留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河北高阳低凸起深部热储层回灌注水诱发断层失稳危险性探讨

朱思雨 曹佳文 丰成君 王继明 孟静 戚帮申 张鹏

朱思雨, 曹佳文, 丰成君, 等, 2023. 河北高阳低凸起深部热储层回灌注水诱发断层失稳危险性探讨. 地质力学学报, 29 (2): 220-235. DOI: 10.12090/j.issn.1006-6616.2022093
引用本文: 朱思雨, 曹佳文, 丰成君, 等, 2023. 河北高阳低凸起深部热储层回灌注水诱发断层失稳危险性探讨. 地质力学学报, 29 (2): 220-235. DOI: 10.12090/j.issn.1006-6616.2022093
ZHU Siyu, CAO Jiawen, FENG Chengjun, et al., 2023. Study on fault-slip potential induced by water injection in the deep thermal reservoir of the Gaoyang low uplift, Hebei Province. Journal of Geomechanics, 29 (2): 220-235. DOI: 10.12090/j.issn.1006-6616.2022093
Citation: ZHU Siyu, CAO Jiawen, FENG Chengjun, et al., 2023. Study on fault-slip potential induced by water injection in the deep thermal reservoir of the Gaoyang low uplift, Hebei Province. Journal of Geomechanics, 29 (2): 220-235. DOI: 10.12090/j.issn.1006-6616.2022093

河北高阳低凸起深部热储层回灌注水诱发断层失稳危险性探讨

doi: 10.12090/j.issn.1006-6616.2022093
基金项目: 

中国地质调查局地质调查项目 DD20230540

详细信息
    作者简介:

    朱思雨(1998—),女,在读硕士,主要从事地应力、断层活动危险性、活动构造带灾害效应等方面研究。E-mail: Esther9802@163.com

    通讯作者:

    曹佳文(1979—),男,博士,主要从事地质灾害、城市地质及重大工程地质安全风险等管理工作。E-mail: cjiawen@mail.cgs.gov.cn

  • 中图分类号: TU45

Study on fault-slip potential induced by water injection in the deep thermal reservoir of the Gaoyang low uplift, Hebei Province

Funds: 

the Investigation and Assessment of Geosafety Risks in Megacities and Urban Agglomerations, China DD20230540

  • 摘要:

    近年来, 注水诱发断层活化引发地震已成为深部地热资源安全开采面临的突出地质安全问题。河北高阳低凸起深部岩溶热储丰富, 区内分布多条隐伏断层, 研究旨在探明未来大规模开发高阳低凸起深部地热资源是否会诱发区内隐伏断层失稳破坏。研究基于华北地区综合地应力场, 利用莫尔-库伦准则计算热储区及邻区主要隐伏断层的初始稳定状态; 选用Hsieh and Bredehoeft水文模型计算代表性地热井回灌注水10~40年产生的超孔隙水压力值; 在初始稳定状态的基础上叠加该孔隙水压扰动, 采用断层滑动失稳概率评价方法, 分析长期回灌注水对断层稳定性的影响; 讨论断层走向与最大水平主应力夹角变化对断层滑动失稳风险的作用规律。结果表明: 高阳低凸起及邻区代表性地热井在170 m3/h注水速率条件下, 持续注水40年产生的超孔隙水压力值最大不超过11 MPa, 该扰动以注水井为中心向四周呈幂函数规律递减, 其影响范围不超过8 km; 持续回灌注水对高阳低凸起代表性地热井附近2 km范围内隐伏断层的稳定性影响显著, 部分断层滑动失稳概率超过85%, 具有极高的活化风险; 距离注水井2 km范围内不同走向的断层, 在单井回灌注水50年的作用下, 滑动失稳概率随断层走向与最大水平主应力夹角的减小而迅速增加。文章研究方法及相关成果可为国内外深部地热资源安全开发利用提供地质科学支撑。

     

  • 图  1  高阳低凸起及邻区构造背景和主要隐伏断层分布图

    a—冀中坳陷及邻区主要构造单元 (何登发等, 2018); b—冀中坳陷地热田分布图 (常健等, 2016); c—高阳低凸起及邻区主要隐伏断层及地热勘察孔分布图 (商世杰等, 2019; 隋少强等, 2020)

    Figure  1.  Geological structures and the main buried faults distributed in and around the Gaoyang low uplift

    (a) Main tectonic units in and around the Jizhong depression (modified from He et al., 2018); (b) Geothermal fields distributed in the Jizhong depression (modified from Chang et al., 2016); (c) Map of the main buried faults and existing geothermal exploitation boreholes distributed in and around the Gaoyang geothermal reservoir (modified from Shang et al., 2019; Sui et al., 2020)

    图  2  高阳低凸起及邻区主要隐伏断层分段图

    Figure  2.  Segmental faults in and around the Gaoyang low uplift

    图  3  高阳低凸起及邻区主要隐伏断层初始稳定状态

    Figure  3.  The initial stable state of the main buried faults in and around the Gaoyang low uplift

    图  4  高阳低凸起及邻区主要隐伏断层距离滑动失稳所需要的孔隙水压力

    Figure  4.  Map views of pore pressure required for the main buried faults to slip in and around the Gaoyang low uplift

    图  5  高阳低凸起及邻区主要隐伏断层初始滑动失稳概率

    Figure  5.  The initial fault-slip potential of the main active faults in and around the Gaoyang low uplift

    图  6  高阳低凸起代表性深地热井回灌注水产生的超孔隙水压力

    Figure  6.  The excess pore pressure caused by water injection in deep-geothermal wells in the Gaoyang low uplift

    图  7  G7地热井回灌注水引起的超孔隙水压力衰减规律

    Figure  7.  The excess pore pressure variations with horizontal distance from the geothermal well G7

    图  8  高阳低凸起目标地热井回灌注水诱发近场隐伏断层滑动失稳概率

    Figure  8.  Fault-slip potential of the near-field faults induced by water injection in the Gaoyang low uplift

    图  9  F13-7分段断层滑动失稳概率随断层走向变化特征

    a—与SH夹角:0°~±41°;b—与SH夹角:±42°~±57°;c—与SH夹角:±58°~±90°

    Figure  9.  Changes in fault-slip potential with the varying orientation of F13-7

    (a) Angles with SH: 0°~±41°; (b) Angles with SH: ±42°~±57°; (c) Angles with SH: ±58°~±90°

    图  10  F13-7分段断层滑动失稳概率随损失率变化规律

    Figure  10.  Changes in fault-slip potential with the varying loss rate of F13-7

    图  11  高阳低凸起单井回灌注水30天诱发地震震级变化

    Figure  11.  The estimated earthquake magnitude induced by water injection for 30 days at a single well in the Gaoyang low uplift

    表  1  高阳低凸起及邻区主要隐伏断层属性参数

    Table  1.   Attribute parameters of the main buried faults in and around the Gaoyang low uplift

    名称 分段编码 走向 倾角 长度/km
    徐水-大城断裂(F3) F3-1 102°±5° 70°±10° 22.96
    F3-2 110°±5° 70°±10° 12.96
    F3-3 120°±5° 70°±10° 11.48
    F3-4 80°±5° 70°±10° 14.44
    F3-5 117°±5° 70°±10° 31.11
    高阳凸起西边界断裂(F6) F6-1 27°±5° 40°±10° 25.93
    F6-2 18°±5° 40°±10° 8.15
    任丘断裂(F7) F7 25°±5° 45°±10° 27.78
    马西断裂(F8) F8-1 17°±5° 50°±10° 12.59
    F8-2 8°±5° 50°±10° 10.00
    F11-1 38°±5° 59°±10° 5.30
    任西断裂(F11) F11-2 11°±5° 59°±10° 5.25
    高阳凸起东边界断裂(F12) F11-3 47°±5° 59°±10° 14.38
    F12-1 53°±5° 47°±10° 5.20
    F12-2 44°±5° 47°±10° 3.82
    F12-3 0°±5° 47°±10° 2.15
    F12-4 40°±5° 47°±10° 6.27
    F12-5 64°±5° 47°±10° 4.24
    F13-1 51°±5° 65°±10° 5.21
    断裂F13 F13-2 84°±5° 65°±10° 3.03
    F13-3 46°±5° 65°±10° 4.22
    F13-4 58°±5° 65°±10° 4.28
    F13-5 75°±5° 65°±10° 7.11
    F13-6 62°±5° 65°±10° 4.78
    F13-7 61°±5° 54°±10° 9.70
    F13-8 90°±5° 60°±10° 4.73
    F13-9 58°±5° 60°±10° 7.04
    F13-10 73°±5° 65°±10° 6.71
    F13-11 84°±5° 65°±10° 3.16
    F14-1 59°±5° 74°±10° 2.97
    断裂F14 F14-2 41°±5° 74°±10° 13.57
    F14-3 34°±5° 74°±10° 5.78
    断裂F15 F15 18°±5° 75°±10° 6.81
    下载: 导出CSV
  • CHANG J, QIU N S, ZHAO X Z, et al., 2016. Present-day geothermal regime of the Jizhong depression in Bohai Bay basin, East China[J]. Chinese Journal of Geophysics, 59(3): 1003-1016. (in Chinese with English abstract)
    CHEN M X, HUANG G S, ZHANG W R, et al., 1982. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei Province[J]. Scientia Geologica Sinica (3): 239-252. (in Chinese with English abstract)
    CHEN X W, NAKATA N, PENNINGTON C, et al., 2017. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks[J]. Scientific Reports, 7(1): 4945. doi: 10.1038/s41598-017-04992-z
    ELLSWORTH W L, 2013. Injection-induced earthquakes[J]. Science, 341(6142): 1225942. doi: 10.1126/science.1225942
    EVANS K F, ZAPPONE A, KRAFT T, et al., 2012. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe[J]. Geothermics, 41, 30-54. doi: 10.1016/j.geothermics.2011.08.002
    FAN Y L, TAN C X, ZHANG P, et al., 2020. A study of current in-situ stress state and its influence on tectonic stability in the Xiongan New Area[J]. Acta Geoscientica Sinica, 41(4): 481-491. (in Chinese with English abstract)
    FENG C J, QI B S, WANG X S, et al., 2019. Study of fault activity risk in typical strong seismic regions in northern China by in-situ stress measurements and the influence on the Xiong'an New Area[J]. Earth Science Frontiers, 26(4): 170-190. (in Chinese with English abstract)
    GAN H N, WANG G L, LIN W J, et al., 2020. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures[J]. Journal of Geomechanics, 26(2): 211-220. (in Chinese with English abstract)
    GIARDINI D, 2009. Geothermal quake risks must be faced[J]. Nature, 462(7275): 848-849. doi: 10.1038/462848a
    GUGLIELMI Y, CAPPA F, AVOUAC J P, et al., 2015. Seismicity triggered by fluid injection-induced aseismic slip[J]. Science, 348(6240): 1224-1226. doi: 10.1126/science.aab0476
    HE D F, CUI Y Q, ZHANG Y Y, et al., 2017. Structural genetic types of paleo-buried hill in Jizhong depression, Bohai Bay Basin[J]. Acta Petrologica Sinica, 33(4): 1338-1356. (in Chinese with English abstract)
    HE D F, SHAN S Q, ZHANG Y Y, et al., 2018. 3-D geologic architecture of Xiong'an New Area: constraints from seismic reflection data[J]. Science China Earth Sciences, 61(8): 1007-1022. doi: 10.1007/s11430-017-9188-4
    HEALY J H, RUBEY W W, GRIGGS D T, et al., 1968. The Denver earthquakes[J]. Science, 161(3848): 1301-1310. doi: 10.1126/science.161.3848.1301
    HSIEH P A, BREDEHOEFT J D, 1981. A reservoir analysis of the Denver earthquakes: a case of induced seismicity[J]. Journal of Geophysical Research, 86(B2): 903-920. doi: 10.1029/JB086iB02p00903
    HUANG J P, NI S D, FU R S, et al., 2009. Source mechanism of the 2006 Mw5.1 Wen'an earthquake determined from a joint inversion of local and teleseismic broadband waveform data[J]. Chinese Journal of Geophysics, 52(1): 120-130. (in Chinese with English abstract) doi: 10.1002/cjg2.1333
    HUANG L Y, YANG S X, CUI X F, et al., 2013. Analysis of characteristics of measured stress and stability of faults in North China[J]. Rock and Soil Mechanics, 34(S1): 204-213. (in Chinese with English abstract)
    KERANEN K M, SAVAGE H M, ABERS G A, et al., 2013. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw5.7 Earthquake Sequence[J]. Geology, 41(6): 699-702. doi: 10.1130/G34045.1
    LEI X L, LI X Y, LI Q, et al., 2014. Role of immature faults in injection-induced seismicity in oil/gas reservoirs: a case study of the Sichuan Basin, China[J]. Seismology and Geology, 36(3): 625-643. (in Chinese with English abstract)
    LEI X L, HUANG D J, SU J R, et al., 2017. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China[J]. Scientific Reports, 7(1): 699-702. doi: 10.1038/s41598-017-00792-7
    LI Y Y, ZHANG B J, XING Y F, et al., 2021. Fragmentation law of carbonate rocks under different confining pressure in Gaoyuzhuang Formation, Gaoyang geothermal field, Xiong'an New Area[J/OL]. Geology in China, 2021: 1-15[2022-07-11]. http://kns.cnki.net/kcms/detail/11.1167.P.20210419.1328.006.html. (in Chinese with English abstract)
    LIU J R, 2003. The status of geothermal reinjection[J]. Hydrogeology and Engineering Geology, 30(3): 100-104. (in Chinese with English abstract)
    LOHMAN R B, MCGUIRE J J, 2007. Earthquake swarms driven by aseismic creep in the Salton Trough, California[J]. Journal of Geophysical Research, 112(B4): B04405.
    MCGARR A, 2014. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 119: 1008-1019. doi: 10.1002/2013JB010597
    MAO X, WANG X W, GUO S Y, et al., 2021. Genetic mechanism of geothermal resources in the Gaoyang geothermal field and adjacent areas[J]. Carsologica Sinica, 40(2): 273-280. (in Chinese with English abstract)
    NIU L L, FENG C J, ZHANG P, et al., 2018. In-situ measurements in the southern margin of the Ordos block[J]. Journal of Geomechanics, 24(1): 25-34. (in Chinese with English abstract)
    PANG Z H, KONG Y L, PANG J M, et al., 2017. Geothermal resources and development in Xiongan New Area[J]. Bulletin of Chinese Academy of Sciences, 32(11): 1224-1230. (in Chinese with English abstract)
    RALEIGH C B, HEALY J H, BREDEHOEFT J D, 1976. An experiment in earthquake control at Rangely, Colorado[J]. Science, 191(4233): 1230-1237. doi: 10.1126/science.191.4233.1230
    RUBEY W W, HUBBERT M K, 1959. Role of fluid pressure in mechanics of overthrust faulting: Ⅱ. Overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis[J]. GSA Bulletin, 70(2): 167-206. doi: 10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2
    RUTQVIST J, OLDENBURG C M, 2008. Analysis of injection-induced micro-earthquakes in a geothermal steam reservoir, the Geysers Geothermal Field, California[C]//Proceedings of the 42nd U.S. Rock Mechanics Symposium (USRMS). San Francisco, California: Lawrence Berkeley National Lab: 151.
    SEGALL P, LU S, 2015. Injection-induced seismicity: poroelastic and earthquake nucleation effects[J]. Journal of Geophysical Research, 120(7): 5082-5103. doi: 10.1002/2015JB012060
    SHANG S J, FENG C J, TAN C X, et al., 2019. Quaternary activity study of major buried faults near Xiongan New Area[J]. Acta Geoscientica Sinica, 40(6): 836-846. (in Chinese with English abstract)
    SHAPIRO S A, DINSKE C, 2009. Scaling of seismicity induced by nonlinear fluid-rock interaction[J]. Journal of Geophysical Research, 114(B9): B09307.
    SUI S Q, WANG Y X, LI H Q, et al., 2020. Analysis of sedimentary characteristics of the Wumisan Formation in Jixian system, Xiong'an New Area[J]. Mineral Exploration, 11(8): 1563-1571. (in Chinese with English abstract)
    TAN C X, YANG W M, ZHANG C S, et al., 2020. Study on the active tectonic zone and regional crustal stability in the coordinated development of the Beijing-Tianjin-Hebei Region[M]. Beijing: Geological Publishing House. (in Chinese)
    TANG C, 2020. Subsidence study of geothermal recharge test in Gaoyang County[D]. Baoding: Hebei University. (in Chinese with English abstract)
    WALSH F R, ZOBACK M D, 2016. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to North Central Oklahoma, USA[J]. Geology, 44(12): 991-994. doi: 10.1130/G38275.1
    WANG G L, LI J, WU A M, et al., 2018. A study of the thermal storage characteristics of Gaoyuzhuang formation, a new layer system of thermal reservoir in Rongcheng uplift area, Hebei province[J]. Acta Geoscientica Sinica, 39(5): 533-541. (in Chinese with English abstract)
    WANG G L, GAO J, ZHANG B J, et al., 2020. Study on the thermal storage characteristics of the Wumishan formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong'an New Area[J]. Acta Geologica Sinica, 94(7): 1970-1980. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.07.006
    WANG R J, KVUMPEL H J, 2003. Poroelasticity: efficient modeling of strongly coupled, slow deformation processes in multilayered half-space[J]. Geophysics, 68(2): 705-717. doi: 10.1190/1.1567241
    WANG S Q, ZHANG B J, LI Y Y, et al., 2021. Heat accumulation mechanism of deep ancient buried hill in the Northeast of Gaoyang geothermal field, Xiong'an New Area[J]. Bulletin of Geological Science and Technology, 40(3): 12-21. (in Chinese with English abstract)
    WEINGARTEN M, GE S, GODT J W, et al., 2015. High-rate injection is associated with the increase in U.S. mid-continent seismicity[J]. Science, 348(6241): 1336-1340. doi: 10.1126/science.aab1345
    WU A M, MA F, WANG G L, et al., 2018. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientica Sinica, 39(5): 523-532. (in Chinese with English abstract)
    YANG Y T, XU T G, 2004. Hydrocarbon habitat of the offshore Bohai Basin, China[J]. Marine and Petroleum Geology, 21(6): 691-708. doi: 10.1016/j.marpetgeo.2004.03.008
    YECK W L, WEINGARTEN M, BENZ H M, et al., 2016. Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure[J]. Geophysical Research Letters, 43(19): 10198-10207.
    YECK W L, HAYES G P, MCNAMARA D E, et al., 2017. Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts[J]. Geophysical Research Letters, 44(2): 711-717. doi: 10.1002/2016GL071685
    YEO I W, BROWN M R M, GE S, et al., 2020. Causal mechanism of injection-induced earthquakes through the Mw5.5 Pohang earthquake case study[J]. Nature Communications, 11(1): 2614. doi: 10.1038/s41467-020-16408-0
    YOON J S, ZANG A, STEPHANSSON O, 2013. Hydro-mechanical coupled discrete element modeling of geothermal reservoir stimulation and induced seismicity[M]//HOU M Z, XIE H P, WERE P. Clean energy systems in the subsurface: production, storage and conversion. Berlin: Springer: 221-231.
    YU C P, VAVRYǦUK V, ADAMOVÁ P, et al., 2018. Moment tensors of induced microearthquakes in the Geysers geothermal reservoir from broadband seismic recordings: implications for faulting regime, stress tensor, and fluid pressure[J]. Journal of Geophysical Research, 123(10): 8748-8766. doi: 10.1029/2018JB016251
    YU Y X, XU Z H, 1994. A study on orientations of horizontal principal stress in Jizhong depression using borehole breakout data[J]. Petroleum Exploration and Development, 21(2): 48-55. (in Chinese with English abstract)
    ZANG A, YOON J S, STEPHANSSON O, et al., 2013. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity[J]. Geophysical Journal International, 195(2): 1282-1287. doi: 10.1093/gji/ggt301
    ZHAO Y C, LUO Y, LI L X, et al., 2022. In-situ stress simulation and integrity evaluation of underground gas storage: A case study of the Xiangguosi underground gas storage, Sichuan, SW China[J]. Journal of Geomechanics, 28(4): 523-536.
    ZHU R X, CHEN L, WU F Y, et al., 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 789-797. doi: 10.1007/s11430-011-4203-4
    ZHU S Y, FENG C J, TAN C X, et al., 2022. Fault slip potential induced by water injection in the Rongcheng deep-seated geothermal reservoir, Xiong'an New Area[J]. Chinese Journal of Rock Mechanics and Engineering, 41(S1): 2735-2756. (in Chinese with English abstract)
    ZHU S Y, FENG C J, XING L X, et al., 2022. Changes in Fault Slip Potential Due to Water Injection in the Rongcheng Deep Geothermal Reservoir, Xiong'an New Area, North China[J]. Water, 14(3): 410. doi: 10.3390/w14030410
    ZOBACK M D, GORELICK S M, 2012. Earthquake Triggering and Large-Scale Geologic Storage of Carbon Dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10164-10168. doi: 10.1073/pnas.1202473109
    常健, 邱楠生, 赵贤正, 等, 2016. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 59(3): 1003-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603022.htm
    陈墨香, 黄歌山, 张文仁, 等, 1982. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学 (3): 239-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198203000.htm
    范玉璐, 谭成轩, 张鹏, 等, 2020. 雄安新区现今地应力环境及其对构造稳定性影响研究[J]. 地球学报, 41(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202004003.htm
    丰成君, 戚帮申, 王晓山, 等, 2019. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响[J]. 地学前缘, 26(4): 170-190.
    丰成君, 李滨, 李惠, 等, 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨. 地质力学学报, 28 (6): 919-937. doi: 10.12090/j.issn.1006-6616.20222820
    甘浩男, 王贵玲, 蔺文静, 等, 2020. 增强型地热系统环境地质影响现状研究与对策建议[J]. 地质力学学报, 26(2): 211-220. doi: 10.12090/j.issn.1006-6616.2020.26.02.020
    何登发, 崔永谦, 张煜颖, 等, 2017. 渤海湾盆地冀中坳陷古潜山的构造成因类型[J]. 岩石学报, 33(4): 1338-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704024.htm
    何登发, 单帅强, 张煜颖, 等, 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 48(9): 1207-1222.
    黄建平, 倪四道, 傅容珊, 等, 2009. 综合近震及远震波形反演2006文安地质(Mw5.1)的震源机制解[J]. 地球物理学报, 52(1): 120-130.
    黄禄渊, 杨树新, 崔效锋, 等, 2013. 华北地区实测应力特征与断层稳定性分析[J]. 岩石力学, 34(S1): 204-213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1032.htm
    雷兴林, 李霞颖, 李琦, 等, 2014. 沉积岩储藏系统小断层在油气田注水诱发地震中的作用: 以四川盆地为例[J]. 地震地质, 36(3): 625-643.
    李燕燕, 张保建, 邢一飞, 等, 2021. 雄安新区高阳地热田热储高于庄组碳酸盐岩不同围压下破碎规律研究[J/OL]. 中国地质, 2021: 1-15[2022-07-11]. http://kns.cnki.net/kcms/detail/11.1167.P.20210419.1328.006.html.
    刘久荣, 2003. 地热回灌的发展现状[J]. 水文地质工程地质, 30(3): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200303025.htm
    毛翔, 汪新伟, 郭世炎, 等, 2021. 高阳地热田及邻区地热资源形成机制[J]. 中国岩溶, 40(2): 273-280.
    牛琳琳, 丰成君, 张鹏, 等, 2018. 鄂尔多斯地块南缘地应力测量研究[J]. 地质力学学报, 24(1): 25-34. doi: 10.12090/j.issn.1006-6616.2018.24.01.003
    庞忠和, 孔彦龙, 庞菊梅, 等, 2017. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 32(11): 1224-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201711009.htm
    商世杰, 丰成君, 谭成轩, 等, 2019. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 40(6): 836-846.
    隋少强, 王延欣, 李海泉, 等, 2020. 河北雄安新区蓟县系雾迷山组沉积特征分析[J]. 矿产勘查, 11(8): 1563-1571. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202008001.htm
    谭成轩, 杨为民, 张春山, 等, 2020. 京津冀协同发展区活动构造与区域地壳稳定性研究[M]. 北京: 地质出版社.
    唐朝, 2020. 高阳县地热回灌试验的沉降研究[D]. 保定: 河北大学.
    王贵玲, 李郡, 吴爱民, 等, 2018. 河北容城凸起区热储层新层系: 高于庄组热储特征研究[J]. 地球学报, 39(5): 533-541.
    王贵玲, 高俊, 张保建, 等, 2020. 雄安新区高阳低凸起雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 94(7): 1970-1980.
    王思琪, 张保建, 李燕燕, 等, 2021. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 40(3): 12-21.
    吴爱民, 马峰, 王贵玲, 等, 2018. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 39(5): 523-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805002.htm
    俞言祥, 许忠淮, 1994. 用钻孔崩落法研究冀中坳陷水平主应力方向[J]. 石油勘探与开发, 21(2): 48-55.
    赵昱超, 罗瑜, 李隆新, 等, 2022. 地下储气库地应力模拟研究与地质完整性评估: 以相国寺为例[J]. 地质力学学报, 28(4): 523-536. doi: 10.12090/j.issn.1006-6616.2021138
    朱日祥, 陈凌, 吴福元, 等, 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学: 地球科学, 41(5): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm
    朱思雨, 丰成君, 谭成轩, 等, 2022. 雄安容城深热储层回灌注水诱发断层失稳危险性研究[J]. 岩石力学与工程学报, 41(S1): 2735-2756.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  139
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2023-03-20
  • 录用日期:  2023-03-22

目录

    /

    返回文章
    返回