留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔东部晚古生代—中生代构造样式、变形序列及棋盘格构造的形成过程与机制

任新成 修金磊 刘林 刘德志 谭星宇 张北航

任新成, 修金磊, 刘林, 等, 2023. 准噶尔东部晚古生代—中生代构造样式、变形序列及棋盘格构造的形成过程与机制. 地质力学学报, 29 (2): 155-173. DOI: 10.12090/j.issn.1006-6616.2022113
引用本文: 任新成, 修金磊, 刘林, 等, 2023. 准噶尔东部晚古生代—中生代构造样式、变形序列及棋盘格构造的形成过程与机制. 地质力学学报, 29 (2): 155-173. DOI: 10.12090/j.issn.1006-6616.2022113
REN Xincheng, XIU Jinlei, LIU Lin, et al., 2023. Late Paleozoic-Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin. Journal of Geomechanics, 29 (2): 155-173. DOI: 10.12090/j.issn.1006-6616.2022113
Citation: REN Xincheng, XIU Jinlei, LIU Lin, et al., 2023. Late Paleozoic-Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin. Journal of Geomechanics, 29 (2): 155-173. DOI: 10.12090/j.issn.1006-6616.2022113

准噶尔东部晚古生代—中生代构造样式、变形序列及棋盘格构造的形成过程与机制

doi: 10.12090/j.issn.1006-6616.2022113
基金项目: 

中国石化“十条龙”重大科技攻关项目 P21077-2

胜利油田科技攻关项目 YKK2121

详细信息
    作者简介:

    任新成(1979—),男,硕士,高级工程师,长期从事准噶尔盆地油气勘探工作。E-mail: python139@139.com

  • 中图分类号: P548

Late Paleozoic-Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin

Funds: 

the Key Scientific and Technological Project of the China Petroleum & Chemical Corporation P21077-2

the Scientific and Technological Project of the Shengli Oilfield YKK2121

  • 摘要:

    自晚古生代以来,准噶尔盆地东部经历了多期陆内变形事件的改造,形成了独特的棋盘状构造,其形成演化是中亚造山带陆内变形的一个缩影,但其形成过程仍处于争议之中。此次研究围绕准噶尔盆地及周缘地区的二叠纪至新生代的构造变形开展研究,结果表明准噶尔盆地东部变形的驱动力主要来自不同板块边缘的相互作用,尤其是来自特提斯构造域的影响。晚二叠世,准噶尔盆地遭受了近东西向的挤压应力改造,盆地整体发生变形,形成了一系列近南北向逆冲断层和褶皱,为准东地区乃至整个盆地的棋盘格构造奠定了基础。早—中侏罗世期间,准噶尔盆地及其周缘地区经历区域性伸展,在盆地东北、西北缘均发育重要的左行张剪性走滑变形,形成了大型的走滑双冲构造。晚侏罗世,准东地区经历近东西向缩短作用,导致了侏罗纪之前的地层再次发生近南北向褶皱,变形的动力则可能来自特提斯构造域的向北作用,使准噶尔盆地经历不同程度顺时针旋转。晚白垩世,准东地区经历近南北向缩短作用,导致了之前的近南北向褶皱和断层褶皱变形,准东的棋盘格构造样式最终定型。新生代晚期,准东地区受到印度-欧亚板块碰撞远程效应的影响,但是影响范围和强度相对较小。

     

  • 图  1  研究区区域地质图

    a—中亚造山带地质简图(据Sengör and Natal′in,1996Jahn et al., 2000修改);b—新疆北部地区构造简图(据Chen and Jahn, 2004Xiao et al., 2008修改;AOB—阿尔曼泰蛇绿岩;KOB—卡拉麦里蛇绿岩带;EF—额尔齐斯断裂;KF—卡拉麦里断裂);c—东准噶尔地区地质简图(据新疆维吾尔自治区地质矿产局,1993Xu et al., 2020修改)

    Figure  1.  Regional geologic map of the study area

    (a) Outline of the Central Asian Orogenic Belt (modified from Sengör and Natal′in, 1996; Jahn et al., 2000); (b) Simplified tectonic map of Northern Xinjiang (modified from Chen and Jahn, 2004; Xiao et al., 2008; AOB-Armantai ophiolite belt; KOB-Kalamaili ophiolite belt; EF-Erqis fault; KF-Kalamaili fault); (c) Simplified geologic map of the east Junggar area (modified from BGMRXUAR, 1993; Xu et al., 2020)

    图  2  卡拉麦里韧性剪切带变形特征

    a—不对称石英脉拖尾构造;b—不对称褶皱;c—T型张性脉;d—膝折构造

    Figure  2.  Deformation characteristics of the Kalamaili ductile shear zone

    (a) Asymmetric quartz vein trails; (b) Asymmetric folds; (c) T-shaped extensional veins; (d) Kink structure

    图  3  卡拉麦里构造带北侧韧性剪切带及拉伸线理

    a—剪切带远景及面理;b—石英拉伸线理

    Figure  3.  Ductile shear zone and stretching lineation on the north side of the Kalamaili tectonic belt

    (a) Distant view of the shear zone and its foliation; (b) Quartz stretching lineation

    图  4  准东晚二叠世构造格架及古应力方向

    研究中凡是在卡拉麦里造山带区域内的测量位置均为缩短的双箭头所示,而其他区域的双箭头是根据不同阶段地层的褶皱所判断,而非直接测量,图 81011与此相同

    Figure  4.  Late Permian tectonic framework and paleostress orientation of the eastern Junggar Basin

    All the measured positions in the study within the area of the Karameri orogenic belt are shown by the shortened double arrows, while the double arrows in the other areas are determined by the folding of the strata at different stages rather than direct measurements, as in Figures 8, 10 and 11

    图  5  卡拉麦里构造带侏罗纪早期张剪断层及其古应力方向

    a—断层带远景;b—断层带角砾岩、断层面擦痕及断层面解

    Figure  5.  Early Jurassic tenso-shear faults and their paleostress orientations in the Kalamaili tectonic belt

    (a) Distant view of the tenso-shear faults; (b) Fault breccia, scratch and fault-plane solution

    图  6  准噶尔盆地早侏罗世断层与沉积厚度分布

    a—准噶尔盆地早侏罗世走滑双冲构造(底图据Wang et al., 2018b);b—准噶尔盆地中部断层组合与可能的走滑双冲构造解释(底图据李振宏等,2002)

    Figure  6.  Distribution of fault and sediment thickness in the early Jurassic in the Junggar Basin

    (a) Early Jurassic strike-slip duplexes in the Junggar Basin (modified from Wang et al., 2018b); (b) Fault assemblage and interpretation of possible strike-slip duplexes in the central Junggar Basin (modified from Li et al., 2002)

    图  7  切割卡拉麦里构造带的走滑断层及古应力方向

    a—左行走滑断层带,切割蛇绿混杂岩;b—断层面擦痕及断层面解;c—沙帐断裂地表露头;d—沙帐断裂古应力方向

    Figure  7.  Strike-slip faults that cut the Kalamaili tectonic belt and their paleostress orientations

    (a) Sinistral strike-slip fault belt, cutting the ophiolite mélanges; (b) Fault scratch and fault-plane solution; (c) Outcrops of the Shazhang fault; (d) Paleostress orientation of the Shazhang fault

    图  8  准东晚侏罗世构造格架及古应力方向

    Figure  8.  Late Jurassic tectonic framework and paleostress orientation of the eastern Junggar Basin

    图  9  卡拉麦里构造带中切割蛇绿岩的晚期逆冲断层

    a—逆冲断层远景;b—断层面及擦痕;c—断层角砾岩;d—断层面解

    Figure  9.  Late thrust faults cutting the ophiolites in the Kalamaili tectonic belt

    (a) Distant view of the thrust faults; (b) Fault plane and scratch; (c)Fault breccias; (d) Fault-plane solution

    图  10  准东晚白垩世构造格架及古应力方向

    Figure  10.  Late Cretaceous tectonic framework and paleostress orientation of the eastern Junggar Basin

    图  11  准东新生代晚期主要断层

    Figure  11.  Late Cenozoic major faults in the eastern Junggar Basin

    图  12  东准噶尔地区晚古生代—新生代构造演化序列

    a—晚二叠世陆内调整阶段左行韧性走滑构造;b—早—中侏罗世走滑-伸展构造;c—晚侏罗世脆性左行走滑构造;d—晚白垩世脆性逆冲构造

    Figure  12.  Late Paleozoic-Cenozoic tectonic evolution sequence in eastern Junggar Basin

    (a) Late Permian left-lateral ductile strike-slip structure; (b) Early-Middle Jurassic strike-slip extensional structure; (c) Late Jurassic brittle left-lateral strike-slip structure; (d) Late Cretaceous brittle thrust structure

  • ALLEN M B, WINDLEY B F, ZHANG C, 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 220(1-4): 89-115, doi: 10.1016/0040-1951(93)90225-9.
    ALLEN M B, ALSOP G I, ZHEMCHUZHNIKOV V G, 2001. Dome and basin refolding and transpressive inversion along the Karatau fault system, southern Kazakstan[J]. Journal of the Geological Society, 158(1): 83-95, doi: 10.1144/jgs.158.1.83.
    BGMRXUAR (Bureau of Geology Mineral Resources of Xinjiang Uygur Autonomous Region), 1993. Regional geology of Xinjiang uygur autonomous region[M]. Beijing: Geological Publishing House. (in Chinese)
    CAI Z H, XU Z Q, HE B Z, et al., 2012. Age and tectonic evolution of ductile shear zones in the eastern Tianshan Beishan orogenic belt[J]. Acta Petrologica Sinica, 28(6): 1875-1895. (in Chinese with English abstract)
    CAO K, WANG G C, VAN DER BEEK P, et al., 2013. Cenozoic thermo-tectonic evolution of the northeastern Pamir revealed by zircon and apatite fission-track thermochronology[J]. Tectonophysics, 589: 17-32. doi: 10.1016/j.tecto.2012.12.038
    CHEN B, JAHN B M, 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence[J]. Journal of Asian Earth Science, 23(5): 691-703, doi: 10.1016/s1367-9120(3)00118-4.
    CHEN W, SUN S, ZHANG Y, et al., 2005. 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in east Tianshan, Xinjiang, NW China[J]. Acta Geologica Sinica, 79(6): 790-804. (in Chinese with English abstract)
    DE GRAVE J, BUSLOV M M, VAN DEN HAUTE P, 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology[J]. Journal of Asian Earth Sciences, 29(2-3): 188-204, doi: 10.1016/j.jseaes.2006.03.001.
    DE GRAVE J, GLORIE S, BUSLOV M M, et al., 2011. The thermo-tectonic history of the Song-Kul plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite thermochronometry and zircon U/Pb dating[J]. Gondwana Research, 20(4): 745-763. doi: 10.1016/j.gr.2011.03.011
    DE JONG K, WANG B, FAURE M, et al., 2009. New 40Ar/39Ar age constraints on the Late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress[J]. International Journal of Earth Sciences, 98(6): 1239-1258, doi: 10.1007/s00531-008-0338-8.
    DU Q X, HAN Z Z, SHEN X L, et al., 2018. Zircon U-Pb geochronology and geochemistry of the post-collisional volcanic rocks in eastern Xinjiang Province, NW China: Implications for the tectonic evolution of the Junggar terrane[J]. International Geology Review, 60(3): 339-364, doi: 10.1080/00206814.2017.1335243.
    DUMITRU T A, ZHOU D, CHANG E Z, et al., 2001. Uplift, exhumation, and deformation in the Chinese Tian Shan[M]//HENDRIX M S, DAVIS G A. Paleozoic andMesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Boulder: Geological Society of America Memoir: 71-99.
    FANG A M, WANG S G, ZHANG J M, et al., 2015. The U-Pb ages of zircons from the gabbro in the Kalamaili ophiolite, North Xinjiang and its tectonic significances[J]. Chinese JournalofGeology, 50(1): 140-154. (in Chinese with English abstract)
    FANG W X, 2022. On research methodology for deformation history of tectonic lithofacies in sedimentary basin and their application[J]. Journal of Geomechanics, 28 (1): 1-21(in Chinese with English abstract).
    FENG Y, COLEMAN R G, TILTON G, et al., 1989. Tectonic evolution of the west Junggar region, Xinjiang, China[J]. Tectonics, 8(4): 729-752, doi: 10.1029/tc008i004p00729.
    GAN L, TANG H F, HAN Y J, 2010. Geochronology and geochemical characteristics of the Yemaquan granitic pluton in East Junggar, Xinjiang[J]. Acta Petrologica Sinica, 26(8): 2374-2388. (in Chinese with English abstract)
    GUO L S, ZHANG R, LIU Y L, et al., 2009. Zircon U-Pb age of Tonghualing intermediate-acid intrusive rocks, eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(5): 819-824. (in Chinese with English abstract)
    HAN B F, JI J Q, SONG B, et al., 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisionai plutonism[J]. Acta Petrologica Sinica, 22(5): 1077-1086. (in Chinese with English abstract)
    HAN Y G, ZHAO G C, 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 186: 129-152, doi: 10.1016/j.earscirev.2017.09.012.
    HAN Y J, TANG H F, GAN L, 2012. Zircon U-Pb ages and geochemical characteristics of the Laoyaquan a-type granites in east Junggar, north Xinjiang, China[J]. Acta Mineralogica Sinica, 32(2): 193-199. (in Chinese with English abstract)
    HE D F, ZHAI G N, KUANG J, et al., 2005. Distribution and tectonic features of Paleo-uplits in the Junggar Basin[J]. Chinese Journal of Geology, 40(2): 248-261. (in Chinese with English abstract)
    HE D F, ZHOU L, WU X Z, 2012. Formation and evolution and hydrocarbon accumulation of paleo-uplifts in Junggar Basin[M]. Beijing: Petroleum Industry Press. (in Chinese)
    HE G Q, LI M S, LIU D Q, et al., 1994. Paleozoic crustal evolution and mineralization in Xinjiang of China[M]. Urumqi: Xinjiang People's Publishing House. (in Chinese)
    HE G Q, LU S N, LI M S, 1995. Tectonic significance of large fault systems to the study of paleo-plates[J]. Geological Journal of Universitiesf, 1(1): 1-10. (in Chinese with English abstract)
    HE G Q, LI M S, 2001. Significance of paleostructure and paleogeography of Ordovician-Silurian rock associations in Northern Xinjiang, China[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 37(1): 99-110. (in Chinese with English abstract)
    HE G Q, LI M S, JIA J D, et al., 2001. A discussion on age and tectonic significance of ophiolite in eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 852-858. (in Chinese with English abstract)
    HE X Y, FANG T H, BO H T, et al., 2022. Petrogenesis and tectonic significance of Late Permian-Middle Triassic granitoids in Guobaoshan, eastern section of the eastern Tianshan mountains: Constraints from geochronology and geochemistry[J]. Journal of Geomechanics, 28 (1): 126-142(in Chinese with English abstract).
    HENDRIX M S, GRAHAM S A, CARROLL A R, 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China[J]. GSA Bulletin, 104(1): 53-79. doi: 10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2
    HUANG B, FU D, KUSKY T, et al., 2018. Sedimentary provenance in response to Carboniferous arc-basin evolution of East Junggar and North Tianshan belts in the southwestern Central Asian Orogenic Belt[J]. Tectonophysics, 722: 324-341, doi: 1016/j.tecto.2017.11.015.
    HUANG G, NIU G Z, WANG X L, et al., 2012. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U-Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang[J]. Geological Bulletin of China, 31(8): 1267-1278. (in Chinese with English abstract)
    HUANG G, NIU G Z, WANG X L, et al., 2016a. Early Silurian adakitic rocks of East Junggar, Xinjiang: Evidence from zircon U-Pb age, geochemistry and Sr-Nd-Hf isotope of the quartz diorite[J]. Acta Petrologica et Mineralogica, 35(5): 751-767. (in Chinese with English abstract)
    HUANG G, NIU G Z, WANG X L, et al., 2016b. The Early Silurian arc magmatic rocks of East Junggar, Xinjiang: Evidences from geochemistry, zircon U-Pb age and Hf isotopes of the Jianggeerkuduke quartz monzobiorite[J]. Geoscience, 30(6): 1219-1233. (in Chinese with English abstract)
    JAHN B M, WU F Y, CHEN B, 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. doi: 10.1017/S0263593300007367
    JIAN P, LIU D Y, SHI Y R, et al., 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the central Asian orogenic belt[M]//SKLYAROV E V. Structural and tectonic correlation across the central Asia Orogenic collage: North-Eastern segment. Guidebook and abstract volume of the Siberian workshop. Irkutsk: 246-251.
    JOLIVET M, RITZ J F, VASSALLO R, et al., 2007. Mongolian summits: An uplifted, flat, old but still preserved erosion surface[J]. Geology, 35(10): 871-874. doi: 10.1130/G23758A.1
    JOLIVET M, DOMINGUEZ S, CHARREAU J, et al., 2010. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation[J]. Tectonics, 29(1): TC6019.
    LAURENT-CHARVET S, CHARVET J, SHU L S, et al., 2002. Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China[J]. Terra Nova, 14(4): 249-256, doi: 10.1046/j.1365-3121.2002.00417.x.
    LAURENT-CHARVET S, CHARVET J, MONIÉP, et al., 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data[J]. Tectonics, 22(2): 1009, doi: 10.1029/2001tc901047.
    LI J Y, ZHU B Q, FENG Y M, 1989. Confirmation of the unconformable relationships between the Nanmingshui Formation and ophiolites and their significance[J]. Regional Geology of China(3): 250-255. (in Chinese with English abstract)
    LI J Y, XIAO X C, TANG Y Q, et al., 1990. Main characteristics of Late Paleozoic plate tectonics in the southern part of east Junggar, Xinjiang[J]. Geological Review, 36(4): 305-316. (in Chinese with English abstract)
    LI J Y, 1991. Early Paleozoic evolution of lithosphere plate, east Junggar, Xinjiang[C]//On tectonic evolution of the southern margin of the Paleozoic composite megasuture zoneedited. Beijing: Geological Publishing House: 92-108. (in Chinese with English abstract)
    LI J Y, 1995. Main characteristics and emplacement processes of the East Junggar ophiolites, Xinjiang, China[J]. Acta Petrologica Sinica, 11(S1): 73-84. (in Chinese with English abstract)
    LI J Y, ZHANG J, YANG T N, et al., 2009. Crustal tectonic division and evolution of the southern part of the north Asian Orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584-605. (in Chinese with English abstract)
    LI P F, SUN M, ROSENBAUM G, et al., 2017. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt[J]. GSA Bulletin, 129(5-6): 547-569. doi: 10.1130/B31541.1
    LI P F, SUN M, ROSENBAUM G, et al., 2020. Tectonic evolution of the Chinese Tianshan Orogen from subduction to arc-continent collision: Insight from polyphase deformation along the Gangou section, Central Asia[J]. GSA Bulletin, 132(11-12): 2529-2552, doi: 10.1130/B35353.1.
    LI P F, SUN M, YUAN C, et al., 2021. Late paleozoic tectonic transition from subduction to collision in the Chinese Altai and tianshan (central Asia): New geochronological constraints[J]. American Journal of Science, 321(1-2): 178-205, doi: 10.2475/01.2021.05.
    LI W, LIU Y Q, DONG Y P, et al., 2013. The geochemical characteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in northeastern Xinjiang, China[J]. Science China Earth Sciences, 56(8): 1318-1333, doi: 10.1007/s11430-012-4483-3.
    LI Z H, TANG L J, DING W L, et al., 2002. Fault characteristic analysis for the hinterland of Junggar basin[J]. Petroleum Exploration and Development, 29(1): 40-43. (in Chinese with English abstract)
    LIANG P, CHEN H Y, HOLLINGS P, et al., 2016. Geochronology and geochemistry of igneous rocks from the Laoshankou district, North Xinjiang: Implications for the Late Paleozoic tectonic evolution and metallogenesis of East Junggar[J]. Lithos, 266-267: 115-132, doi: 10.1016/j.lithos.2016.08.021.
    LIU X J, XIAO W J, XU J F, et al., 2017. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China[J]. Gondwana Research, 48: 34-49, doi: 10.1016/j.gr.2017.03.010.
    LIU Y R, JIAN P, ZHANG W, et al., 2016. Zircon SHRIMP U-Pb dating and O isotope of the Beitashan ophiolitic mélange in the East Junggar, Xinjiang, and its geological significance[J]. Acta Petrologica Sinica, 32(2): 537-554. (in Chinese with English abstract)
    LONG X P, YUAN C, SUN M, et al., 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt[J]. Gondwana Research, 21(2-3): 637-653, doi: 10.1016/j.gr.2011.05.015.
    LU Y M, ZHAO J, CHEN X, et al., 2007. The realationship between ductile-brittle shear zones and mineralization of gold deposits in Shuangquan area, Eastern Junggar[J]. Xinjiang Geology, 25(2): 164-168. (in Chinese with English abstract)
    LUO J, XIAO W J, WAKABAYASHI J, et al., 2017. The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids[J]. Gondwana Research, 43: 17-40, doi: 10.1016/j.gr.2015.04.004.
    MARRETT R, ALLMENDINGER R W, 1990. Kinematic analysis of fault-slip data[J]. Journal of Structural Geology, 12(8): 973-986. doi: 10.1016/0191-8141(90)90093-E
    MEANS W D, 1976. Stress and strain. Basic concepts of continuum mechanics for geologists[M]. New York: Springer: 1-399.
    MORIN J, JOLIVET M, ROBIN C, et al., 2018. Jurassic paleogeography of the Tian Shan: An evolution driven by far-field tectonics and climate[J]. Earth-Science Reviews, 187: 286-313. doi: 10.1016/j.earscirev.2018.10.007
    SENGÖR A M C, NATAL'IN B A, 1996. Paleotectonics of Asia: Fragments of a synthesis[M]//YIN A, HARRISON T M. The tectonic evolution of Asia. Cambridge: Cambridge University Press: 486-640.
    SHU L S, CHARVET J, MA R S, 1998. Study of a large scale Paleozoic dextral strike-slip ductile shear zone along the northern margin of the central Tianshan, Xinjiang[J]. Xinjiang Geology, 16(4): 326-336. (in Chinese with English abstract)
    SHU L S, CHARVET J, GUO L Z, et al., 1999. A large-scale Palaeozoic dextral ductile strike-slip zone: The Aqqikkudug-Weiya Zone along the Northern Margin of the Central Tianshan Belt, Xinjiang, NW China[J]. Acta Geologica Sinica, 73(2): 148-162, doi: 10.1111/j.1755-6724.1999.tb00822.x.
    SHU L S, LU H F, YIN D H, et al., 2001. Late Paleozoic continental accretionary tectonics in northern Xinjiang[J]. Xinjiang Geology, 19(1): 59-63. (in Chinese with English abstract)
    SHU L S, WANG Y J, 2003. Late Devonian-Early Carboniferous radiolarian fossils from siliceous rocks of the Kelameili ophiolite, Xinjiang[J]. Geological Review, 49(4): 408-412. (in Chinese with English abstract)
    SU Y P, ZHENG J P, GRIFFIN W L, et al., 2012. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition[J]. Gondwana Research, 22(3-4): 1009-1029, doi: 10.1016/j.gr.2012.01.004.
    TANG W H, ZHANG Z C, LI J F, et al., 2014. Late Paleozoic to Jurassic tectonic evolution of the Bogda area (northwest China): Evidence from detrital zircon U-Pb geochronology[J]. Tectonophysics, 626: 144-156. doi: 10.1016/j.tecto.2014.04.005
    TAO M X, 1992. Characteristics of the Mesozoic and Cenozoic tectonic stress fields of the Vrümqi-Usu region, Xinjiang[J]. Acta Geological Sinica, 66(3): 206-218. (in Chinese with English abstract)
    TAO W, GUO L, ZHOU N C, et al., 2022. Zircon U-Pb ages, geochemical characterisitics of the Basike granodiorite in East Junggar and their tectonic significance[J]. Geological Review, 68(2): 488-506. (in Chinese with English abstract)
    VAN DER VOO R, VAN HINSBERGEN D J J, DOMEIER M, et al., 2015. Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis[M]//ANDERSON T H, DIDENKO A N, JOHNSON C L, et al. Late Jurassic Margin of laurasia-a record of faulting accommodating plate rotation. Boulder: Geological Society of America: 589-606.
    VASSALLO R, JOLIVET M, RITZ J F, et al., 2007. Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis[J]. Earth and Planetary Science Letters, 259(3-4): 333-346, doi: 10.1016/j.epsl.2007.04.047.
    VINCENT S J, ALLEN M B, 2001. Sedimentary record of Mesozoic intracontinental deformation in the eastern Junggar Basin, northwest China: Response to orogeny at the Asian margin[M]//HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Memoir of Geological Society of America: 341-360.
    WANG J L, WU C D, LI Z, et al., 2018a. The tectonic evolution of the Bogda region from Late Carboniferous to Triassic time: Evidence from detrital zircon U-Pb geochronology and sandstone petrography[J]. Geological Magazine, 155(5): 1063-1088, doi: 10.1017/S0016756816001217.
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China Derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774.
    WANG Y J, JIA D, PAN J G, et al., 2018b. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China—implications for deep-seated petroleum exploration[J]. AAPG Bulletin, 102(8): 1489-1521. doi: 10.1306/10181716518
    WINDLEY B F, ALEXEIEVD, XIAO W J, et al., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31-47, doi: 10.1144/0016-76492006-022.
    WU Q, QU X, CHANG G H, et al., 2012. Geochronology of the Hongliuxia ductile shear zone and its constraint on the closure time of the Junggar Ocean[J]. Acta Petrologica Sinica, 28(8): 2331-2339. (in Chinese with English abstract)
    XIAO F F, HOU G T, WANG Y X, et al., 2010. Study on structural stress fields since Permian, Junggar basin and adjacent areas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(2): 224-230. (in Chinese with English abstract)
    XIAO W J, HAN C M, YUAN C, et al., 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 32(2-4): 102-117, doi: 10.1016/j.jseaes.2007.10.008.
    XIAO W J, WINDLEY B F, YUAN C, et al., 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 309(3): 221-270, doi: 10.2475/03.2009.02.
    XIAO W J, WINDLEY B F, SUN S, et al., 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477-507, doi: 10.1146/annurev-earth-060614-105254.
    XIAO W J, WINDLEY B F, HAN C M, et al., 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020
    XIAO W J, SONG D F, WINDLEYB F, et al., 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences, 63(3): 329-361. doi: 10.1007/s11430-019-9524-6
    XIAO X C, TANG Y Q, 1991. Tectonic evolution of the southern margin of the Paleo-Asian composite megasuture[M]. Beijing: Science Press. (in Chinese)
    XIAO X C, TANG Y Q, FENG Y M, et al., 1992. Tectonic evolution of northern Xinjiang and its adjacent regions[M]. Beijing: Geological Publishing House. (in Chinese)
    XU Q Q, ZHAO L, NIU B G, et al., 2020. Early Paleozoic arc magmatism in the Kalamaili orogenic belt, Northern Xinjiang, NW China: Implications for the tectonic evolution of the East Junggar terrane[J]. Journal of Asian Earth Sciences, 194: 104072. doi: 10.1016/j.jseaes.2019.104072
    XU X W, JIANG N, LI X H, et al., 2015. Spatial-temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar[J]. Journal of Asian Earth Sciences, 111: 470-491, doi: 10.1016/j.jseaes.2015.06.017.
    YANG G X, LI Y J, SI G H, et al., 2010. LA-ICPMS U-Pb Zircon Dating of the Beilekuduke Granite in Kalamaili Area, East Junggar, Xinjiang, China and its geological implication[J]. Geotectonica et Metallogenia, 34(1): 133-138. (in Chinese with English abstract)
    YANG G X, LI Y J, WU H E, et al., 2011. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 40(3): 722-736, doi: 10.1016/j.jseaes.2010.11.008.
    YU S, CHEN W, EVANS N J, et al., 2014. Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J]. Tectonophysics, 630: 166-182. doi: 10.1016/j.tecto.2014.05.021
    ZENG L J, NIU H C, BAO Z W, et al., 2015. Petrogenesis and tectonic significance of the plagiogranites in the Zhaheba ophiolite, Eastern Junggar orogen, Xinjiang, China[J]. Journal of Asian Earth Sciences, 113: 137-150, doi: 10.1016/j.jseaes.2014.09.031.
    ZHANG J, QU J F, ZHANG B H, et al., 2018. Paleozoic to Mesozoic deformation of eastern Cathaysia: A case study of theChencai Complex, Zhejiang Province, eastern China, and its tectonic implications[J]. GSA Bulletin, 130(1-2): 114-138. doi: 10.1130/B31680.1
    ZHANG J, QU J F, ZHANG B H, et al., 2020. Mesozoic intraplate deformation of the central North China Craton: Mechanism and tectonic settings[J]. Journal of Asian Earth Sciences, 192: 104269. doi: 10.1016/j.jseaes.2020.104269
    ZHANG J, WANG Y N, QU J F, et al., 2021. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review[J]. International Geology Review, 63(12): 1490-1520, doi: 10.1080/00206814.2020.1783583.
    ZHANG J, QU J F, ZHANG B H, et al., 2022. Determination of an intracontinental transform system along the southern Central Asian Orogenic Belt in the latest Paleozoic[J]. American Journal of Science, 322(7): 851-897, doi: 10.2475/07.2022.01.
    ZHANG Y, LIANG G L, QU X, et al., 2010. Evidence of U-Pb age and Hf isotope of zircons for Early Paleozoic magmatism in the Qiongheba arc, East Junggar[J]. Acta Petrologica Sinica, 26(8): 2389-2398. (in Chinese with English abstract)
    ZHANG Y Y, GUO Z J, PE-PIPER G, et al., 2015. Geochemistry and petrogenesis of Early Carboniferous volcanic rocks in East Junggar, North Xinjiang: Implications for post-collisional magmatism and geodynamic process[J]. Gondwana Research, 28(4): 1466-1481, doi: 10.1016/j.gr.2014.08.018.
    ZHANG Z C, ZHOU G, KUSKY T M, et al., 2009. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution[J]. Gondwana Research, 16(2): 201-215, doi: 10.1016/j.gr.2009.03.004.
    ZHAO L, JI J Q, XU Q Q, et al., 2012. Karamalli strike-slipping fault and deformational sequence since Late Plaeozoic in the northern Xinjiang[J]. Acta Petrologica Sinica, 28(7): 2257-2268. (in Chinese with English abstract)
    ZHAO L, NIU B G, XU Q Q, et al., 2019. An analysis of Silurian-Carboniferous sedimentary and structural characteristics on both sides of Karamaili ophiolitic belt of Xinjiang and its significance[J]. Geology in China, 46(3): 615-628. (in Chinese with English abstract)
    ZHENG M L, TIAN A J, YANG T Y, et al., 2018. Structural evolution and hydrocarbon accumulation in the eastern Junggar Basin[J]. Oil & Gas Geology, 39(5): 907-917. (in Chinese with English abstract)
    蔡志慧, 许志琴, 何碧竹, 等, 2012. 东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程[J]. 岩石学报, 28(6): 1875-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206014.htm
    陈文, 孙枢, 张彦, 等, 2005. 新疆东天山秋格明塔什-黄山韧性剪切带40Ar/39Ar年代学研究[J]. 地质学报, 79(6): 790-804.
    方爱民, 王世刚, 张俊敏, 等, 2015. 新疆北部卡拉麦里蛇绿岩中辉长岩的锆石U-Pb年龄及其构造意义[J]. 地质科学, 50(1): 140-154.
    方维萱, 2022. 论沉积盆地构造岩相变形史研究方法及应用[J]. 地质力学学报, 28 (1): 1-21. doi: 10.12090/j.issn.1006-6616.20222801
    甘林, 唐红峰, 韩宇捷, 2010. 新疆东准噶尔野马泉花岗岩体的年龄和地球化学特征[J]. 岩石学报, 26(8): 2374-2388.
    郭丽爽, 张锐, 刘玉琳, 等, 2009. 新疆东准噶尔铜华岭中酸性侵入体锆石U-Pb年代学研究[J]. 北京大学学报(自然科学版), 45(5): 819-824. doi: 10.13209/j.0479-8023.2009.122
    韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
    韩宇捷, 唐红峰, 甘林, 2012. 新疆东准噶尔老鸦泉岩体的锆石U-Pb年龄和地球化学组成[J]. 矿物学报, 32(2): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201202004.htm
    何登发, 翟光明, 况军, 等, 2005. 准噶尔盆地古隆起的分布与基本特征[J]. 地质科学, 40(2): 248-261.
    何登发, 周路, 吴晓智, 2012. 准噶尔盆地古隆起形成演化与油气聚集[M]. 北京: 石油工业出版社.
    何国琦, 李茂松, 刘德权, 等, 1994. 中国新疆古生代地壳演化及成矿[M]. 乌鲁木齐: 新疆人民出版社.
    何国琦, 陆书宁, 李茂松, 1995. 大型断裂系统在古板块研究中的意义: 以中亚地区为例[J]. 高校地质学报, 1(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX501.000.htm
    何国琦, 李茂松, 2001. 中国新疆北部奥陶: 志留系岩石组合的古构造、古地理意义[J]. 北京大学学报(自然科学版), 37(1): 99-110.
    何国琦, 李茂松, 贾进斗, 等, 2001. 论新疆东准噶尔蛇绿岩的时代及其意义[J]. 北京大学学报(自然科学版), 37(6): 852-858.
    贺昕宇, 方同辉, 薄贺天, 等, 2022. 东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义: 年代学和地球化学约束[J]. 地质力学学报, 28 (1): 126-142. doi: 10.12090/j.issn.1006-6616.20222807
    黄岗, 牛广智, 王新录, 等, 2012. 新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限: 来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质通报, 31(8): 1267-1278.
    黄岗, 牛广智, 王新录, 等, 2016a. 新疆东准噶尔早志留世埃达克岩: 来自锆石U-Pb年龄、地球化学及Sr-Nd-Hf同位素的证据[J]. 岩石矿物学杂志, 35(5): 751-767.
    黄岗, 牛广智, 王新录, 等, 2016b. 新疆东准噶尔早志留世弧岩浆岩: 来自姜格尔库都克石英二长闪长岩岩石地球化学、锆石U-Pb年龄和Hf同位素证据[J]. 现代地质, 30(6): 1219-1233.
    李锦轶, 朱宝清, 冯益民, 1989. 南明水组和蛇绿岩之间不整合关系的确认及其意义[J]. 中国区域地质(3): 250-255.
    李锦轶, 肖序常, 汤耀庆, 等, 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 36(4): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199004002.htm
    李锦轶, 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 11(S1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.005.htm
    李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
    李振宏, 汤良杰, 丁文龙, 等, 2002. 准噶尔盆地腹部地区断裂特征分析[J]. 石油勘探与开发, 29(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200201009.htm
    刘亚然, 简平, 张维, 等, 2016. 新疆东准噶尔北塔山蛇绿混杂岩锆石SHRIMP U-Pb定年、氧同位素及其地质构造意义[J]. 岩石学报, 32(2): 537-554.
    路彦明, 赵军, 陈祥, 等, 2007. 东准噶尔双泉地区韧-脆性剪切带与金矿成矿[J]. 新疆地质, 25(2): 164-168.
    舒良树, 夏飞雅克, 马瑞士, 1998. 中天山北缘大型右旋走滑韧剪带研究[J]. 新疆地质, 16(4): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199804004.htm
    舒良树, 卢华复, 印栋浩, 等, 2001. 新疆北部古生代大陆增生构造[J]. 新疆地质, 19(1): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200101015.htm
    舒良树, 王玉净, 2003. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J]. 地质论评, 49(4): 408-412.
    陶明信, 1992. 新疆乌鲁木齐-乌苏地区中、新生代构造应力场特征[J]. 地质学报, 66(3): 206-218.
    陶威, 郭岭, 周宁超, 等, 2022. 东准噶尔巴斯克花岗岩闪长岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质论评, 68(2): 488-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202202007.htm
    吴琪, 屈迅, 常国虎, 等, 2012. 红柳峡韧性剪切带形成时代及其对准噶尔洋盆闭合时限的约束[J]. 岩石学报, 28(8): 2331-2339. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208004.htm
    肖芳锋, 侯贵廷, 王延欣, 等, 2010. 准噶尔盆地及周缘二叠纪以来构造应力场解析[J]. 北京大学学报(自然科学版), 46(2): 224-230.
    肖文交, 宋东方, WINDLEYB F, 等, 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm
    肖序常, 汤耀庆, 1991. 古中亚复合巨型缝合带南缘构造演化[M]. 北京: 科学出版社.
    肖序常, 汤耀庆, 冯益民, 等, 1992. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社.
    新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社.
    杨高学, 李永军, 司国辉, 等, 2010. 东准卡拉麦里地区贝勒库都克岩体锆石LA-ICPMS U-Pb测年及地质意义[J]. 大地构造与成矿学, 34(1): 133-138.
    张永, 梁广林, 屈迅, 等, 2010. 东准噶尔琼河坝岛弧早古生代岩浆活动的锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 26(8): 2389-2398.
    赵磊, 季建清, 徐芹芹, 等, 2012. 新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次[J]. 岩石学报, 28(7): 2257-2268. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207026.htm
    赵磊, 牛宝贵, 徐芹芹, 等, 2019. 新疆东准噶尔卡拉麦里蛇绿岩带两侧志留系—石炭系沉积和构造特征分析及其意义[J]. 中国地质, 46(3): 615-628. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903013.htm
    郑孟林, 田爱军, 杨彤远, 等, 2018. 准噶尔盆地东部地区构造演化与油气聚集[J]. 石油与天然气地质, 39(5): 907-917.
  • 加载中
图(12)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  258
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-11
  • 修回日期:  2023-01-10
  • 录用日期:  2023-01-13

目录

    /

    返回文章
    返回