Geochemical characteristics of the garnets from the Laodonggou gold deposit, Beishan, Inner Mongolia
-
摘要: 老硐沟金矿是北山成矿带东段发现的中型金矿床,是多期次多阶段成矿作用叠加的产物,矿床成因类型复杂。矿床共分为5个矿段,其中Ⅲ矿段以矽卡岩矿体为主。矽卡岩矿物以石榴子石为主,可分为早、晚两期,早期石榴子石更具震荡环带。通过详细的镜下观察和电子探针对两期石榴子石进行了系统研究,早期石榴子石核部以钙铝榴石组分为主,向边部为钙铁−钙铝过渡组分;晚期石榴子石以钙铁榴石为主。石榴子石化学成分特征表明,早期矽卡岩化阶段,热液环境为中酸性、弱氧化—弱还原环境;后期铁质含量增多,氧逸度增加,热液环境碱性、氧化性增强。老硐沟金矿Ⅲ矿段石榴子石为钙铁−钙铝榴石系列,属热液交代成因,早期多形成钙铝−钙铁榴石,伴随铜矿化,晚期热液环境变化,钙铁榴石增多,黄铁矿化、毒砂矿化增多,造成金富集成矿。Abstract: The Laodonggou gold deposit is a medium-sized gold deposit discovered in the eastern section of the Beishan metallogenic belt. It resulted from the superposition of multi-phase and multi-stage metallogenesis. Due to its complex deposit genesis, the deposit has five sections, of which skarn orebodies dominate Section III. Skarn minerals are mainly garnet, which can be divided into early and late phases, with early garnet having more oscillatory ring bands. We systematically studied the two types of garnet by detailed microscopic observation and electron microprobe. The core of the early garnet primarily consists of essonites, and the edge is calcium–iron to calcium–aluminum composition. Andradites dominate the late garnet. The chemical composition of garnet indicates that the early skarnization stage is under a moderately acidic and weakly oxidizing–to–weakly reducing hydrothermal environment, while the iron content increases in the later stage and the oxygen escape increases, resulting in increased alkalinity and oxidation. The garnets in Section Ⅲ, originating from hydrothermal metasomatism, belong to the andradite–essonite series. Essonites and andradites prevail in the early stage, accompanied by copper mineralization. With the late hydrothermal environmental changes, andradites increase, and pyrite mineralization and arsenopyrite mineralization increase as well, resulting in gold-rich mineralization.
-
Key words:
- garnet /
- electron probe /
- skarn /
- Laodonggou gold deposit /
- Beishan metallogenic belt
-
图 1 北山造山带老洞沟地区区域地质简图(据张国震等,2021修改)
1—第四系;2—下白垩统赤金堡组;3—下二叠统双堡堂组;4—青白口系大豁落山组;5—蓟县系平头山组上岩段;6—蓟县系平头山组下岩段;7—长城系古硐井群;8—三叠纪斑状黑云母花岗岩;9—二叠纪花岗岩;10—志留纪黑云母二长花岗岩;11—蛇绿岩;12—逆断层;13—地质界线;14—角度不整合;15—矿床;16—省界a—北山造山带地质简图;b—老硐沟地区地质简图
Figure 1. Geological sketch of Laodonggou area in the Beishan orogenic belt (modified from Zhang et al., 2021)
(a) Geological sketch of the Beishan orogenic belt; (b) Geological sketch of the Laodonggou area 1–Quaternary; 2–Chijinbao Formation of the lower Cretaceous; 3–Shuangbaotang Formation of the lower Permian; 4–Dahuoluoshan Formation of the Qingbaikouan System; 5–Upper member of the Pingtoushan Formation; 6–Lower member of the Pingtoushan Formation; 7–Gudongjing Group of the Changchengian System; 8–Triassic porphyritic biotite granite; 9–Permian granite; 10–Silurian biotite monzogranite; 11–Ophiolite; 12–Reversed fault; 13–Geological boundary; 14–Angular unconformity; 15–Deposit; 16–Provincial boundary
图 2 老硐沟金矿矿区地质简图(据钱建平等,2018修改)
Figure 2. Geological sketch of the Laodonggou gold mine (modified from Qian et al., 2018)
图 4 老硐沟金矿不同类型矿石矿物特征图
Qtz—石英;Grt—石榴子石;Ep—绿帘石;Py—黄铁矿;Apy—毒砂;Ccp—黄铜矿;Gn—方铅矿;Mag—磁铁矿;Au—自然金;Lm—褐铁矿a—氧化矿石;b—原生矿石;c—Ⅲ矿段矽卡岩带;d—氧化矿石中的裂隙金;e—方铅矿交代黄铁矿;f—两期毒砂;g—碎裂石英脉;h—方铅矿交代黄铜矿;i—矽卡岩型矿石中沿裂隙充填的石英−黄铁矿脉;j—毒砂褐铁矿化;k—黄铜矿交代毒砂;l—矽卡岩矿石中沿裂隙发育的浸染状黄铁矿、磁铁矿
Figure 4. Mineral characteristics of different ores in the Laodonggou gold deposit
(a) Oxidized ore; (b) Primary ore; (c) Skarn belt in Section Ⅲ; (d) Au-grains along the fissures in oxidized ore; (e) Pyrite replaced by galena ; (f) Two phases of arsenopyrite; (g) Tractured quartz vein; (h) Chalcopyrite replaced by galena; (i) Quartz–pyrite vein filled along the fissures in skarn ore; (j) Limonitized arsenopyrite; (k) Arsenopyrite replaced by chalcopyrite; (l) Disseminated pyrite and magnetite developed along the fractures in skarn ore Qtz–quartz; Grt–garnet; Ep–epidote; Py–pyrite; Apy–arsenopyrite; Ccp–chalcopyrite; Gn–galena; Mag–magnetite; Au–natural gold; Lm–limonite
图 6 Ⅲ矿段石榴子石镜下特征
GrtⅠ—早期石榴子石;GrtⅡ—晚期石榴子石;Qtz—石英;Ep—绿帘石;Py—黄铁矿;Ccp—黄铜矿a—早期石榴子石对称消光(+);b—早期石榴子石核部全消光(+);c—早期碎裂石榴子石(+);d—早期石榴子石环带发育(+);e—晚期石榴子石充填于早期石榴子石裂隙中(+);f—晚期石榴子石充填在早期石榴子石颗粒之间(+);g—晚期石榴子石与方解石脉充填于早期石榴子石裂隙中(−);h—晚期石榴子石多不发育环带(+);i—碎裂的早期石榴子石与晚期石榴子石、方解石脉充填于裂隙中;j—l—黄铁矿、黄铜矿呈浸染状充填在早期石榴子石裂隙中(反射光)
Figure 6. Microscopic characteristics of garnet in Section III
(a) Symmetrical extinction of the early garnet (+); (b) Total extinction of the early garnet core(+); (c) Early cataclastic garnet (+); (d) Ring band development of the early garnet (+); (e) Late garnet filled in the fissures of the early garnet (+); (f) Late garnet filled in early garnet grains (+); (g) Late garnet and calcite veins filled in the fissures of early garnet (−); (h) Ring band rarelty occurs in late garnet (+); (i) Early cataclastic garnet, late garnet and calcite veins filled in the fractures; (j–l) Pyrite and chalcopyrite are disseminated and filled in the fissure of early garnet (reflected light) GrtⅠ–early garnet; GrtⅡ–late garnet; Qtz–quartz; Ep–epidote; Py–pyrite; Ccp–chalcopyrite
表 1 老硐沟金矿Ⅲ矿段石榴子石电子探针分析结果(w/%)
Table 1. Electron probe analysis results of garnets in Section III of the Laodonggou gold deposit(w/%)
样品号 LDG11核部→边部 LDG12核部→边部 LDG21 SiO2 38.26 38.01 36.87 34.97 35.19 35.07 36.54 36.54 37.48 37.53 36.37 37.82 37.08 35.22 34.91 36.04 37.48 38.72 38.38 37.70 TiO2 0.30 0.08 0.11 0 0.06 0 0.11 0 0 0.27 0.24 0.11 0.09 0 0 0.15 0.15 0.13 0.11 0.02 Al2O3 14.13 12.68 7.59 0 0.03 0.03 6.84 5.26 3.90 8.40 5.84 10.59 8.17 0.04 0.11 3.72 8.03 14.59 14.16 10.34 FeO 10.48 12.58 19.04 29.06 28.07 27.98 19.73 21.60 24.00 18.08 21.05 15.17 18.53 26.71 27.27 22.62 18.63 10.48 11.22 15.89 MnO 0.55 0.49 0.28 0.19 0.08 0.37 0.33 0.36 0.51 0.30 0.45 0.58 0.31 0.26 0.39 0.34 0.41 0.48 0.53 0.31 MgO 0.08 0.03 0.04 0.13 0.16 0.20 0.09 0.01 0.07 0.07 0.06 0.06 0 0.13 0.27 0.07 0.11 0.04 0.01 0.01 CaO 35.95 35.67 35.16 33.74 33.65 33.67 34.49 34.90 33.41 35.47 34.79 35.61 35.20 33.67 33.77 34.40 34.77 36.07 35.78 35.61 Na2O 0.05 0.01 0.07 0.03 0 0 0 0 0.02 0 0 0.02 0.04 0.02 0.01 0 0.01 0 0 0.03 K2O 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0 0 以12个氧原子计算的阳离子数 Si 2.99 3.00 3.00 2.99 3.02 3.01 3.01 3.01 3.08 3.00 2.99 3.00 3.00 3.05 3.01 3.03 3.02 3.00 2.99 3.00 Al 1.33 1.21 0.76 0 0 0 0.69 0.54 0.40 0.83 0.59 1.03 0.81 0 0.01 0.39 0.80 1.36 1.33 1.01 Ti 0.02 0 0.01 0 0 0 0.01 0 0 0.02 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0.01 0 Fe3+ 0.57 0.67 1.05 1.67 1.63 1.65 1.10 1.22 1.28 0.98 1.18 0.83 1.01 1.61 1.64 1.32 1.00 0.54 0.58 0.85 Fe2+ 0.12 0.16 0.24 0.41 0.38 0.36 0.26 0.27 0.37 0.23 0.26 0.18 0.24 0.32 0.33 0.27 0.26 0.13 0.15 0.21 Mn 0.04 0.03 0.02 0.01 0.01 0.03 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.02 Mg 0.01 0 0 0.02 0.02 0.03 0.01 0 0.01 0.01 0.01 0.01 0 0.02 0.04 0.01 0.01 0 0 0 Ca 3.01 3.02 3.06 3.09 3.09 3.09 3.04 3.08 2.94 3.04 3.06 3.03 3.05 3.12 3.12 3.10 3.00 3.00 2.99 3.04 And 30.42 36.39 59.12 100.00 99.82 99.82 62.32 70.50 77.15 55.36 67.67 45.53 56.45 99.75 99.32 78.23 56.73 29.01 30.75 46.73 Gro 67.96 62.30 40.00 0 0 0 36.37 28.47 21.09 43.57 30.85 52.77 42.76 0 0 20.46 41.72 69.72 67.97 52.48 Pyr 0.32 0.13 0.17 0 0.18 0.18 0.44 0.06 0.33 0.32 0.28 0.26 0.01 0.25 0.68 0.35 0.48 0.15 0.04 0.03 Spe 1.30 1.18 0.71 0 0 0 0.88 0.97 1.43 0.75 1.20 1.44 0.78 0 0 0.96 1.06 1.13 1.24 0.76 续表 1 样品号 LDG22 LDG13核部→边部 LDG14核部→边部 SiO2 38.11 38.02 37.23 36.76 36.24 35.24 35.58 35.52 35.21 35.08 35.42 37.00 37.07 35.37 35.18 35.42 35.53 36.05 35.37 TiO2 0.08 0.04 0 0.02 0 0 0 0.04 0.09 0.04 0 0.24 0.06 0.09 0 0 0 0.20 0 Al2O3 13.55 11.87 9.91 6.68 3.05 0.06 0.07 0.15 0.12 0 0.02 8.53 7.13 0.11 0.07 0.17 0.32 3.65 0 FeO 11.47 13.42 16.24 20.02 24.50 28.18 28.07 27.40 28.26 27.46 27.79 17.83 20.36 27.91 28.38 27.72 26.90 23.81 28.47 MnO 0.49 0.39 0.30 0.35 0.31 0.09 0.22 0.26 0.24 0.16 0.16 0.60 0.41 0.08 0.16 0.28 0.20 0.27 0.25 MgO 0.05 0 0.02 0.08 0.06 0.06 0.10 0.07 0.09 0.04 0.07 0.11 0.10 0.10 0.05 0.07 0.10 0.07 0.02 CaO 36.02 35.36 35.54 34.75 33.95 33.57 33.60 33.54 33.67 33.81 33.72 34.33 34.72 33.50 33.73 33.64 33.74 33.93 33.31 Na2O 0.03 0 0.02 0 0 0.01 0 0 0.06 0.01 0 0 0.03 0.05 0.01 0 0.01 0.01 0.01 K2O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 以12个氧原子计算的阳离子数 Si 2.99 3.02 2.99 3.01 3.03 3.03 3.04 3.05 3.01 3.03 3.04 3.01 3.00 3.03 3.01 3.03 3.05 3.02 3.03 Al 1.29 1.15 0.97 0.68 0.32 0.01 0.01 0.02 0.01 0 0 0.85 0.71 0.01 0.01 0.02 0.03 0.38 0 Ti 0 0 0 0 0 0 0 0 0.01 0 0 0.01 0 0.01 0 0 0 0.01 0 Fe3+ 0.62 0.72 0.89 1.11 1.38 1.63 1.62 1.60 1.63 1.63 1.62 0.96 1.09 1.61 1.64 1.61 1.59 1.33 1.63 Fe2+ 0.13 0.18 0.20 0.26 0.34 0.39 0.39 0.36 0.39 0.35 0.37 0.25 0.29 0.39 0.39 0.37 0.34 0.33 0.41 Mn 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.04 0.03 0.01 0.01 0.02 0.01 0.02 0.02 Mg 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 Ca 3.03 3.01 3.06 3.05 3.05 3.09 3.07 3.08 3.08 3.13 3.10 2.99 3.01 3.08 3.09 3.09 3.10 3.04 3.06 And 33.17 39.18 48.64 63.29 82.06 99.60 99.59 99.06 99.28 100.00 99.89 54.08 61.56 99.29 99.56 98.94 98.01 78.72 100.00 Gro 65.49 59.84 50.53 35.43 16.77 0 0 0 0 0 0 43.89 36.93 0 0 0 0.89 20.21 0 Pyr 0.19 0.02 0.08 0.35 0.29 0.30 0.41 0.38 0.45 0 0.11 0.48 0.45 0.53 0.23 0.37 0.50 0.32 0 Spe 1.15 0.96 0.74 0.92 0.87 0.09 0 0.56 0.26 0 0 1.55 1.06 0.18 0.20 0.69 0.60 0.75 0 样品号 LDG23 LDG15核部→边部 SiO2 35.19 35.50 35.87 37.75 37.46 37.06 37.71 38.45 37.31 37.95 37.77 36.85 TiO2 0 0.06 0 0.07 0.54 0.15 0 0.34 0.13 0.06 0 0 Al2O3 0.12 0.17 0.12 13.09 11.54 8.60 12.13 15.00 9.80 12.31 10.87 7.59 FeO 28.06 27.86 28.50 12.29 13.85 17.33 13.50 8.84 15.26 12.79 15.37 19.05 MnO 0.09 0.25 0.19 0.42 0.33 0.20 0.35 0.39 0.28 0.35 0.41 0.34 MgO 0.04 0.03 0.09 0.09 0.13 0.05 0.08 0.17 0.10 0.10 0.08 0.12 CaO 34.02 33.80 33.66 35.94 35.64 35.08 35.64 36.21 35.38 35.24 35.42 34.78 Na2O 0.01 0.02 0 0.01 0 0.02 0 0.01 0 0.02 0.01 0.02 K2O 0 0 0 0 0 0 0.01 0 0 0 0.01 0 以12个氧原子计算的阳离子数 Si 3.01 3.03 3.04 2.98 2.97 3.01 2.99 3.00 3.01 3.02 3.00 3.00 Al 0.01 0.02 0.01 1.25 1.12 0.86 1.17 1.41 0.97 1.19 1.05 0.76 Ti 0 0 0 0 0.03 0.01 0 0.02 0.01 0 0 0 Fe3+ 1.64 1.61 1.61 0.67 0.76 0.96 0.73 0.50 0.86 0.68 0.81 1.05 Fe2+ 0.37 0.38 0.41 0.14 0.16 0.22 0.17 0.08 0.17 0.17 0.21 0.25 Mn 0.01 0.02 0.01 0.03 0.02 0.01 0.02 0.03 0.02 0.02 0.03 0.02 Mg 0.01 0 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 Ca 3.12 3.09 3.06 3.04 3.03 3.05 3.03 3.02 3.06 3.00 3.01 3.04 And 99.27 98.94 99.29 35.37 41.18 53.79 39.00 26.61 48.10 37.22 44.48 59.00 Gro 0.25 0.17 0 63.28 57.46 45.49 59.81 71.77 50.74 61.47 54.18 39.57 Pyr 0.22 0.14 0.45 0.35 0.55 0.22 0.35 0.71 0.46 0.45 0.34 0.56 Spe 0.26 0.75 0.26 1.00 0.81 0.50 0.83 0.91 0.70 0.86 1.00 0.88 续表 1 样品号 LDG16核部→边部 LDG24 SiO2 38.46 38.64 38.04 38.15 36.70 37.69 37.17 37.09 35.25 35.14 35.33 TiO2 0.26 0.37 0.23 0.42 0.04 0.21 0 0.53 0 0.07 0.09 Al2O3 13.84 13.59 12.73 14.35 7.35 12.41 11.17 10.93 0.32 0.04 0.06 FeO 11.02 11.34 12.21 8.63 19.91 12.54 15.09 14.42 27.93 28.27 27.83 MnO 0.33 0.42 0.51 0.45 0.24 0.56 0.31 0.47 0.21 0.12 0.20 MgO 0.10 0.10 0.10 0.18 0.08 0.10 0.11 0.11 0.06 0.04 0.07 CaO 35.95 35.90 35.78 36.50 34.83 34.97 35.23 35.28 33.66 33.81 33.76 Na2O 0.01 0.02 0.01 0 0 0.01 0 0.02 0 0 0.02 K2O 0 0.01 0 0 0 0 0.01 0 0 0 0 以12个氧原子计算的阳离子数 Si 3.00 3.01 3.00 3.00 2.99 3.01 2.98 2.97 3.02 3.01 3.03 Al 1.31 1.28 1.22 1.36 0.74 1.20 1.09 1.07 0.03 0 0.01 Ti 0.02 0.02 0.01 0.02 0 0.01 0 0.03 0 0 0.01 Fe3+ 0.59 0.60 0.67 0.54 1.08 0.67 0.80 0.80 1.61 1.64 1.62 Fe2+ 0.13 0.14 0.14 0.03 0.28 0.16 0.21 0.17 0.39 0.39 0.37 Mn 0.02 0.03 0.03 0.03 0.02 0.04 0.02 0.03 0.02 0.01 0.01 Mg 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0 0.01 Ca 3.01 2.99 3.02 3.07 3.04 2.99 3.02 3.03 3.09 3.10 3.10 And 31.52 32.45 36.10 28.74 60.46 36.62 43.23 43.54 98.06 99.74 99.60 Gro 67.29 66.15 62.24 69.46 38.58 61.59 55.57 54.82 0.99 0 0 Pyr 0.40 0.41 0.43 0.74 0.34 0.41 0.45 0.48 0.32 0.20 0.35 Spe 0.79 0.99 1.23 1.07 0.62 1.38 0.75 1.16 0.62 0.06 0.05 注:本次实验误差范围0.01% -
AI Y F, JIN L N, 1981. The study of the relationship between the mineralization and the garnet in the skarn ore deposits[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 9(1): 83-90. (in Chinese with English abstract) BAU M, 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 93(3-4): 219-230. doi: 10.1016/0009-2541(91)90115-8 BOYD F R, PEARSON D G, HOAL K O, et al. , 2004. Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations[J]. Lithos, 77(1-4): 573-592. doi: 10.1016/j.lithos.2004.03.010 DING J X, HAN C M, XIAO W J, et al. , 2015. Geochemistry and U-Pb geochronology of tungsten deposit of Huaniushan Island arc in the Beishan orogenic belt, and its geodynamic background[J]. Acta Petrologica Sinica, 31(2): 594-616. (in Chinese with English abstract) FEI X H, ZHANG Z C, CHENG Z G, et al. , 2019. Factors controlling the crystal morphology and chemistry of garnet in skarn deposits: a case study from the Cuihongshan polymetallic deposit, Lesser Xing’an Range, NE China[J]. American Mineralogist, 104(10): 1455-1468. doi: 10.2138/am-2019-6968 GASPAR M, KNAACK C, MEINERT L D, et al. , 2008. REE in skarn systems: a LA-ICP-MS study of garnets from the crown jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033 HE Y, WANG L J, LIU P H, 2016. Geological. characteristics and metallogenic regularity of Laodonggou gold deposit, Inner Mongolia[J]. Nonferrous Metals Abstract, 31(1): 20-21. (in Chinese) HUANG D H, WANG B L, WU C Y, et al. , 1996. Austinite and adamite discovered for the first time in China and their significance[J]. Acta Petrologica Mineralogica, 15(3): 259-268. (in Chinese with English abstract) HUANG D H, WANG B L, 1997. Ore forming characteristics of Laodonggou oxidized leached type gold deposit in Ejinaqi[J]. Journal of Precious Metallic Geology, 6(2): 93-100. (in Chinese with English abstract) JAMTVEIT B, WOGELIUS R A, FRASER D G, 1993. Zonation patterns of skarn garnets: records of hydrothermal system evolution[J]. Geology, 21(2): 113-116. doi: 10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2 JAMTVEIT B, HERVIG R L, 1994. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals[J]. Science, 263(5146): 505-508. doi: 10.1126/science.263.5146.505 JAMTVEIT B, AGNARSDOTTIR K V, WOOD B J, 1995. On the origin of zoned grossular-andradite garnets in hydrothermal systems[J]. European Journal of Mineralogy, 7(6): 1399-1410. doi: 10.1127/ejm/7/6/1399 JI M, ZHAO X F, ZENG L P, et al. , 2018. Microtexture and geochemistry of garnets from Tonglushan skarn Cu-Fe deposit in the southeastern Hubei metallogenic province: implications for ore-forming process[J]. Acta Petrologica Sinica, 34(9): 2716-2732. (in Chinese with English abstract) JIAO H, KANG J Z, HUANG G B, et al. , 2022. Magmatism, metallogenic characteristics, and prospecting prediction for gold deposits in the north of Kunlun River Area, Qinghai, China[J]. Journal of Geomechanics, 28(3): 383-405. (in Chinese with English abstract) LIANG X J, 1994. Garnets of grossular-andradite series: their characteristics and metasomatic mechanism[J]. Acta Petrologica et Mineralogica, 13(4): 342-352. (in Chinese with English abstract) MARTIN L A J, BALLÈVRE M, BOULVAIS P, et al. , 2011. Garnet re-equilibration by coupled dissolution-reprecipitation: evidence from textural, major elementand oxygen isotope zoning of ‘cloudy’ garnet[J]. Journal of Metamorphic Geology, 29(2): 213-231. doi: 10.1111/j.1525-1314.2010.00912.x MEINERT L D, 1992. Skarns and skarn deposits[J]. Geoscience Canada, 19(4): 145-162. NIE F J, JIANG S H, BAI D M, et al. , 2002. Metallogenic studies and ore prospecting in the conjunction area of Inner Mongolia autonomous region, Gansu Province and Xinjiang Uygur Autonomous Region(Beishan Mt.), Northwest China[M]. Beijing: Geology Press: 1-408. (in Chinese) QIAN J P, FU Y J, ZHOU Y N, et al. , 2018. Analysis of the metallogenic structure system and the regularities of tectonic ore control of the Laodonggou gold polymetallic mining area, Ejinaqi, Inner Mongolia[J]. Geotectonica et Metallogenia, 42(6): 1046-1063. (in Chinese with English abstract) SMITH M P, HENDERSON P, JEFFRIES T E R, et al. , 2004. The rare earth elements and uranium in garnets from the Beinn an Dubhaich aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system[J]. Journal of Petrology, 45(3): 457-484. doi: 10.1093/petrology/egg087 SOMARIN A K, 2010. Garnetization as a ground preparation process for copper mineralization: evidence from the Mazraeh skarn deposit, Iran[J]. International Journal of Earth Sciences, 99(2): 343-356. doi: 10.1007/s00531-008-0394-0 TIAN Z H, XIAO W J, SHAN Y H, et al. , 2013. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids[J]. Journal of Structural Geology, 52: 119-135. doi: 10.1016/j.jsg.2013.03.016 TIAN Z H, XIAO W J, WINDLEY B F, et al. , 2014. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids[J]. Gondwana Research, 25(2): 820-841. doi: 10.1016/j.gr.2013.05.006 WANG Y C, DUAN D F, 2021. REE distribution character in skarn garnet and its geological implication[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(3): 446-458. (in Chinese with English abstract) YAN Y, PENG R M, CHEN S Y, et al. , 2020. Quantitative structure analysis of ore-bearing garnet-rich crystal in the Huogeqi mining area in Inner Mongolia and its significance[J]. Journal of Geomechanics, 26(1): 135-150. (in Chinese with English abstract) YANG H Q, LI Y, YANG J G, et al. , 2006. Main metallogenic characteristics in the Beishan orogen[J]. Northwestern Geology, 39(2): 78-95. (in Chinese with English abstract) YANG H Q, LI Y, LI W M, et al. , 2008. General discussion on metallogenitic tectonic setting of Beishan Mountain, Northwestern China[J]. Northwestern Geology, 41(1): 22-28. (in Chinese with English abstract) YANG H Q, LI Y, ZHAO G B, et al. , 2009. Stratigraphic correlation and its significance of Xinjiang-Gansu-Inner Mongolia join area[J]. Northwestern Geology, 42(4): 60-75. (in Chinese with English abstract) YANG H Q, ZHAO G B, LI W M, et al. , 2010. Formation age and source tracing of the tungsten-bearing granite belt in the Pantuoshan-Yingzuihongshan area, Inner Mongolia[J]. Geology and Exploration, 46(3): 407-413. (in Chinese with English abstract) YARDLEY B W D, ROCHELLE C A, BARNICOAT A C, et al. , 1991. Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism[J]. Mineralogical Magazine, 55(380): 357-365. doi: 10.1180/minmag.1991.055.380.06 YU W S, LIAO C X, CHEN G, 2013. Analysis of the genetic types and prospect of Laodonggou gold deposit in Inner Mongolia[J]. Gold Science and Technology, 21(2): 24-27. (in Chinese with English abstract) YUN L, ZHANG J, WANG J, et al. , 2021. Discovery of active faults in the southern Beishan Area, NW China: implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195-207. (in Chinese with English abstract) ZHAI D G, LIU J J, ZHANG H Y, et al. , 2014. Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: in situ LA-ICP-MS evidence[J]. Lithos, 190-191: 279-291. doi: 10.1016/j.lithos.2013.12.017 ZHAI Y S, 1983. Some problems in the study of skarndeposits[J]. Mineral Resources and Geology(1): 46-54. (in Chinese) ZHANG G Z, ZHANG Y, XIN H T, et al. , 2021. Geochronology and geochemistry of diorite porphyrite from Laodonggou gold-polymetallic deposit, Beishan, Inner Mongolia, and its metallogenic significance[J]. Mineral Deposits, 40(3): 555-573. (in Chinese with English abstract) ZHAO B, LI T J, LI Z P, 1983. Experimental study of physico-chemical conditions of the formation of skarns[J]. Geochimica, 12(3): 256-267. (in Chinese with English abstract) ZHAO G B, LI W M, YANG H Q, et al. , 2010. Geological and geochemical characteristics of the Guoqing tungsten deposit in Beishan orogen, Inner Mongolia[J]. Mineral Deposits, 29(S1): 341-342. (in Chinese) ZHAO G B, LI W M, YANG H Q, et al. , 2011. Geological and geochemical characteristics of the Pantuoshan tungsten-bearing granite mass in Inner Mongolia and its genesis[J]. Geology and Exploration, 47(5): 828-836. (in Chinese with English abstract) ZHAO P B, FU L, GAO F, et al. , 2016. Geological characteristics and prospecting potentiality of Laodonggou tungsten deposit, Inner Mongolia[J]. Western Resources(6): 83-85. (in Chinese) ZHAO P B, LI W C, LUO Q Z, et al. , 2019. Formation age and tectonic environment of Yingzuihongshan granite in Beishan, Inner Mongolia[J]. Northwestern Geology, 52(4): 1-13. (in Chinese with English abstract) ZUO G C, ZHANG S L, HE G Q, et al. , 1990. Early Paleozoic plate tectonics in Beishan Area[J]. Chinese Journal of Geology, 25(4): 305-314. (in Chinese with English abstract) ZUO G C, LIU Y K, LIU C Y, 2003. Framework and evolution of the tectonic structure in Beishan Area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region[J]. Acta Geologica Gansu, 12(1): 1-15. (in Chinese with English abstract) 艾永富, 金玲年, 1981. 石榴石成分与矿化关系的初步研究[J]. 北京大学学报(自然科学版), 9(1): 83-90. 丁嘉鑫, 韩春明, 肖文交, 等, 2015. 北山造山带花牛山岛弧东段钨矿床成矿时代和成矿动力学过程[J]. 岩石学报, 31(2): 594-616. 何毅, 王乐进, 刘培海, 2016. 内蒙古老洞沟金矿床地质特征与成矿规律研究[J]. 有色金属文摘, 31(1): 20-21. 黄典豪, 王宝林, 吴澄宇, 等, 1996. 我国首次发现的砷钙锌石和羟砷锌石的矿物学特征及其意义[J]. 岩石矿物学杂志, 15(3): 259-268. 黄典豪, 王宝林, 1997. 额济纳旗老硐沟氧化-淋滤型金矿床成矿特征[J]. 贵金属地质, 6(2): 93-100. 纪敏, 赵新福, 曾丽平, 等, 2018. 鄂东南铜绿山矿床石榴子石显微结构及微区成分对成矿过程的指示[J]. 岩石学报, 34(9): 2716-2732. 焦和, 康继祖, 黄国彪, 等, 2022. 青海昆仑河北地区岩浆活动、金矿成矿特征及找矿前景分析[J]. 地质力学学报, 28(3): 383-405. 梁祥济, 1994. 钙铝-钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志, 13(4): 342-352. 聂凤军, 江思宏, 白大明, 等, 2002. 北山地区金属矿床成矿规律及找矿方向[M]. 北京: 地质出版社: 1-408. 钱建平, 符有江, 周永宁, 等, 2018. 内蒙古额济纳旗老硐沟金多金属矿区成矿构造系统解析和构造控矿规律[J]. 大地构造与成矿学, 42(6): 1046-1063. 王一川, 段登飞, 2021. 矽卡岩中石榴子石的稀土配分特征及其成因指示[J]. 北京大学学报(自然科学版), 57(3): 446-458. 闫岩, 彭润民, 陈思雨, 等, 2020. 内蒙古霍各乞矿区含矿富石榴石岩晶体定量化结构分析及其意义[J]. 地质力学学报, 26(1): 135-150. doi: 10.12090/j.issn.1006-6616.2020.26.01.014 杨合群, 李英, 杨建国, 等, 2006. 北山造山带的基本成矿特征[J]. 西北地质, 39(2): 78-95. doi: 10.3969/j.issn.1009-6248.2006.02.005 杨合群, 李英, 李文明, 等, 2008. 北山成矿构造背景概论[J]. 西北地质, 41(1): 22-28. 杨合群, 李英, 赵国斌, 等, 2009. 新疆—甘肃—内蒙古衔接区地层对比及其意义[J]. 西北地质, 42(4): 60-75. 杨合群, 赵国斌, 李文明, 等, 2010. 内蒙古盘陀山-鹰嘴红山含钨花岗岩带形成时代及源区示踪[J]. 地质与勘探, 46(3): 407-413. 于文松, 廖昌溪, 陈果, 2013. 内蒙古老硐沟金矿床成因类型与找矿前景分析[J]. 黄金科学技术, 21(2): 24-27. 云龙, 张进, 王驹, 等, 2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 27(2): 195-207. doi: 10.12090/j.issn.1006-6616.2021.27.02.019 翟裕生, 1983. 矽卡岩矿床研究的若干问题[J]. 矿产地质(1): 46-54. 张国震, 张永, 辛后田, 等, 2021. 内蒙古北山老硐沟金多金属矿床闪长玢岩年代学、地球化学及其成矿意义[J]. 矿床地质, 40(3): 555-573. 赵斌, 李统锦, 李昭平, 1983. 夕卡岩形成的物理化学条件实验研究[J]. 地球化学, 12(3): 256-267. doi: 10.3321/j.issn:0379-1726.1983.03.005 赵国斌, 李文明, 杨合群, 等, 2010. 内蒙北山国庆钨矿床成矿特征与成因探讨[J]. 矿床地质, 29(S1): 341-342. 赵国斌, 李文明, 杨合群, 等, 2011. 内蒙盘陀山含钨花岗岩体地质地球化学特征及成因讨论[J]. 地质与勘探, 47(5): 828-836. 赵鹏彬, 付垒, 高峰, 等, 2016. 内蒙古老硐沟钨矿床地质特征与找矿潜力分析[J]. 西部资源(6): 83-85. 赵鹏彬, 李维成, 罗乾周, 等, 2019. 内蒙北山鹰嘴红山花岗岩体形成时代及构造环境分析[J]. 西北地质, 52(4): 1-13. doi: 10.3969/j.issn.1009-6248.2019.04.001 左国朝, 张淑玲, 何国琦, 等, 1990. 北山地区早古生代板块构造特征[J]. 地质科学, 25(4): 305-314. 左国朝, 刘义科, 刘春燕, 2003. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 12(1): 1-15.