Development characteristics and risk assessment of geological hazards in the mountainous and hilly areas of western Zhengzhou City
-
摘要: 郑州市西部山地丘陵区地质环境条件复杂,崩塌、滑坡及泥石流等地质灾害频发,尤其是2021年“7·20”特大暴雨引发了大量地质灾害。地质灾害危险性评价主要采用单一方法进行,存在评价准确性略低等问题。通过对研究区地质环境背景、地质灾害分布特征的分析研究,选取坡度、地貌、工程地质岩组、高程、距断裂距离、距河流距离、24 小时最大降雨量和人类工程活动强度8个评价因子,采用加权信息量法,对研究区进行地质灾害危险性评价。结果表明:低、中、高危险区面积分别为1387.14 km2、1803.18 km2、1066.47 km2,分别占总面积的32.59%、42.36%、25.05%,地质灾害点的空间分布与地质灾害危险性评价结果基本一致,利用受试者工作特征(ROC)曲线检验评价结果合理,研究结论可为郑州市西部山地丘陵区地质灾害防治提供准确的依据。Abstract:
Objective The mountainous and hilly areas of western Zhengzhou City have a complex geological environment, affected by rainfall and human engineering activities. Geological hazards such as collapses, landslides, and debris flows occur frequently. In particular, the “7·20” extreme rainstorm that occurred on July 20, 2021 caused many geological hazards, resulting in heavy casualties and huge economic losses. Therefore, analyzing and summarizing the development characteristics of geological hazards and conducting a risk assessment is necessary for this region. At present, the risk assessment of geological hazards is mainly conducted using a single method that has limitations including slightly low evaluation accuracy. In addition, an overall geological hazard risk assessment has not yet been conducted in the mountainous and hilly areas of western Zhengzhou City. Methods Based on the research and analysis of the geological environment background and the distribution characteristics of geological hazards in the study area, eight evaluation factors were selected: slope, landform, engineering geological rock group, elevation, distance from fault, distance from river, rainfall, and human engineering activities. The weighted information method which incorporates elements of the information quantity model and analytic hierarchy process, was used to evaluate the risk of geological hazards in the study area. Results The low-, medium-, and high-risk areas are 1387.14 km2, 1803.18 km2, and 1066.47 km2, respectively, accounting for 32.59%, 42.36%, and 25.05% of the total area, respectively. The medium- and high-risk areas are mainly distributed in the tectonic erosion medium-low mountains and loess hills in the central part of the four cities, the tectonic erosion medium-low mountains south of Dengfeng, and the loess hilly areas in northern Gongyi and Xingyang. The terrain has steep slopes and deep gullies, and the main stratigraphic lithology is clastic rocks intercalated with carbonate rocks, soft and hard rock layers, and loess. Fault structures are developed, and geological hazards are prone to occur under the action of inducing factors and are highly dangerous. The majority (93.11%) of geological hazards are distributed in medium- and high-risk areas, with hazard point densities of 0.1752 km−2 and 0.2869 km−2, respectively. The spatial distribution of geological hazard points is consistent with the geological hazard risk assessment results. The rationality of the evaluation results was assessed by a Receiver Operating Characteristic curve, yielding an AUC value of 0.868. The evaluation accuracy met the requirements for hazard assessment. Conclusion Geological hazards have the largest information value in the range of >40° slopes loess hilly landforms, loess engineering geological rock groups, and 24-h maximum rainfall of 500–550 mm. The risk of geological hazards is positively correlated with distance from faults and water systems — the closer the distance, the higher the risk. The risk of geological disasters in the study area is controlled by the terrain slope and landform and is closely related to the lithology of the formation, which is an important factor in inducing geological disasters. The weighted information method, which has high accuracy and rationality, was used to evaluate the geological hazard risk. Significance The results of this study can provide a basis and technical support for geological hazard prevention and management in the mountainous and hilly areas of western Zhengzhou City and serve as a valuable point of reference for urban planning and infrastructure geological hazard risk assessment in the study area. -
0. 引言
塔里木盆地西南缘的西昆仑地区构造演化是地质学家十分关注的问题,古生代该地区经历了拉张—闭合—再拉张—再闭合两个构造演化阶段。柯岗—库地蛇绿岩带是加里东时期原特提斯构造域的地质表现,由于后期构造叠加、地理交通因素和地质工作程度的限制,西昆仑地区早古生代构造演化的细节不甚清楚,原特提斯洋闭合及碰撞时限不明。王元龙等[1]认为志留纪(440~410 Ma)是原特提斯洋闭合阶段;周辉等[2]研究库地煌斑岩认为404 Ma时期西昆仑构造演化转变为热隆引张的构造环境;肖序常[3]等认为原特提斯洋在古生代早期已消减闭合;郝杰等[4]认为库地超镁铁质岩构造侵位,围岩变形及变质等均发生在早古生代早期;袁超等[5]研究库地128岩体认为原特提斯洋在(471±5)Ma时期仍处于俯冲消减阶段;崔建堂等[6]认为康西瓦北侧蒙古包—普守蛇绿混杂岩的汇聚俯冲时间早于晚奥陶世;黄建国等[7]认为原特提斯洋在中奥陶世—志留纪处于消减的末期;高晓峰等[8]获得大同岩体锆石U-Pb年龄为(470.0±1.2)Ma,认为其为原特提斯洋在早奥陶世俯冲消减—碰撞过程中的产物;王超等[9]在西昆仑库地蛇绿岩北部侵入柯岗断裂的布隆二长花岗岩获得锆石U-Pb年龄(441±2)Ma,时代为早志留世,认为其是原特提斯洋俯冲的产物;黄朝阳等[10]认为奥陶纪末期原特提斯洋两侧大陆碰撞,形成同碰撞花岗岩。
已有研究对西昆仑原特提斯洋在早古生代晚期构造演化存在不同认识,具体可以概括为以下几个观点:①早奥陶世—志留纪时期原特提斯洋处于消减闭合阶段[1, 4~6, 8~9];②奥陶纪末期原特提斯洋两侧大陆碰撞[10];③早泥盆世西昆仑处于碰撞后伸展环境[2]。西昆仑库地一带发育志留纪二长花岗岩,通过对库地南志留纪苏盖提力克花岗岩开展锆石年代学、岩石地球化学研究,确定其成因类型,代表的构造环境,进而为该区早古生代原特提斯洋构造演化及闭合时限提供地质依据。
1. 区域地质背景
新疆库地南一带横跨北昆仑古生代复合沟弧带和中昆仑地块及早古生代柯岗—库地缝合带,柯岗—库地缝合带东西向贯穿研究区,是研究早古生代原特提斯洋构造演化的有利地段。库地缝合带南侧发育中昆仑地块基底新元古代赛图拉岩群、新元古代堇青二长花岗岩、奥陶纪花岗岩、志留纪花岗岩和印支期花岗岩;缝合带北侧发育早古生代库地构造混杂岩和库地蛇绿岩和印支期二长花岗岩[11]。
赛图拉岩群岩性为片麻岩、浅粒岩、变粒岩、片岩和斜长角闪岩,局部变质程度达高角闪岩相,混合岩化作用强烈;堇青二长花岗岩侵入赛图拉岩群;早古生代库地构造混杂岩为构造片岩,是原特提斯洋俯冲碰撞过程的强烈的剪切和挤压作用下,发生动力变质变形而成,苏盖提力克花岗岩侵入新元古界赛图拉岩群和堇青二长花岗岩(见图 1)[11]。
2. 岩体地质及岩石学特征
苏盖提力克花岗岩出露于库地缝合带南侧,岩性为中细粒二长花岗岩,侵入新元古代赛图拉岩群和新元古代片麻状堇青二长花岗岩及奥陶纪片麻状中粒二长花岗岩之中,同时被三叠纪二长花岗岩侵入。苏盖提力克花岗岩与赛图拉岩群侵入接触面近于直立,接触面截切片麻理;侵入接触带花岗岩具混染特征,呈浅灰绿色,混染带宽约10 m,岩体边部粒度较细。
岩石呈深灰色,中细粒花岗结构,块状构造。岩石由斜长石、钾长石、石英、黑云母、白云母组成。斜长石呈半自形板状,粒度一般0.1~2.0 mm,少量为2.0~2.5 mm;少见环带构造,含量40%~45%。钾长石呈它形粒状,少部分呈半自形宽板状,粒度一般0.1~2.0 mm,少量为2.0~2.5 mm;晶内嵌布少量斜长石、石英等小包体,局部交代斜长石,含量25~30%。石英呈它形粒状,不均匀分布,粒度一般0.1~1.0 mm;粒内可见轻波状消光,边界呈不规则状接触,含量20%左右。黑云母、白云母呈细小叶片状,杂乱分布,粒度一般0.1~0.5 mm;黑云母不均匀绿泥石化等,局部呈假象产出,副矿物有锆石、磷灰石、独居石、磷钇矿等(见图 2)。
3. 样品采集、锆石分选及分析方法
3.1 样品采集
通过对苏盖提力克一带进行系统野外调查,在中细粒二长花岗岩中共采集6件岩石地球化学样品和1件锆石U-Pb样品。其中锆石U-Pb样品采自苏盖提力克附近(见图 1,地理坐标36°41′59″N,77°08′52″E),原岩重3.73 kg,用于岩浆锆石的LA-ICP-MS定年测试。
3.2 分析方法
岩石地球化学分析测试由河北省区域地质矿产调查研究所实验室测试完成,主量元素采用碱熔法制备样品,使用AxiosmaxX射线荧光光谱仪完成分析测试,分析精度高于5%,烧蚀量、H2O+和H2O-采用P1245电子分析天平完成测试。微量元素和稀土元素采用酸溶法制备样品,使用X Serise 2等离子体质谱仪完成测试,分析精度高于5%。
用于锆石U-Pb测年样品由河北省区域地质矿产调查研究所实验室分选锆石单矿物。在双目镜下根据锆石颜色、自形程度、形态等特征初步分类,挑选出具有代表性的锆石,将待测锆石与标准锆石样品制作成环氧树脂样品靶,待样品靶固结、干燥后,进行打磨并抛光至大多数锆石颗粒中心暴露,然后拍摄可见光和阴极发光显微照片,测试时根据显微照片选取测点部位,力求避开裂隙和包裹体,以使获得的年龄值有较确切的地质意义。
锆石U-Th-Pb同位素测定在天津地质调查中心同位素实验室的LA-MC-ICP-MS上完成,测定结果中的同位素比值和年龄误差为1σ水平,使用的仪器及分析流程详见参考文献[10~14]。
4. 分析结果
4.1 LA-ICP-MS锆石U-Pb分析结果
中细粒二长花岗岩锆石主要为自形半自形柱状,从阴极发光(CL)图像(见图 3)可以看出锆石具有清晰的内部结构和典型岩浆成因的震荡环带,表明锆石是岩浆成因。
锆石LA-ICP-MSU-Pb年龄分析结果见表 1。本次测试测定25颗锆石的25个数据,测得的206Pb/238U年龄介于222~756 Ma。分析点8和12的206Pb/238U年龄为748~756 Ma位于锆石核部,这些锆石为二长花岗岩的源区残留锆石。
表 1 二长花岗岩LA-ICP-MS锆石U-Pb分析结果Table 1. LA-ICP-MS zircon U-Pb data of monzonite granite样品号 含量/×10-6 同位素比值 年龄/Ma P1TW1 Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ P1TW1.1 18 247 0.0686 0.0005 0.5196 0.0096 0.0549 0.0010 0.0211 0.0002 0.6024 0.0032 427 3 425 8 410 39 P1TW1.2 90 1380 0.0694 0.0004 0.5285 0.0044 0.0553 0.0004 0.0204 0.0002 0.0922 0.0007 432 2 431 4 423 17 P1TW1.3 15 204 0.0691 0.0004 0.5201 0.0110 0.0546 0.0011 0.0192 0.0001 0.7381 0.0025 431 3 425 9 395 46 P1TW1.4 42 631 0.0687 0.0004 0.5205 0.0049 0.0550 0.0005 0.0198 0.0001 0.2140 0.0012 428 3 425 4 411 20 P1TW1.5 23 321 0.0686 0.0004 0.5360 0.0068 0.0566 0.0007 0.0197 0.0001 0.5574 0.0022 428 3 436 6 477 26 P1TW1.6 21 274 0.0687 0.0004 0.5333 0.0075 0.0563 0.0008 0.0199 0.0001 0.7047 0.0062 428 3 434 6 464 30 P1TW1.7 23 340 0.0682 0.0005 0.5264 0.0070 0.0560 0.0007 0.0201 0.0001 0.3738 0.0055 425 3 429 6 452 27 P1TW1.8 38 313 0.1244 0.0008 1.1077 0.0103 0.0646 0.0005 0.0385 0.0003 0.1954 0.0016 756 5 757 7 761 18 P1TW1.9 9 136 0.0633 0.0006 0.4739 0.0245 0.0542 0.0027 0.0219 0.0005 0.5397 0.0022 396 4 394 20 379 114 P1TW1.10 24 342 0.0671 0.0005 0.5157 0.0074 0.0557 0.0007 0.0224 0.0001 0.4178 0.0019 419 3 422 6 439 29 P1TW1.11 19 276 0.0666 0.0004 0.5077 0.0094 0.0553 0.0010 0.0232 0.0002 0.4425 0.0016 416 3 417 8 424 39 P1TW1.12 43 357 0.1230 0.0009 1.0890 0.0104 0.0642 0.0005 0.0393 0.0002 0.2244 0.0029 748 5 748 7 748 18 P1TW1.13 43 576 0.0676 0.0005 0.5270 0.0052 0.0566 0.0005 0.0199 0.0001 0.7179 0.0040 421 3 430 4 475 20 P1TW1.14 34 402 0.0664 0.0004 0.5257 0.0062 0.0574 0.0006 0.0206 0.0002 1.2851 0.1485 414 2 429 5 508 25 P1TW1.15 35 481 0.0670 0.0005 0.5238 0.0058 0.0567 0.0006 0.0195 0.0001 0.7089 0.0039 418 3 428 5 482 23 P1TW1.16 40 570 0.0669 0.0005 0.5219 0.0051 0.0566 0.0005 0.0199 0.0001 0.5597 0.0052 417 3 426 4 476 20 P1TW1.17 26 326 0.0670 0.0004 0.5514 0.0084 0.0596 0.0009 0.0202 0.0001 1.0436 0.0036 418 3 446 7 590 31 P1TW1.18 22 270 0.0681 0.0005 0.5311 0.0076 0.0566 0.0008 0.0216 0.0001 0.9443 0.0093 425 3 433 6 474 30 P1TW1.19 24 340 0.0676 0.0004 0.5281 0.0076 0.0567 0.0008 0.0211 0.0001 0.4940 0.0028 422 3 431 6 478 30 P1TW1.20 16 215 0.0675 0.0004 0.5278 0.0101 0.0567 0.0011 0.0196 0.0001 0.8569 0.0048 421 3 430 8 481 41 P1TW1.21 13 357 0.0351 0.0002 0.2554 0.0061 0.0528 0.0012 0.0115 0.0001 0.4664 0.0062 222 1 231 5 321 53 P1TW1.22 29 416 0.0672 0.0004 0.5150 0.0063 0.0556 0.0006 0.0225 0.0001 0.3992 0.0214 419 2 422 5 437 26 P1TW1.23 29 388 0.0671 0.0004 0.5312 0.0072 0.0575 0.0007 0.0208 0.0002 0.6723 0.0297 418 2 433 6 509 29 P1TW1.24 13 184 0.0670 0.0005 0.5380 0.0106 0.0583 0.0011 0.0196 0.0002 0.5327 0.0020 418 3 437 9 540 43 P1TW1.25 31 437 0.0683 0.0004 0.5208 0.0070 0.0553 0.0007 0.0190 0.0002 0.5053 0.0065 426 2 426 6 425 29 分析点9和21的206Pb/238U年龄为396 Ma和222Ma,位于锆石环带上,时代明显低于其余锆石年龄,区域资料表明存在早泥盆世和晚三叠世岩浆活动,二者锆石年龄受后期岩浆活动的影响。
其余数据投影点在U-Pb谐和图中位于谐和线或其附近(见图 4),表明这些锆石在形成后U-Pb同位素体系保持封闭状态,测得的206Pb/238U年龄介于414~432 Ma,给出的206Pb/238U年龄加权平均值为(422.5±2.5)Ma(N=21,MSWD=4.0)(见图 4),此年龄被解释为中细粒二长花岗岩的结晶年龄,时代为晚志留世。
4.2 岩石地球化学特征
苏盖提力克花岗岩的主量元素和微量元素分析结果及相关参数见表 2。
表 2 苏盖提力克花岗岩主量元素(%)和微量元素(×10-6)及相关参数Table 2. Major elements (%) and trace elements (%) in sugaitlike granites and related parameters样号 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Los La Ce Pr Nd Sm Eu P1YQ1 74.14 0.21 13.91 0.29 0.91 0.04 0.27 1.26 3.3 4.87 0.055 0.67 48.17 92.74 10.23 34.05 5.82 0.76 P1YQ2 73.53 0.25 14.08 0.84 0.57 0.028 0.23 1.29 3.22 4.86 0.085 0.93 63.76 118.7 13.12 43.92 7.64 0.86 P1YQ3 74.97 0.11 13.89 0.41 0.41 0.021 0.15 0.89 2.89 5.59 0.046 0.59 38.47 70.86 7.88 27.07 5.67 0.59 P1YQ4 73.61 0.19 14.09 0.32 1.08 0.035 0.35 1.35 3.18 4.74 0.069 0.9 48.23 91.21 9.95 33.12 6.08 0.7 P1YQ5 74.37 0.19 13.6 0.45 0.84 0.032 0.25 1.07 2.86 5.21 0.069 0.95 52.03 98.09 10.72 36.21 6.61 0.7 P1YQ6 72.53 0.3 14.23 0.49 1.34 0.038 0.48 1.73 3 4.82 0.08 0.85 65.54 122.4 12.67 41.38 6.56 0.93 样号 Gd Tb Dy Ho Er Tm Yb Lu Y Rb Sr Ba Ga Nb Ta Zr Hf Th P1YQ1 4.96 0.84 4.72 0.9 2.52 0.46 3.02 0.35 24.87 300.8 79.9 502.3 17.17 37.81 5.38 140.9 3.98 27.06 P1YQ2 6.2 0.91 4.25 0.73 1.95 0.3 2.38 0.28 20.21 313.8 63.2 472.7 20.15 46.07 4.85 183.8 5.16 21.61 P1YQ3 5.06 1.01 6.18 1.26 3.53 0.66 3.87 0.46 39.28 317.5 60.1 278.4 16.26 29.61 3.78 94.9 2.87 19.58 P1YQ4 5.01 0.82 4.32 0.82 2.23 0.38 2.22 0.29 24.72 240 98.1 658.9 17.75 28.87 3.9 130.5 3.26 26.6 P1YQ5 5.32 0.83 4.2 0.76 2.02 0.34 2.06 0.24 22.6 302.3 50.3 361.1 18.39 37.2 5.43 121.9 2.86 20.32 P1YQ6 5.47 0.77 4.02 0.78 2.13 0.36 2.04 0.23 22.69 268.2 135.1 1618 17.54 35.46 3.38 184.9 5.21 26.67 样号 V Cr Sc U AR K2O/Na2O A/CNK C Mg# ∑REE (La/Yb)N δEu (La/Sm)N (Gd/Yb)N (Ho/Yb)N Rb/Sr Rb/Ba Y/Yb P1YQ1 8.9 3.5 3.86 2.68 2.54 1.48 1.07 1.07 29 209.53 10.77 0.42 5.2 1.33 0.87 3.77 0.6 8.24 P1YQ2 14.7 4.9 3.4 4.94 2.44 1.51 1.09 1.39 25 265.04 18.07 0.37 5.25 2.1 0.9 4.97 0.66 8.5 P1YQ3 4.4 4.4 2.76 5 2.28 1.93 1.11 1.56 25 172.56 6.7 0.33 4.27 1.05 0.95 5.29 1.14 10.15 P1YQ4 11.7 5.3 3.47 2.02 2.4 1.49 1.1 1.42 32 205.37 14.64 0.38 4.99 1.82 1.07 2.45 0.36 11.12 P1YQ5 8.2 4.7 2.96 3.66 2.28 1.82 1.11 1.46 25 220.13 17.02 0.35 4.95 2.08 1.07 6.01 0.84 10.96 P1YQ6 20.3 5 3.77 2.39 2.2 1.61 1.08 1.1 32 265.27 21.66 0.46 6.29 2.16 1.12 1.99 0.17 11.12 4.2.1 主量元素特征
苏盖提力克花岗岩的SiO2含量为72.53%~74.97%;Al2O3为13.6%~14.26%,K2O含量为4.74%~5.59%,Na2O含量为2.86%~3.30%,w(K2O)/w(Na2O)为1.48~1.93,A/CNK=1.07~1.11;CaO含量为0.89%~1.82%;CIPW刚玉分子C含量为1.07%~1.56%;镁指数Mg#为25~32;在SiO2-A.R图解中落入钙碱性系列区(见图 5),在SiO2-K2O图解中落入高钾钙碱性系列(见图 6)。
4.2.2 微量元素特征
苏盖提力克花岗岩稀土元素总量∑REE= 172.56×10-6~265.27×10-6,含量较高;(La/ Yb)N=6.7~21.66,(La/Sm)N=4.27~6.29,(Gd/Yb)N= 1.05~2.10,(Ho/Yb)N=0.87~1.12,轻稀土富集,轻、重稀土强烈分馏,轻稀土分馏强烈,重稀土强分馏;δEu=0.33~0.46,具中等负铕异常,稀土元素球粒陨石标准化配分曲线呈强烈右倾,重稀土平坦,铕中等亏损(见图 7)。
苏盖提力克花岗岩微量元素原始地幔标准化(见图 8)显示大离子亲石元素Rb、K富集,Ba、Sr强烈亏损,高场强元素Th、La、Zr、Sm、Y和Yb富集,Nb弱亏损,Ti和P强烈亏损。苏盖提力克花岗富Rb(240.0×10-6~317.5×10-6)和Nb(28.87×10-6~46.07×10-6),Rb/Sr为1.99~ 6.01,Rb/Ba为0.17~1.14,Nb/Ta为7.03~10.49。
5. 讨论
5.1 岩石成因及源区性质
花岗岩最普遍的分类方案是I型、S型、A型和M型,廖忠礼等研究西藏S型质花岗岩的典型主要副矿物为白钛石、锐钛矿、板钛矿、独居石、磷钇矿、石榴子石、电气石等,刚玉分子数大于1%[19];强过铝质花岗岩含有原生石榴子石、白云母和堇青石等,刚玉分子C>1%,A/CNK≥1.1,变质沉积岩是强过铝质花岗岩和S型花岗岩的主要源区[15]。
苏盖提力克花岗岩SiO2=72.53%~74.97%,A/CNK=1.07~1.11,刚玉分子为1.07%~1.56%>1%,K2O>Na2O,造岩矿物有原生白云母,副矿物有独居石、磷灰石和磷钇矿,与典型强过铝质S型花岗岩的岩石学、地球化学、矿物学特征较一致,表明苏盖提力克花岗岩属于强过铝质S型花岗岩。
王德滋等[20]认为Rb富集于成熟度高的地壳,Sr在成熟度低,演化程度低的地壳中富集,因此Rb/Sr比值较好记录源区物质的性质;Taylor和McLennan[21]计算陆壳Rb/Sr平均值为0.24,苏盖提力克二长花岗岩Rb/Sr=1.99~6.01,平均值为4.08远高于地壳平均值,表明苏盖提力克二长花岗岩的源区为地壳物质。
苏盖提力克花岗岩Rb/Sr为1.99~6.01,Rb/Ba为0.17~1.14,S型花岗岩不同源区具有不同Rb/Sr和Sr/Ba比值[22],同时在Rb/Sr-Rb/Ba图中样品落入杂砂岩部分熔融区和泥质岩部分熔融区(见图 9),表明苏盖提力克花岗岩源区组成复杂,由杂砂岩和泥质岩构成,暗示岩浆源区为地壳沉积岩。
苏盖提力克花岗岩(Ho/Yb)N=0.87~1.12<1.2,Y/Yb=8.24~11.12,平均为10.01≈10,岩浆源区无石榴子石残留。邓晋福等[11]认为含石榴子石过铝质岩浆形成深度大于25 km,苏盖提力克花岗岩含有原生白云母不发育石榴子石,暗示花岗岩浆形成深度小于25 km;与地球化学反映信息一致,苏盖提力克花岗岩岩浆成因与石榴子石无关。
5.2 构造环境分析
内蒙古第九地质矿产勘查开发院在侵入库地缝合带的晚奥陶世细粒正长花岗岩获得锆石U-Pb年龄(459.3±1.1)Ma,认为其是库地缝合带闭合后的碰撞造山同逆冲—同剪切时期产物[11];西昆仑地区中晚志留世达坂沟组为浅海相碳酸盐岩沉积,暗示中晚志留世时期西昆仑处于后碰撞阶段;周辉等[2]研究侵入库地蛇绿岩和剪切带的煌斑岩40Ar/36Ar等时线年龄为404 Ma,时代为早泥盆世,代表碰撞后期松弛阶段;西昆仑地区晚泥盆世奇自拉夫组发育陆相红色磨拉石沉积,是后碰撞伸展背景下的地质反映;区域地层资料、地质调查成果与周辉等的研究都表明西昆仑地区加里东期后碰撞与碰撞后伸展转换时期为中晚志留世—早泥盆世。
通过地质调查发现苏盖提力克花岗岩发育于库地缝合带南侧;而1:25万麻扎—神仙湾幅地质调查时,在库地缝合带蛇绿混杂岩北侧托排士达坂一带也发现了晚志留世二长花岗岩,研究认为其属于S型花岗岩,锆石U-Pb年龄为412.18 Ma,时代为晚志留世[24];该二长花岗岩的地质、地球化学以及时代特征均与文中苏盖提力克花岗岩相似,表明晚志留世S型花岗岩在库地缝合带两侧普遍发育,暗示晚志留世时期库地缝合带已经闭合两侧地块发生碰撞;已有研究表明大量的强过铝质花岗岩是后碰撞环境下形成的[25~27],故此苏盖提力克花岗岩代表原特提斯洋闭合后碰撞造山环境。
结合区域地质资料和已有研究成果,文章研究认为库地南晚志留世苏盖提力克花岗岩属于S型花岗岩,形成于后碰撞环境,从而说明早古生代原特提斯洋由消减闭合到陆陆碰撞—碰撞后伸展转换时间为(422.5±2.5)Ma,即晚志留世时期西昆仑库地一带原特提斯洋已经消减闭合且处于后碰撞阶段。
6. 结论
(1) 应用LA-ICP-MS方法测得库地南苏盖提力克中细粒花岗岩体的锆石206Pb/238U年龄为(422.5±2.5)Ma(N=21,MSWD=4.0),该年龄可以代表其形成年龄,为晚志留世。
(2) 苏盖提力克中细粒花岗岩为高钾钙碱性系列,其岩石学、地球化学、矿物学特征表明其来源于的大陆地壳,形成于后碰撞环境,为强过铝质S型花岗岩。
(3) 苏盖提力克中细粒花岗岩属于S型花岗岩,形成于后碰撞环境,说明晚志留世时期西昆仑库地一带原特提斯洋已经消减闭合且处于后碰撞阶段。因此确定原特提斯洋由消减闭合到陆陆碰撞—碰撞后伸展转换时期为晚志留世。
致谢: 项目实施过程中河北省区域地质调查院的班长勇教授级高级工程师、李俊录高级工程师参加了野外工作,对项目进行指导,样品分析过程中受到河北省区域地质调查院实验室和天津地质调查中心实验室的帮助,在此一并致谢! -
图 2 地质灾害危险性评价影响因子分级图
a—坡度;b—地貌;c—工程地质岩组;d—高程;e—距断裂距离;f—距河流距离;g—24小时最大降雨量;h—人类工程活动强度
Figure 2. Grading map of influencing factors of geological hazard risk assessment
a—slope; b—landform; c—engineering geological rock group; d—elevation; e—distance from fault; f—distance from river; g—24-h maximum rainfall; h— human engineering activity factors
表 1 研究区地质灾害隐患点统计表
Table 1. Statistical table of geological hazard hidden danger points in the study area
灾害类型 灾害点/处 百分比/% 威胁人数/人 威胁财产/万元 崩塌 502 75.1 25955 79638 滑坡 97 14.5 3790 8117 泥石流 17 2.6 2554 12806 地面塌陷 52 7.8 2895 8964 合计 668 100.0 35194 109525 表 2 A-B判断矩阵及权重
Table 2. A-B judgment matrix and weight
A B1 B2 Wi B1 1 5 0.8333 B2 1/5 1 0.1667 λmax=2,CI=0,RI=0,CR=0<0.1
注:Wi—第i个评价因子的权重;λmax—判断矩阵最大特征值;CI—一致性指标;RI—随机一致性指标;CR—一致性比率,若 CR<0.1,则认为判断矩阵通过一致性检验,所求权重值是合理的,下表同。表 3 B1-C判断矩阵及权重
Table 3. B1-C judgment matrix and weight
B1 C1 C2 C3 C4 C5 C6 Wi C1 1 5 6 3 8 7 0.4651 C2 1/5 1 2 1/2 4 3 0.1305 C3 1/6 1/2 1 1/4 3 2 0.0823 C4 1/3 2 4 1 6 5 0.2324 C5 1/8 1/4 1/3 1/6 1 1/2 0.0361 C6 1/7 1/3 1/2 1/5 2 1 0.0537 λmax=6.1780, CI=0.0356, RI=1.26,CR=0.0283<0.1 表 4 B2-C判断矩阵及权重
Table 4. B2-C judgment matrix and weight
B2 C7 C8 Wi C7 1 4 0.8 C8 1/4 1 0.2 λmax=2, CI=0, RI=0 ,CR=0<0.1 表 5 A-C层次总权重排序
Table 5. Ranking of the total weights of layers A-C
A B A-B权重 C B-C权重 A-C权重 地质灾害危险性评价 B1
0.8333C1 0.4651 0.3876 C2 0.1305 0.1087 C3 0.0823 0.0686 C4 0.2324 0.1937 C5 0.0361 0.0301 C6 0.0537 0.0446 B2 0.1667 C7 0.8000 0.1334 C8 0.2000 0.0333 CR=(0.8333×0.0356+0.1667×0)/(0.8333×1.26+0.1667×0)=0.0283<0.1 表 6 地质灾害危险性评价因子加权信息量表
Table 6. Weighted information scale of geological hazard risk evaluation factors
评价因子 分级 Ni Ni/N Si Si/S 信息量 权重 加权信息量 地形坡度/(°) 0~10 141 0.2111 3026.94 0.7111 −1.2146 0.3876 −0.4708 10~25 428 0.6407 1073.4301 0.2522 0.9325 0.3614 25~40 89 0.1332 146.2915 0.0344 1.3550 0.5252 >40 10 0.0150 10.1339 0.0024 1.8387 0.7127 地貌 冲洪积倾斜平原 21 0.0314 775.0863 0.1821 −1.7565
0.1087−0.1909 黄河河漫滩 2 0.0030 225.2701 0.0529 −2.8722 −0.3122 山间洪积平原 47 0.0704 379.7426 0.0892 −0.2374 −0.0258 河谷阶地 68 0.1018 335.1929 0.0787 0.2568 0.0279 黄土丘陵 319 0.4775 1379.5019 0.3241 0.3877 0.0421 构造剥蚀丘陵 40 0.0599 185.4328 0.0436 0.3182 0.0346 构造侵蚀中低山 171 0.2560 976.5689 0.2294 0.1096 0.0119 高程/m <200 171 0.2560 1317.3781 0.3095 −0.1898 0.0686 −0.0130 200~400 304 0.4551 1752.2913 0.4116 0.1003 0.0069 400~600 154 0.2305 812.9577 0.1910 0.1883 0.0129 600~800 29 0.0434 249.9416 0.0587 −0.3019 −0.0207 800~1000 5 0.0075 91.2935 0.0214 −1.0527 −0.0722 >1000 5 0.0075 32.9333 0.0077 −0.0331 −0.0023 工程地质岩组 一般土 67 0.1003 1099.9754 0.2584 −0.9464 0.1937 −0.1833 碳酸盐岩 87 0.1302 692.5129 0.1627 −0.2224 −0.0431 坚硬−较坚硬岩 68 0.1018 469.6385 0.1103 −0.0805 −0.0156 软弱层状碎屑岩 42 0.0629 329.4227 0.0774 −0.2077 −0.0402 软硬相间变质岩 37 0.0554 216.7597 0.0509 0.0841 0.0163 碎屑岩夹碳酸盐岩 26 0.0389 114.5522 0.0269 0.3690 0.0715 黄土 341 0.5105 1333.9341 0.3134 0.4880 0.0945 距断裂距离/m >2000 402 0.6018 3011.4432 0.7074 −0.1617 0.0301 −0.0049 1000~2000 121 0.1811 583.7909 0.1371 0.2782 0.0084 500~1000 68 0.1018 324.3219 0.0762 0.2898 0.0087 <500 77 0.1153 337.2395 0.0792 0.3750 0.0113 距河流距离/m >800 436 0.6527 3294.3728 0.7739 −0.1703 0.0446 −0.0076 500~800 71 0.1063 332.0601 0.0780 0.3093 0.0138 200~500 80 0.1198 368.1142 0.0865 0.3256 0.0145 <200 81 0.1213 262.2484 0.0616 0.6771 0.0302 24小时最大降雨量/mm 225~300 76 0.1138 893.4056 0.2099 −0.6123 0.1334 −0.0817 300~350 87 0.1302 792.6438 0.1862 −0.3575 −0.0477 350~400 263 0.3937 1435.6581 0.3373 0.1548 0.0207 400~450 125 0.1871 626.8523 0.1473 0.2396 0.0320 450~500 74 0.1108 391.6921 0.0920 0.1856 0.0248 500~550 43 0.0644 116.5436 0.0274 0.8549 0.1140 人类工程活动强度 微弱 129 0.1931 1445.3425 0.3395 −0.5643 0.0333 −0.0188 一般 34 0.0509 252.7182 0.0594 −0.1539 −0.0051 较强 221 0.3308 1230.7963 0.2891 0.1347 0.0045 强烈 284 0.4251 1327.9385 0.3120 0.3096 0.0103 表 7 地质灾害危险性评价结果统计表
Table 7. Statistical table of geological disaster risk assessment results
危险性分区 灾害点/
个灾点占
比/%面积/
km2面积占
比/%灾点密度/
个/ km2低危险区 46 6.89 1387.14 32.59 0.0332 中危险区 316 47.30 1803.18 42.36 0.1752 高危险区 306 45.81 1066.47 25.05 0.2869 -
[1] ALI S, BIERMANNS P, HAIDER R, et al., 2019. Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway), Pakistan[J]. Natural Hazards and Earth System Sciences, 19(5): 999-1022. doi: 10.5194/nhess-19-999-2019 [2] CHEN G Y, WANG L, JIAO H J, et al. , 2009. Environmental geological survey and evaluation report of major cities in Henan Province (Zhengzhou City)[R]. Zhengzhou: Henan Geological Survey Institute. (in Chinese) [3] CLERICI A, PEREGO S, TELLINI C, et al., 2002. A procedure for landslide susceptibility zonation by the conditional analysis method[J]. Geomorphology, 48(4): 349-364. doi: 10.1016/S0169-555X(02)00079-X [4] DENG H, HE Z W, CHEN Y, et al., 2014. Application of information quantity model to hazard evaluation of geological disaster in mountainous region environment: a case study of Luding County, Sichuan Province[J]. Journal of Natural Disasters, 23(2): 67-76. (in Chinese with English abstract [5] DING L, LI Z X, LI X W, et al., 2016. AHP-based assessment of geological hazards risk in Dengfeng city[J]. Journal of Geological Hazards and Environment Preservation, 27(2): 92-96. (in Chinese with English abstract [6] DU C L, LU W F, LI J F, et al., 2008. Analysis on the hazard degree of geological disasters[J]. Chinese Journal of Underground Space and Engineering, 4(6): 1169-1176. (in Chinese with English abstract [7] DU G L, ZHANG Y S, GAO J C, et al., 2016. Landslide susceptibility assessment based on GIS in Bailongjiang watershed, Gansu Province[J]. Journal of Geomechanics, 22(1): 1-11. (in Chinese with English abstract [8] FAN Z Y, GOU X F, QIN M Y, et al., 2018. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology, 26(2): 340-347. (in Chinese with English abstract [9] FENG W, TANG Y M, MA H N, et al., 2021. Comprehensive risk assessment of multi-hazard natural disasters in Xianyang City based on AHP[J]. Northwestern Geology, 54(2): 282-288. (in Chinese with English abstract [10] HUANG R Q, XU X N, TANG C, et al. , 2008. Geological environment assessment and geological hazards management[M]. Beijing: Science Press: 151-179. (in Chinese) [11] Investigation Group on Disaster of State Council of China, 2022. Investigation report on the “7.20” extraordinary rainstorm disaster in Zhengzhou city, Henan province[R]. Beijing: Ministry of Emergency Management of the People’s Republic of China. (in Chinese) [12] LANG Q L, ZHANG Y C, ZHANG J Q, et al., 2019. Analysis of debris flow hazard factors based on combination weighting theory[J]. Journal of Catastrophology, 34(1): 68-72. (in Chinese with English abstract [13] LI C Y, MENG H, ZHANG R L, et al., 2017. Risk assessment of geo-hazard of China in county unit[J]. Hydrogeology & Engineering Geology, 44(2): 160-166. (in Chinese with English abstract [14] LI L P, LAN H X, GUO C B, et al., 2017. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 31(5): 911-929. (in Chinese with English abstract [15] LI X, XUE G C, LIU C Z, et al., 2022. Evaluation of geohazard susceptibility based on information value model and information value-logistic regression model: a case study of the central mountainous area of Hainan Island[J]. Journal of Geomechanics, 28(2): 294-305. (in Chinese with English abstract [16] LIAO L P, YU M, WEN H T, et al., 2019. Evaluation on the susceptibility of collapse and landslide in Rongxian County, Southeastern Guangxi[J]. Earth and Environment, 47(4): 518-526. (in Chinese with English abstract [17] LIU C Z, CHEN C L, 2020. Research on the origins of geological disasters in China[J]. Geological Review, 66(5): 1334-1348. (in Chinese with English abstract [18] LIU C Z, HUANG S, 2022. Research on “7·20” mountain torrents and geological disasters in Zhengzhou City, Henan Province of China[J]. Journal of Engineering Geology, 30(3): 931-943. (in Chinese with English abstract [19] LIU L, YANG Z, SUN J, et al., 2021. Study on risk assessment of geological hazards in Huizhou District, Huangshan City, Anhui Province[J]. The Chinese Journal of Geological Hazard and Control, 32(2): 110-116. (in Chinese with English abstract [20] LV D Y, LIU C L, MENG S R, et al. , 2021. Zhengzhou urban geological survey report[R]. Shijiazhuang: Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences. (in Chinese) [21] LV D Y, MENG S R, ZHANG J Y, et al., 2023. Atlas of natural resources in Zhengzhou city [M]. Wuhan: China University of Geosciences Press. (in Chinese) [22] POURGHASEMI H R, PRADHAN B, GOKCEOGLU C, 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran[J]. Natural Hazards, 63(2): 965-996. doi: 10.1007/s11069-012-0217-2 [23] QIU H J, CUI P, WANG Y M, et al., 2015. Spatial distribution structure of loess landslides and cause analysis based on correlated fractal dimension[J]. Chinese Journal of Rock Mechanics and Engineering, 34(3): 546-555. (in Chinese with English abstract [24] SUN R, WANG C D, XIA Z B, et al., 2015. Geological disasters risk assessment in Fee County based on AHP-information method[J]. Environmental Science & Technology, 38(6P): 430-435. (in Chinese with English abstract [25] WANG L, ZHANG C S, YANG W M, et al., 2011. Risk assessment of geohazards by using GIS in Gangu County, Gansu Province[J]. Journal of Geomechanics, 17(4): 388-401. (in Chinese with English abstract [26] WANG Q C, 2018. Study on geological hazards and countermeasures in Gongyi City[D]. Xi’an: Chang’an University: 1-77. (in Chinese with English abstract [27] WEI G L, JIN Y L, QIU J A, et al., 2020. Susceptibility assessment of geological hazard in Luhe County of eastern Guangdong[J]. The Chinese Journal of Geological Hazard and Control, 31(1): 51-56. (in Chinese with English abstract [28] WU S R, SHI J S, ZHANG C S, et al., 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995-1005. (in Chinese with English abstract [29] WU X G, WANG Y D, WANG L T, et al., 2024. Hazard assessment of landslides in Lancang County, Yunnan Province based on weighted information value model[J]. The Chinese Journal of Geological Hazard and Control, 35(3): 1-10. (in Chinese with English abstract [30] WU Z B, WAN H B, 2022. A brief analysis of “7·20” extreme rainstorm disaster of four cities in mountainous area of Zhengzhou in Henan Province in 2021[J]. China Flood & Drought Management, 32(3): 27-31. (in Chinese) [31] YIN Z Q, MENG H, LIAN J F, et al., 2013. Study on the geological disasters response to climate change in different temporal scales[J]. Geological Review, 59(6): 1110-1117. (in Chinese with English abstract [32] YU K N, WU T, WEI A H, et al., 2023. Geological hazard assessment based on the models of AHP, catastrophe theory and their combination: a case study in Pingshan County of Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 34(2): 146-155. (in Chinese with English abstract [33] ZHANG C, TIAN Y T, ZHANG Y F, 2019. Geo-hazard risk assessment in Shijiba Town at Longnan area in Gansu Province[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 38(7): 83-89. (in Chinese with English abstract [34] ZHANG C S, HAN J L, SUN W F, et al., 2008. Assessments of geohazard danger zoning in Longxian County, Shaanxi, China[J]. Geological Bulletin of China, 27(11): 1795-1801. (in Chinese with English abstract [35] ZHANG J Y, LÜ D Y, LIU C L, et al., 2023. Characteristics of rock-soil stratigraphic structure in Zhengzhou City and suggestions for development and utilization of underground space[J]. Geological Review, 69(1): 305-315. (in Chinese with English abstract [36] ZHANG M S, XUE Q, JIA J, et al., 2019. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology, 52(2): 125-135. (in Chinese with English abstract [37] ZHANG X D, LIU X N, ZHAO Z P, et al., 2018. Comparative study of geological hazards susceptibility assessment: constraints from the information value + logistic regression model and the CF + logistic regression model[J]. Geoscience, 32(3): 602-610. (in Chinese with English abstract [38] ZHANG X Y, ZHANG C S, MENG H J, et al., 2018. Landslide susceptibility assessment of new Jing-Zhang high-speed railway based on GIS and information value model[J]. Journal of Geomechanics, 24(1): 96-105. (in Chinese with English abstract [39] ZHAO D L, LANCUO Z M, HOU G L, et al., 2021. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics, 27(1): 83-95. (in Chinese with English abstract [40] ZHEN X C, SHANG Z P, QI S, et al. , 2012. Research on geological hazards and prevention in Henan Province[M]. Zhengzhou: Yellow River Water Conservancy Press. (in Chinese) [41] ZHENG S Y, ZHANG X J, YANG Y, et al., 2012. The application of analytic hierarchy process to the danger evaination of collapse and slide in Lujiang basin segment of Nujiang valley, western Yunnan Province[J]. Geological Bulletin of China, 31(2-3): 356-365. (in Chinese with English abstract [42] ZHOU J J, ZHANG X M, ZHAO F S, et al., 2019. Research on risk assessment of geological hazards in Qinling-Daba mountain area, south Shaanxi Province[J]. Journal of Geomechanics, 25(4): 544-553. (in Chinese with English abstract [43] ZHOU X C, LIAO L M, 2019. Geological hazard assessment in Sakya county of Tibet autonomous region[J]. The Chinese Journal of Geological Hazard and Control, 30(6): 113-116. (in Chinese with English abstract [44] 陈光宇,王利,焦红军,等,2009. 河南省主要城市环境地质调查评价报告(郑州市)[R]. 郑州:河南省地质调查院. [45] 邓辉,何政伟,陈晔,等,2014. 信息量模型在山地环境地质灾害危险性评价中的应用:以四川泸定县为例[J]. 自然灾害学报,23(2):67-76. [46] 丁丽,李再兴,李学问,等,2016. 基于层次分析法的登封市地质灾害危险性评价[J]. 地质灾害与环境保护,27(2):92-96. doi: 10.3969/j.issn.1006-4362.2016.02.018 [47] 杜春兰,陆文凤,李剑锋,等,2008. 地质灾害危险度研究:以重庆市渝北区为例[J]. 地下空间与工程学报,4(6):1169-1176. doi: 10.3969/j.issn.1673-0836.2008.06.036 [48] 杜国梁,张永双,高金川,等,2016. 基于GIS的白龙江流域甘肃段滑坡易发性评价[J]. 地质力学学报,22(1):1-11. doi: 10.3969/j.issn.1006-6616.2016.01.001 [49] 樊芷吟,苟晓峰,秦明月,等,2018. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,26(2):340-347. [50] 冯卫,唐亚明,马红娜,等,2021. 基于层次分析法的咸阳市多灾种自然灾害综合风险评价[J]. 西北地质,54(2):282-288. [51] 国务院灾害调查组,2022. 河南郑州“7·20”特大暴雨灾害调查报告[R]. 北京:中华人民共和国应急管理部. [52] 黄润秋,许向宁,唐川,等,2008. 地质环境评价与地质灾害管理[M]. 北京:科学出版社:151-179. [53] 郎秋玲,张以晨,张继权,等,2019. 基于组合赋权理论的泥石流孕灾因子分析[J]. 灾害学,34(1):68-72. doi: 10.3969/j.issn.1000-811X.2019.01.014 [54] 李春燕,孟晖,张若琳,等,2017. 中国县域单元地质灾害风险评估[J]. 水文地质工程地质,44(2):160-166. [55] 李郎平,兰恒星,郭长宝,等,2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质,31(5):911-929. [56] 李信,薛桂澄,柳长柱,等,2022. 基于信息量模型和信息量-逻辑回归模型的海南岛中部山区地质灾害易发性研究[J]. 地质力学学报,28(2):294-305. [57] 廖丽萍,于淼,文海涛,等,2019. 广西东南部容县崩塌滑坡的易发性评价[J]. 地球与环境,47(4):518-526. [58] 刘传正,陈春利,2020. 中国地质灾害成因分析[J]. 地质论评,66(5):1334-1348. [59] 刘传正,黄帅,2022. 郑州西部山区“7·20”山洪地质灾害成因研究[J]. 工程地质学报,30(3):931-943. [60] 刘乐,杨智,孙健,等,2021. 安徽黄山市徽州区地质灾害危险性评价研究[J]. 中国地质灾害与防治学报,32(2):110-116. [61] 吕敦玉,刘长礼,孟舒然,等,2021. 郑州城市地质调查报告[R]. 石家庄:中国地质科学院水文地质环境地质研究所. [62] 吕敦玉,孟舒然,张建羽,等,2023. 郑州市自然资源图集[M]. 武汉:中国地质大学出版社. [63] 邱海军,崔鹏,王彦民,等,2015. 基于关联维数的黄土滑坡空间分布结构及其成因分析[J]. 岩石力学与工程学报,34(3):546-555. [64] 孙冉,王成都,夏哲兵,等,2015. 基于AHP-信息量法的费县地质灾害风险评价[J]. 环境科学与技术,38(6P):430-435. [65] 王磊,张春山,杨为民,等,2011. 基于GIS的甘肃省甘谷县地质灾害危险性评价[J]. 地质力学学报,17(4):388-401. [66] 王庆超,2018. 巩义市地质灾害区划与防治对策研究[D]. 西安:长安大学:1-77. [67] 魏国灵,金云龙,邱锦安,等,2020. 粤东陆河县地质灾害易发性评价[J]. 中国地质灾害与防治学报,31(1):51-56. [68] 吴树仁,石菊松,张春山,等,2009. 地质灾害风险评估技术指南初论[J]. 地质通报,28(8):995-1005. [69] 吴兴贵,王宇栋,王蓝婷,等,2024. 基于加权信息量模型的云南澜沧县滑坡危险性评价[J]. 中国地质灾害与防治学报,35(3):1-10. [70] 吴泽斌,万海斌,2022. 2021年河南郑州山区4市“7·20”特大暴雨灾害简析[J]. 中国防汛抗旱,32(3):27-31. [71] 殷志强,孟晖,连建发,等,2013. 基于不同时间尺度的地质灾害对气候变化响应研究[J]. 地质论评,59(6):1110-1117. [72] 于开宁,吴涛,魏爱华,等,2023. 基于AHP-突变理论组合模型的地质灾害危险性评价:以河北平山县为例[J]. 中国地质灾害与防治学报,34(2):146-155. [73] 张超,田运涛,张宇飞,2019. 甘肃陇南石鸡坝乡幅地质灾害危险性评价[J]. 重庆交通大学学报(自然科学版),38(7):83-89. [74] 张春山,韩金良,孙炜锋,等,2008. 陕西陇县地质灾害危险性分区评价[J]. 地质通报,27(11):1795-1801. [75] 张建羽,吕敦玉,刘长礼,等,2023. 河南郑州市岩土地层结构特征及地下空间开发利用建议[J]. 地质论评,69(1):305-315. [76] 张茂省,薛强,贾俊,等,2019. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质,52(2):125-135. [77] 张晓东,刘湘南,赵志鹏,等,2018. 信息量模型、确定性系数模型与逻辑回归模型组合评价地质灾害敏感性的对比研究[J]. 现代地质,32(3):602-610. [78] 张向营,张春山,孟华君,等,2018. 基于GIS和信息量模型的京张高铁滑坡易发性评价[J]. 地质力学学报,24(1):96-105. doi: 10.12090/j.issn.1006-6616.2018.24.01.011 [79] 赵东亮,兰措卓玛,侯光良,等,2021. 青海省河湟谷地地质灾害易发性评价[J]. 地质力学学报,27(1):83-95. doi: 10.12090/j.issn.1006-6616.2021.27.01.009 [80] 甄习春,商真平,戚赏,等,2012. 河南省地质灾害及防治研究[M]. 郑州:黄河水利出版社. [81] 郑师谊,张绪教,杨艳,等,2012. 层次分析法在滇西怒江河谷潞江盆地段崩塌与滑坡地质灾害危险性评价中的应用[J]. 地质通报,31(2-3):356-365. [82] 周静静,张晓敏,赵法锁,等,2019. 陕南秦巴山区地质灾害危险性评价研究[J]. 地质力学学报,25(4):544-553. doi: 10.12090/j.issn.1006-6616.2019.25.04.053 [83] 周学铖,廖黎明,2019. 西藏萨迦县地质灾害危险性评价[J]. 中国地质灾害与防治学报,30(6):113-116. 期刊类型引用(1)
1. 任恩,石美晴,姚巍,罗刚,张静. 基于有效降雨阈值的区域滑坡灾害预警分析. 河北工业科技. 2025(01): 70-79 . 百度学术
其他类型引用(0)
-