineralization in a highly fractionated leucogranite batholith[J]. Lithos, 358-359: 105421. doi: 10.1016/j.lithos.2020.105421
    LIU L J, FU X F, WANG D H, et al. , 2015. Geological characteristics and metallogeny of Jiajika-style rare metal deposits[J]. Mineral Deposits, 34(6): 1187-1198. (in Chinese with English abstract)
    LIU L J, WANG D H, YANG Y Q, et al. , 2016. Metallogenic characteristics of X03 rare metal vein in Jiajika of Sichuan[J]. Journal of Guilin University of Technology, 36(1): 50-59. (in Chinese with English abstract)
    LIU L J, WANG D H, DAI H Z, et al. , 2017a. Geochemical characteristics of REE and its implications to X03 super-large lithium pegmatite vein, Jiajika, Sichuan[J]. Earth Science, 42(10): 1673-1683. (in Chinese with English abstract)
    LIU L J, WANG D H, HOU K J, et al. , 2017b. Application of lithium isotope to Jiajika new No. 3 pegmatite lithium polymetallic vein in Sichuan[J]. Earth Science Frontiers, 24(5): 167-171. (in Chinese with English abstract)
    LIU S B, WANG C H, WANG D H, et al. , 2020. The“3D2R-BP”large scale mapping method for blocks of pegmatite in the Jajika deposit, western Sichuan, and significance of its application in the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 94(1): 326-332. (in Chinese with English abstract)
    LONDON D, 2015. Reply to Thomas and Davidson on “a petrologic assessment of internal zonation in granitic pegmatites” (London, 2014a)[J]. Lithos, 212-215: 469-484. doi: 10.1016/j.lithos.2014.11.025
    LV Z H, ZHANG H, TANG Y, 2015. Petrogenetic relationship between the Bieyesamasi Li Li-Nb-Ta deposit and hosting granitic rocks, Xinjiang[J]. Acta Mineralogica Sinica, 35(S1): 323. (in Chinese)
    LV Z H, ZHANG H, TANG Y, et al. , 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 95: 161-181. doi: 10.1016/j.oregeorev.2018.02.022
    MA S C, WANG D H, LIU S B, et al. , 2020. The application of comprehensive prospecting methods on the hard rock type lithium deposit: a case study of the Jiada lithium mine in the Maerkang rare metals orefield[J]. Acta Geologica Sinica, 94(8): 2341-2353. (in Chinese with English abstract)
    MA Z L, ZHANG H, TANG Y, et al. , 2015. Zircon U-Pb geochronology and Hf isotopes of pegmatites from the Kaluan mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite[J]. Geochimica, 44(1): 9-26. (in Chinese with English abstract)
    Ministry of Natural Resources of the People’s Republic of China. A bonanza was occurred in McDermitt lithium mine drilling in the US[EB/OL]. (2022-03-17). http://geoglobal.mnr.gov.cn/zx/kcykf/ztjz/202203/t20220317_8238789.htm.
    National Stratigraphic Commission, 2002. Specification of China regional chronostratigraphic (geochronological) table[M]. Beijing: Geological Publishing House: 1-134. (in Chinese)
    PAN G T, XIAO Q H, LU S N, et al. , 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1-28. (in Chinese with English abstract)
    PAN T, LI S P, REN H, et al. , 2020. Metallogenic conditions and prospecting potential of Lithium polymetallic deposits in North Qaidam Basin[J]. Mineral Exploration, 11(6): 1101-1116. (in Chinese with English abstract)
    PENG H L, HE N Q, WANG M C, et al. , 2018. Geological characteristics and metallogenic regularity of West Track 509 rare polymetallic deposit in Dahongliutan region, Hetian, Xinjiang[J]. Northwestern Geology, 51(3): 146-154. (in Chinese with English abstract)
    QIAO G B, WU Y Z, LIU T, 2020. Formation age of the Dahongliutan pegmatite type rare metal deposit in Western Kunlun Mountains: evidence from muscovite 40Ar/39Ar isotopic dating[J]. Geology in China, 47(5): 1591-1593. (in Chinese with English abstract)
    QIN K Z, ZHAO J X, HE C T, et al. , 2021. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 37(11): 3277-3286. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.02
    QIU N M, YANG Y Q, 1985. Study on magmatic and metallogenic regularity and prospecting direction of nanping Pegmatite field, Fujian Province[R]. Beijing: Development and Research Center (National Geological Archives of China): 1-236. (in Chinese)
    REN B Q, ZHANG H, TANG Y, et al. , 2011. LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance[J]. Acta Mineralogica Sinica, 31(3): 587-596. (in Chinese with English abstract)
    REN J S, WANG Z X, CHEN B W, 1999. Tectonics of China from a global perspective: a brief description of tectonics maps of China and adjacent areas[M]. Beijing: Geological Publishing House: 1-50. (in Chinese)
    Sichuan Bureau of Geology and Mineral Resources, 1987. 1: 200000 geological map and regional geological survey report, Shiqu[R].
    TU Q J, HAN Q, LI P, et al. , 2019. Basic characteristics and exploration progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica, 93(11): 2862-2873. (in Chinese with English abstract)
    WANG B Z, HAN J, XIE X L, et al. , 2020. Discovery of the Indosinian (beryl-bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the Northeastern margin of the Tibetan Plateau: implications for Li-Be mineralization[J]. Geotectonica et Metallogenia, 44(1): 69-79. (in Chinese with English abstract)
    WANG C H, WANG D H, CHEN C, et al. , 2019. Progress of research on the Shilizing rare meatals mineralization from Jiuling-type rock and its significance for prospecting[J]. Acta Geologica Sinica, 93(6): 1359-1373. (in Chinese with English abstract)
    WANG C H, WANG D H, SUN Y, et al. , 2022. Investigation and research progress of rare and rare earth minerals in key ore-concentrated areas of South China[M]. Beijing: Science Press: 1-357. (in Chinese)
    WANG D H, CHEN Y C, XU Z G, 2001. Chronological study of Caledonian metamorphic pegmatite muscovite deposits in the Altay Mountains, Northwestern China, and its significance[J]. Acta Geologica Sinica, 75(3): 419-425. (in Chinese with English abstract)
    WANG D H, CHEN Y C, XU Z G, et al. , 2002. Study on metallogenetic series and metallogenetic regularity of Altai Metallogenic Province[M]. Beijing: Atomic Energy Publishing House: 1-493. (in Chinese)
    WANG D H, LI J K, FU X F, 2005. 40Ar/39Ar dating for the Jiajika pegmatite-type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 34(6): 541-547. (in Chinese with English abstract)
    WANG D H, FU X F, 2013. Prospecting breakthrough of lithium resources in periphery of Jiajika, Sichuan Province[J]. Rock and Mineral Analysis, 32(6): 987. (in Chinese)
    WANG D H, XU Z G, SHENG J F, et al. , 2014. Progress on the study of regularity of major mineral resources and regional metallogenic regularity in China: a review[J]. Acta Geologica Sinica, 88(12): 2176-2191. (in Chinese with English abstract)
    WANG D H, WANG R J, FU X F, et al. , 2016a. A discussion on the major problems related to geological investigation and assessment for energy metal resources base: a case study of the Jiajika large lithium mineral resource base[J]. Acta Geoscientica Sinica, 37(4): 471-480. (in Chinese with English abstract)
    WANG D H, WANG R J, SUN Y, et al. , 2016b. A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China[J]. Acta Geoscientica Sinica, 37(5): 569-580. (in Chinese with English abstract)
    WANG D H, LIU L J, HOU J L, et al. , 2017. A preliminary review of the application of "Five levels+Basement" model for Jiajika-style rare metal deposits[J]. Earth Science Frontiers, 24(5): 1-7. (in Chinese with English abstract)
    WANG D H, WU X S, 2017. The mystery of lithium, the energy metal of the 21st century[J]. Scientific and Cultural Popularization of Land and Resources(4): 22-27. (in Chinese)
    WANG D H, CHEN Y C, JIANG B, et al. , 2020. Preliminary study on the Triassic continental mineralization system in China[J]. Earth Science Frontiers, 27(2): 45-59. (in Chinese with English abstract)
    WANG D H, DAI H Z, YU Y, et al. , 2021a. Theory, method and practice of investigation and evaluation of large lithium resource base: a case study of Jianjika super large lithium deposit in western Sichuan[M]. Beijing: Science Press: 1-458. (in Chinese)
    WANG D H, SUN Y, ZHOU S C, et al. , 2021b. Progress of the deep exploration technology demonstration project for lithium energy metal mineral base[J]. Mineral Deposits, 40(4): 641-654. (in Chinese with English abstract)
    WANG H, LI P, MA H D, et al. , 2017. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 41(6): 1053-1062. (in Chinese with English abstract)
    WANG H, GAO H, ZHANG X Y, et al. , 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 360-361: 105449. doi: 10.1016/j.lithos.2020.105449
    WANG N Y, 1989. The attractive metal energy source[J]. Today Science and Technology(9): 32. (in Chinese)
    WANG Q B, 2020. Indication of geogas prospecting technology to concealed ore body in Jiajika rare metal orefield[D]. Mianyang: Southwest University of Science and Technology: 1-62. (in Chinese with English abstract)
    WANG R J, WANG D H, LI J K, et al. , 2015. Rare, rare earth and rarely scattered resources and its development and utilization[M]. Beijing: Geological Publishing House: 1-429. (in Chinese)
    WANG X Q, LIU H L, WANG W, et al. , 2020. Geochemical abundance and spatial distribution of lithium in China: implications for potential prospects[J]. Acta Geoscientia Sinica, 41(6): 797-806. (in Chinese with English abstract)
    WEN C H, CHEN J F, CAO C H, 2020. Study on the mineralization of rare metal pegmatite in Lianyunshan ore district, Hunan Province[J]. Geological Review, 66(S1): 135-136. (in Chinese with English abstract)
    XU S Q, TU Q J, 2017. Application of deposit modeling and integrated geological information using in mineral resource potential assessment, taking Dahongliutan of West Kunlun as an example[J]. Xinjiang Geology, 35(3): 285-289. (in Chinese with English abstract)
    XU X W, LI H, SHI F P, et al. , 2019. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, middle part of Altyn Tagh[J]. Acta Petrologica Sinica, 35(11): 3303-3316. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.11.03
    XU Z G, CHEN Y C, WANG D H, et al. , 2008. Scheme of the classification of the minerogenetic units in China[M]. Beijing: Geological Publishing House: 1-138. (in Chinese)
    YAN Q H, WANG H, QIU Z W, et al. , 2017. Cassiterite and tantalite geochronology of the Dahongliutan rare metal pegmatite deposit, western, and its geological significance[C]//Collection of the 9th National Member Congress and the 16th annual academic Conference of Chinese Society of Mineralogy, Petrology and Geochemistry. Xi’an: Chinese Society for Mineralogy, Petrology and Geochemistry: 833-834. (in Chinese)
    YAN Q H, QIU Z W, WANG H, et al. , 2018. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 100: 561-573. doi: 10.1016/j.oregeorev.2016.11.010
    YANG F, LI X F, FENG Z H, et al. , 2009. 40Ar/39Ar dating of muscovite from greisenized granite and geological significance in Limu tin deposit[J]. Journal of Guilin University of Technology, 29(1): 21-24. (in Chinese with English abstract)
    YANG Y Q, WANG D H, LIU S B, et al. , 2020. The co-occurrence mechanism of two types of spodumene ore bodies and their prospecting significance in Jiajikan, Sichuan Province[J]. Acta Geologica Sinica, 94(1): 287-302. (in Chinese with English abstract)
    YANG Y Q, WANG D H, SUN Y, et al. , 2021. Review on research and exploration of the 3R mineral resources during the past 70 years by Institute of Mineral Resources[J]. Mineral Deposits, 40(4): 655-692. (in Chinese with English abstract)
    YU Y, WANG D H, GAO J Q, et al. , 2019a-02-15. Method for predicting concealed lithium deposits based on lithium element content in plants: China, 109343143A[P]. (in Chinese)
    YU Y, WANG D H, GAO J Q, et al. , 2019b. A review of "three-type rare resources" biological methods for mineral exploration and its application in China[J]. Acta Geologica Sinica, 93(6): 1533-1542. (in Chinese with English abstract)
    YUAN Z X, BAI G, 2001. Temporal and spatial distribution of endogenic rare and rare earth mineral deposits of China[J]. Mineral Deposits, 20(4): 347-354. (in Chinese with English abstract)
    YUAN Z X, HE H H, LIU L J, et al. , 2016. Rare metal and rare earth element deposits abroad[M]. Beijing: Science Press: 1-170. (in Chinese)
    YUE X Y, YANG B, ZHOU X, et al. , 2019. Geochemical characteristics and U-Pb age of Redamen granites in Western Sichuan, China: petrogenesis and tectonic significance[J]. Geoscience, 33(5): 1015-1024. (in Chinese with English abstract)
    ZHANG D L, PENG J T, COULSON I M, et al. , 2014. Cassiterite U-Pb and muscovite 40Ar-39Ar age constraints on the timing of mineralization in the Xuebaoding Sn-W-Be deposit, western China[J]. Ore Geology Reviews, 62: 315-322. doi: 10.1016/j.oregeorev.2014.04.011
    ZHANG H, LV Z H, TANG Y, 2019. Metallogeny and prospecting model as well as prospecting direction of pegma-tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792-814. (in Chinese with English abstract)
    ZHANG H F, ZHANG L, HARRIS N, et al. , 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology, 152(1): 75-88. doi: 10.1007/s00410-006-0095-2
    ZHANG J, ZHANG Y F, TIAN X M, et al. , 2021. Geological characteristics and genesis of the Caijia granitic pegmatite-type lithium deposit in Lushi County, Henan Province[J]. Geology and Exploration, 57(3): 497-506. (in Chinese with English abstract)
    ZHANG T, 2021. Mineral geology of China·Inner Mongolia volume (internal report )[R]. (in Chinese)
    ZHAO J X, HE C T, QIN K Z, et al. , 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 37(11): 3325-3347. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.06
    ZHAO R Y, LI W H, JIANG C Y, et al. , 2013. Age and tectonic significance of uranium-bearing granitic pegmatite in Danfeng area, Shaanxi Province[J]. Acta Mineralogica Sinica, 33(S2): 880-882. (in Chinese)
    ZHAO Y J, 2007. Mesozoic granitoids in Eastern Songpan-Garzê: geochemistry, petrogenesis and tectonic implications[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences: 1-101. (in Chinese with English abstract)
    ZHAO Z B, DU J X, LIANG F H, et al. , 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan plateau and its implications for crustal thickening, metamorphism, and exhumation[J]. Geochemistry, Geophysics, Geosystems, 20(1): 24-45. doi: 10.1029/2018GC007617
    ZHENG Y L, XU Z Q, LI G W, et al. , 2020. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau[J]. Lithos, 362-363: 105475. doi: 10.1016/j.lithos.2020.105475
    ZHOU S C, WANG D H, LIU X H, et al. , 2022. Technical methods and demonstration of deep prospecting for key minerals[M]. Beijing: Geological Publishing House. (in Chinese)
    ZOU T R, YANG Y Q, CAO H Z, et al, 1980. Geochemical characteristics and genesis of the 112 pegmatite dike in Xinjiang, China[R]. Beijing: Research Report of Chinese Academy of Geological Sciences: 1-157. (in Chinese)
    ZOU T R, LI Q C, 2006. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing: Geological Publishing House: 1-284. (in Chinese)
    陈好寿, 1975. 西北地区某些花岗岩及变质岩同位素年龄数据讨论[J]. 地质学报, 49(1): 45-60.
    陈廷愚, 王雪英, 任纪舜, 等, 1986. 湖南九嶷山及白马山复式花岗岩体的同位素地质年代测定[J]. 地质论评, 32(5): 433-439. doi: 10.3321/j.issn:0371-5736.1986.05.003
    陈西京, 1976. 深处岩浆分异与某地花岗伟晶岩的形成[J]. 地球化学, 5(3): 213-229. doi: 10.3321/j.issn:0379-1726.1976.03.008
    陈毓川, 王登红, 朱裕生, 等, 2007. 中国成矿体系与区域成矿评价[M]. 北京: 地质出版社: 1-1005.
    陈毓川, 王登红, 徐志刚, 等, 2010a. 全国重要矿产和区域成矿规律研究技术要求[M]. 北京: 地质出版社: 1-179.
    陈毓川, 王登红, 李厚民, 等, 2010b. 重要矿产预测类型划分方案[M]. 北京: 地质出版社: 1-222.
    陈毓川, 王登红, 徐志刚, 等, 2015. 中国重要矿产和区域成矿规律[M]. 北京: 地质出版社: 1-795.
    陈郑辉, 王登红, 龚羽飞, 等, 2006. 新疆哈密镜儿泉伟晶岩型稀有金属矿床40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 25(4): 470-476. doi: 10.3969/j.issn.0258-7106.2006.04.011
    程裕淇, 1994. 中国区域地质概论[M]. 北京: 地质出版社: 1-517.
    代晶晶, 王登红, 代鸿章, 等, 2017. 遥感技术在川西甲基卡大型锂矿基地找矿填图中的应用[J]. 中国地质, 44(2): 389-398.
    费光春, 杨峥, 杨继忆, 等, 2020. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定: 来自LA-MC-ICP-MS锡石U-Pb定年的证据[J]. 地质学报, 94(3): 836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012
    付小方, 袁蔺平, 王登红, 等, 2015. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J]. 矿床地质, 34(6): 1172-1186.
    郭唯明, 马圣钞, 孙艳, 等, 2019. 云南腾冲热泉中稀有金属矿化特征及其意义[J]. 地质学报, 93(6): 1321-1330. doi: 10.3969/j.issn.0001-5717.2019.06.012
    郝雪峰, 付小方, 梁斌, 等, 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质, 34(6): 1199-1208.
    胡军亮, 2020. 川西九龙打枪沟锂铍矿床地质-地球化学、年代学及资源前景[D]. 成都: 成都理工大学: 1-59.
    黄小强, 李鹏, 张立平, 等, 2021. 湖南仁里稀有金属矿田36号伟晶岩地球化学特征、成矿时代及其意义[J]. 矿床地质, 40(6): 1248-1266.
    黄蕴慧, 杜绍华, 周秀仲, 1988. 香花岭岩石矿床与矿物[M]. 北京: 北京科学技术出版社: 4-11.
    李杭, 洪涛, 杨智全, 等, 2020. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究: 以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 36(9): 2869-2892. doi: 10.18654/1000-0569/2020.09.16
    李建康, 刘善宝, 王登红, 等, 2007a. 川西北雪宝顶钨锡铍矿床的成矿年代及其构造示踪意义[J]. 矿床地质, 26(5): 557-562. doi: 10.16111/j.0258-7106.2007.05.009
    李建康, 王登红, 张德会, 等, 2007b. 川西伟晶岩型矿床的形成机制及大陆动力学背景[M]. 北京: 原子能出版社: 1-182.
    李建康, 刘喜方, 王登红, 2014. 中国锂矿成矿规律概要[J]. 地质学报, 88(12): 2269-2283.
    李建康, 2021. 国家重点研发计划“锂、铍等战略性金属矿产资源成矿规律与预测评价”项目2021年度进展报告[R].
    李侃, 高永宝, 滕家欣, 等, 2019. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 52(4): 206-221. doi: 10.3969/j.issn.1009-6248.2019.04.016
    李鹏, 李建康, 裴荣富, 等, 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据[J]. 地球科学, 42(10): 1684-1696.
    李鹏, 周芳春, 李建康, 等, 2020. 湘东北仁里‒传梓源铌钽矿床隐伏花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 44(3): 486-500.
    李五福, 李善平, 王秉璋, 等, 2021. 青海三江北段草陇(绿柱石-)锂辉石花岗伟晶岩的发现及其Li-Be找矿意义[J]. 大地构造与成矿学: 1-25,doi: 10.16539/j.ddgzyckx.2021.05.021.
    李耀菘, 朱杰辰, 郑懋公, 等, 1986. 九嶷山花岗杂岩体的Rb-Sr年代学及其成因[J]. 铀矿地质, 2(5): 257-264.
    梁婷, 滕家欣, 王登红, 等, 2021. 新疆大红柳滩锂铍稀有金属矿床[M]. 北京: 地质出版社: 1-262.
    林传仙, 刘义茂, 王中刚, 等, 1994. 中国稀有稀土矿床[M]//宋叔和. 中国矿床(中册). 北京: 地质出版社: 296-299.
    刘丽君, 付小方, 王登红, 等, 2015. 甲基卡式稀有金属矿床的地质特征与成矿规律[J]. 矿床地质, 34(6): 1187-1198.
    刘丽君, 王登红, 杨岳清, 等, 2016. 四川甲基卡新三号稀有金属矿脉成矿特征的初步研究[J]. 桂林理工大学学报, 36(1): 50-59. doi: 10.3969/j.issn.1674-9057.2016.01.008
    刘丽君, 王登红, 代鸿章, 等, 2017a. 四川甲基卡新三号超大型锂矿脉稀土元素地球化学[J]. 地球科学, 42(10): 1673-1683.
    刘丽君, 王登红, 侯可军, 等, 2017b. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 24(5): 167-171.
    刘善宝, 王成辉, 王登红, 等, 2020. 四川甲基卡锂矿伟晶岩转石分布区“3定2参”大比例尺填图法及其在青藏高原应用的意义[J]. 地质学报, 94(1): 326-332.
    吕正航, 张辉, 唐勇, 2015. 新疆别也萨麻斯L1号伟晶岩脉Li-Nb-Ta矿床与围岩花岗岩成因关系研究[J]. 矿物学报, 35(S1): 323.
    马圣钞, 王登红, 刘善宝, 等, 2020. 综合勘查方法在硬岩型锂矿找矿中的应用: 以马尔康稀有金属矿田加达锂矿为例[J]. 地质学报, 94(8): 2341-2353. doi: 10.3969/j.issn.0001-5717.2020.08.012
    马占龙, 张辉, 唐勇, 等, 2015. 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究[J]. 地球化学, 44(1): 9-26.
    内蒙古地质勘查有限责任公司, 2018. 内蒙古自治区克什克腾旗维拉斯托矿区锂多金属矿勘探报告[R].
    潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28. doi: 10.3969/j.issn.1000-3657.2009.01.001
    潘彤, 李善平, 任华, 等, 2020. 柴达木盆地北缘锂多金属矿成矿条件及找矿潜力[J]. 矿产勘查, 11(6): 1101-1116. doi: 10.3969/j.issn.1674-7801.2020.06.003
    彭海练, 贺宁强, 王满仓, 等, 2018. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨[J]. 西北地质, 51(3): 146-154. doi: 10.3969/j.issn.1009-6248.2018.03.013
    乔耿彪, 伍跃中, 刘拓, 2020. 西昆仑大红柳滩伟晶岩型稀有金属矿的形成时代: 来自白云母40Ar/39Ar同位素年龄的证据[J]. 中国地质, 47(5): 1591-1593.
    秦克章, 赵俊兴, 何畅通, 等, 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 37(11): 3277-3286. doi: 10.18654/1000-0569/2021.11.02
    仇年铭, 杨岳清, 1985. 福建省南平伟晶岩田成岩成矿规律及找矿方向研究报告[R]. 北京: 中国地质调查局发展研究中心: 1-236.
    全国地层委员会, 2002. 中国区域年代地层(地质年代)表说明书[M]. 北京: 地质出版社: 1-134.
    任宝琴, 张辉, 唐勇, 等, 2011. 阿尔泰造山带伟晶岩年代学及其地质意义[J]. 矿物学报, 31(3): 587-596.
    任纪舜, 王作勋, 陈炳蔚, 1999. 从全球看中国大地构造: 中国及邻区大地构造图简要说明书[M]. 北京: 地质出版社: 1-50.
    四川省地矿局, 1987. 1/20万地质图及区调报告·石渠幅[R].
    涂其军, 韩琼, 李平, 等, 2019. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 93(11): 2862-2873. doi: 10.3969/j.issn.0001-5717.2019.11.011
    王秉璋, 韩杰, 谢祥镭, 等, 2020. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J]. 大地构造与成矿学, 44(1): 69-79.
    王成辉, 王登红, 陈晨, 等, 2019. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义[J]. 地质学报, 93(6): 1359-1373. doi: 10.3969/j.issn.0001-5717.2019.06.015
    王成辉, 王登红, 孙艳, 等, 2022. 华南重点矿集区稀有和稀土矿产调查研究进展[M]. 北京: 科学出版社: 1-357.
    王登红, 陈毓川, 徐志刚, 2001. 阿尔泰加里东期变质成因伟晶岩型白云母矿床的成矿年代证据及其意义[J]. 地质学报, 75(3): 419-425. doi: 10.3321/j.issn:0001-5717.2001.03.016
    王登红, 陈毓川, 徐志刚, 等, 2002. 阿尔泰成矿省的成矿系列及成矿规律[M]. 北京: 原子能出版社: 1-493.
    王登红, 李建康, 付小方, 2005. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 34(6): 541-547. doi: 10.3321/j.issn:0379-1726.2005.06.001
    王登红, 付小方, 2013. 四川甲基卡外围锂矿找矿取得突破[J]. 岩矿测试, 32(6): 987. doi: 10.3969/j.issn.0254-5357.2013.06.023
    王登红, 徐志刚, 盛继福, 等, 2014. 全国重要矿产和区域成矿规律研究进展综述[J]. 地质学报, 88(12): 2176-2191.
    王登红, 王瑞江, 付小方, 等, 2016a. 对能源金属矿产资源基地调查评价基本问题的探讨: 以四川甲基卡大型锂矿基地为例[J]. 地球学报, 37(4): 471-480.
    王登红, 王瑞江, 孙艳, 等, 2016b. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报, 37(5): 569-580.
    王登红, 刘丽君, 侯江龙, 等, 2017. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1-7.
    王登红, 吴西顺, 2017. 21世纪的能源金属: 锂的奥秘[J]. 国土资源科普与文化(4): 22-27.
    王登红, 陈毓川, 江彪, 等, 2020. 中国三叠纪大陆成矿体系[J]. 地学前缘, 27(2): 45-59.
    王登红, 代鸿章, 于扬, 等, 2021a. 大型锂资源基地调查评价的理论、方法与实践: 以川西甲基卡超大型锂矿为例[M]. 北京: 科学出版社: 1-458.
    王登红, 孙艳, 周四春, 等, 2021b. 锂能源金属矿产基地深部探测技术示范项目进展[J]. 矿床地质, 40(4): 641-654.
    王核, 李沛, 马华东, 等, 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053-1062.
    王乃银, 1989. 令人垂青的金属能源[J]. 今日科技(9): 32.
    王秋波, 2020. 甲基卡稀有金属矿区地气测量技术对隐伏矿体的指示[D]. 绵阳: 西南科技大学: 1-62.
    王瑞江, 王登红, 李建康, 等, 2015. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社: 1-429.
    王学求, 刘汉粮, 王玮, 等, 2020. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 41(6): 797-806. doi: 10.3975/cagsb.2020.081201
    文春华, 陈剑锋, 曹创华, 2020. 湖南连云山矿集区稀有金属伟晶岩成矿作用研究[J]. 地质论评, 66(S1): 135-136.
    徐仕琪, 涂其军, 2017. 矿床模型综合地质信息在稀有金属矿定量预测中的应用: 以西昆仑大红柳滩为例[J]. 新疆地质, 35(3): 285-289. doi: 10.3969/j.issn.1000-8845.2017.03.010
    徐兴旺, 李杭, 石福品, 等, 2019. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测[J]. 岩石学报, 35(11): 3303-3316. doi: 10.18654/1000-0569/2019.11.03
    徐志刚, 陈毓川, 王登红, 等, 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社: 1-138.
    闫庆贺, 王核, 丘增旺, 等, 2017. 西昆仑大红柳滩稀有金属伟晶岩矿床锡石及铌钽铁矿年代学及其地质意义[C]//中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会文集. 西安: 中国矿物岩石地球化学学会: 833-834.
    杨锋, 李晓峰, 冯佐海, 等, 2009. 栗木锡矿云英岩化花岗岩白云母40Ar/39Ar年龄及其地质意义[J]. 桂林工学院学报, 29(1): 21-24.
    杨岳清, 王登红, 刘善宝, 等, 2020. 四川甲基卡两类锂辉石矿体共存机制及其找矿意义[J]. 地质学报, 94(1): 287-302.
    杨岳清, 王登红, 孙艳, 等, 2021. 矿产资源研究所“三稀”矿产研究与找矿实践70年历程: 回顾与启示[J]. 矿床地质, 40(4): 655-692.
    于扬, 王登红, 高娟琴, 等, 2019a-02-15. 一种基于植物中锂元素含量预测隐伏锂矿床的方法: 中国, 109343143A[P].
    于扬, 王登红, 高娟琴, 等, 2019b. 中国三稀矿产生物找矿技术方法及其应用综述[J]. 地质学报, 93(6): 1533-1542.
    袁忠信, 白鸽, 2001. 中国内生稀有稀土矿床的时空分布[J]. 矿床地质, 20(4): 347-354. doi: 10.3969/j.issn.0258-7106.2001.04.008
    袁忠信, 何晗晗, 刘丽君, 等, 2016. 国外稀有稀土矿床[M]. 北京: 科学出版社: 1-170.
    岳相元, 杨波, 周雄, 等, 2019. 川西地区热达门石英闪长岩锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义[J]. 现代地质, 33(5): 1015-1024.
    张辉, 吕正航, 唐勇, 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792-814.
    张杰, 张彦锋, 田晓敏, 等, 2021. 河南省卢氏县蔡家花岗伟晶岩型锂矿地质特征及矿床成因分析[J]. 地质与勘探, 57(3): 497-506.
    张彤, 2021. 中国矿产地质志·内蒙古卷(内部报告)[R].
    赵俊兴, 何畅通, 秦克章, 等, 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 37(11): 3325-3347. doi: 10.18654/1000-0569/2021.11.06
    赵如意, 李卫红, 姜常义, 等, 2013. 陕西丹凤地区含铀花岗伟晶岩年龄及其构造意义[J]. 矿物学报, 33(S2): 880-882.
    赵永久, 2007. 松潘-甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义[D]. 广州: 中国科学院广州地球化学研究所: 1-101.
    中华人民共和国自然资源部. 美国麦克德米特锂矿钻探见富矿[EB/OL]. (2022-03-17). http://geoglobal.mnr.gov.cn/zx/kcykf/ztjz/202203/t20220317_8238789.htm.
    周四春, 王登红, 刘晓辉, 等, 2022. 关键矿产深部找矿的技术方法与示范[M]. 北京: 地质出版社.
    邹天人, 杨岳清, 曹惠志, 等, 1980. 新疆[阿勒泰地区]112伟晶岩脉的物质成分、矿化特征及其成因的研究[R]. 北京: 地质部矿床地质研究所: 1-157.
    邹天人, 李庆昌, 2006. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社: 1-284.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  1762
  • HTML全文浏览量:  412
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-14
  • 修回日期:  2022-06-28
  • 预出版日期:  2022-11-02

目录

    /

    返回文章
    返回