留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原位地应力测试及流变模型的深部泥页岩储层地应力状态研究

孟文 田涛 孙东生 杨跃辉 李冉 陈群策

孟文, 田涛, 孙东生, 等, 2022. 基于原位地应力测试及流变模型的深部泥页岩储层地应力状态研究. 地质力学学报, 28 (4): 537-549. DOI: 10.12090/j.issn.1006-6616.2022041
引用本文: 孟文, 田涛, 孙东生, 等, 2022. 基于原位地应力测试及流变模型的深部泥页岩储层地应力状态研究. 地质力学学报, 28 (4): 537-549. DOI: 10.12090/j.issn.1006-6616.2022041
MENG Wen, TIAN Tao, SUN Dongsheng, et al., 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model. Journal of Geomechanics, 28 (4): 537-549. DOI: 10.12090/j.issn.1006-6616.2022041
Citation: MENG Wen, TIAN Tao, SUN Dongsheng, et al., 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model. Journal of Geomechanics, 28 (4): 537-549. DOI: 10.12090/j.issn.1006-6616.2022041

基于原位地应力测试及流变模型的深部泥页岩储层地应力状态研究

doi: 10.12090/j.issn.1006-6616.2022041
基金项目: 

中国地质调查局地质调查项目 DD20211376

国家自然科学基金 41702351

详细信息
    作者简介:

    孟文(1987—),女,助理研究员,主要从事地应力观测、构造应力场综合研究与应用。E-mail: mwen19@sina.com

    通讯作者:

    田涛(1987—),男,高级工程师,主要从事非常规油气勘探开发工作。E-mail: tiantao870211@163.com

  • 中图分类号: P553;P554

Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model

Funds: 

the China Geological Survey DD20211376

the NSF of China 41702351

  • 摘要: 深部泥页岩储层地应力状态的准确确定是页岩气等非常规能源高效开发的关键。综合基于原位地应力测试获得水平最小主应力,建立基于流变模型的地应力剖面,应用成像测井技术确定水平最大主应力方向等,是准确确定泥页岩储层地应力的有效方法。将该研究思路应用于陕西汉中SZ1井,利用水压致裂原地应力测试方法获得储层水平最小主应力值范围为32~41 MPa;利用偶极声波测井数据获得岩石力学参数,结合地壳应变率和储层埋藏史,建立了SZ1井地应力剖面,结果表明牛蹄塘组1950~2025 m深度范围内水平主应力差介于10~15 MPa,水平最小主应力值范围为28~41 MPa,水平最大主应力值范围为47~49 MPa,预测得到的水平最小主应力值与实测结果具有较好的一致性。原地应力实测及流变模型预测结果揭示SZ1井地应力为正断型(SvSHSh)或正断型与走滑型相结合的应力状态(SvSHSh)。水平主应力差随伽玛值的升高而变小,表明地应力剖面与地层岩性具有较好的对应关系。基于成像测井揭示的钻孔诱导张裂隙分布特征,SZ1井水平最大主应力方向约为N74°W,与区域构造应力场方向基本一致。相关结论为准确认识SZ1井目标层地应力状态,以及后期水平井布设及压裂控制等提供了重要依据。

     

  • 图  1  研究区及周边地质构造背景

    a—区域构造及地震分布图;b—研究区地质略图

    Figure  1.  Geologic tectonic setting of the study area and surrounding areas

    (a)Map of regional structure and earthquake distribution; (b) Geologic map of the study area

    图  2  测试段井径及伽马测试结果

    Figure  2.  Diameter and gamma test results of the measuring section in Well SZ1

    图  3  1956 m水压致裂地应力测试记录曲线

    a—井上压力-时间及流量-时间记录曲线;b—井下压裂段压力-时间记录曲线

    Figure  3.  Records of the hydraulic fracturing test at 1956 m depth

    (a) Surface pressure-time and flow-rate curves; (b) Downhole pressure-time curve

    图  4  SZ1主应力随深度分布图

    Figure  4.  Variation of the principal stress with depth in Well SZ1

    图  5  成像测井获得诱发裂隙

    Figure  5.  Image logs showing drilling induced tensile fracturesin Well SZ1

    图  6  区域构造应力场分布图(Hu et al., 2017Heidbach et al., 2016谢富仁等,2004杨树新等,2012谢富仁和崔效锋,2015)

    a—基于2016年WSM数据库发布的中国及周边地区应力图;b—中国构造应力分区图;c—研究区应力图(数据获取方法为水压致裂地应力测试方法).

    Figure  6.  Regional stress map (Hu et al., 2017; Heidbach, et al., 2016; Xie et al., 2004; Yang et al., 2012; Xie and Cui, 2015)

    (a)Stress map of China and its adjacent areas based on the WSM database released in 2016; (b) Tectonic stress zoning in China; (c)Stress map of the study area based on the hydraulic fracturing method

    图  7  基于流变模型得到的SZ1井地应力剖面

    a、d—自然伽玛随深度变化;b、e—利用偶极声波测井计算得到的本构参数Bn随深度变化;c、f—水平主应力差随深度变化

    Figure  7.  Predicted stress profile of Well SZ1

    (a, d) Natural gamma varies with depth; (b, e) Creep parameters B and n vary with depth; (c, f)Horizontal principal stress difference varies with depth

    图  8  主应力值随深度变化剖面(黑色水平短线代表水压致裂地应力测试确定的水平最小主应力范围)

    a—走滑型应力结构条件下,φ=0.6计算得到的主应力剖面;b—正断型应力结构条件下,φ=0.6计算得到的主应力剖面;c—走滑型应力结构条件下,φ=0.9计算得到的主应力剖面;d—正断型应力结构条件下,φ=0.9计算得到的主应力剖面

    Figure  8.  Principal stress varies with depth (Black horizontal bars indicate the range of horizontal stress magnitudes obtained by in situ stress measurement)

    (a)Stress profile for stress ratio φ=0.6 within the strike-slip faulting regime; (b) Stress profile for stress ratio φ=0.6 within the normal faulting regime; (c) Stress profile for stress ratio φ=0.9 within the strike-slip faulting regime; (a) Stress profile for stress ratio φ=0.9 within the normal faulting regime

    表  1  SZ1井水压致裂原地应力测试结果

    Table  1.   In situ stress measurement results of Well SZ1 using the hydraulic fracturing method

    深度/m 压裂参数/MPa 主应力/MPa
    Pb 回次 Ps取值 Ps终值 Ps标准差 Sh Sv
    dt/dP dP/dt 切线法 均值
    1956 43.02 cycle-1 39.34 38.94 39.12 39.13 38.22 0.79 38.22 48.90
    cycle-2 38.15 37.38 38.39 37.97
    cycle-3 37.71 37.1 37.84 37.55
    1968 47.10 cycle-1 41.10 40.96 41.88 41.31 40.43 1.21 40.43 49.20
    cycle-2 40.42 41.97 40.56 40.98
    cycle-3 39.11 38.47 39.43 39.00
    1982 41.74 cycle-1 34.77 34.66 34.29 34.57 33.63 1.04 33.63 49.55
    cycle-2 34.17 33.34 33.99 33.83
    cycle-3 33.07 31.53 32.87 32.49
    1995 40.85 cycle-1 31.51 31.14 32.04 31.56 32.28 0.80 32.28 49.88
    cycle-2 33.21 33.37 33.18 33.25
    cycle-3 32.12 32.18 31.77 32.02
    注:Pb—破裂压力;Ps—瞬时关闭压力;Sh—水平最小主应力;Sv—垂向主应力
    下载: 导出CSV
  • ANDERSON E M, 1951. The dynamics of faulting and Dike formation with application to Britain[M]. 2nd ed. Edinburgh, U.K. : Oliver and Boyd.
    ANGELIER J, 1979. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics, 56(3-4): T17-T26. doi: 10.1016/0040-1951(79)90081-7
    BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
    CHANG L J, DING Z F, WANG C Y, 2021. Upper mantle anisotropy and implications beneath the central and western North China and the NE margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 64(1): 114-130. (in Chinese with English abstract)
    CHANG Y, XU C H, REINERS P W, et al., 2010. The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous: Evidence from apatite (U-Th)/He dating[J]. Chinese Journal of Geophysics, 53(4): 912-919. (in Chinese with English abstract)
    CHEN M, JIN Y, LU Y H, 2017. Shale gas development: Opportunities and challenges for rock mechanics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 47(11): 114601. (in Chinese with English abstract)
    CHEN N, WANG C H, CHEN P Z, et al., 2021. Re-analyzing the in-situ stress field in the right bank of the Baihetan hydroelectric power plant using the borehole breakout data[J]. Journal of Geomechanics, 27(3): 430-440, doi: 10.12090/j.issn.1006-6616.2021.27.03.039.
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)
    DENG M S, 1997. Deformational analysis of the fold structure of sedimentary cover in Micangshan area[J]. Journal of Mineralogy and Petrology, 17(S1): 132-142. (in Chinese with English abstract)
    DONG Y P, ZHA X F, FU M Q, et al., 2008. Characteristics of the Dabashan fold-thrust nappe structure at the southern margin of the Qinling, China[J]. Geological Bulletin of China, 27(9): 1493-1508. (in Chinese with English abstract)
    FENG C J, CHEN Q C, WU M L, et al., 2012. Analysis of hydraulic fracturing stress measurement data: discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract)
    HAIMSON B C, 1978. The hydrofracturing stress measuring method and recent field results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(4): 167-178.
    HAIMSON B C, CORNET F H, 2003. ISRM Suggested Methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    HEIDBACH O, RAJABI M, REITER K, et al., 2016. World stress map database release 2016[DB/OL]. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001.
    HOSSAIN M M, RAHMAN M K, RAHMAN S S, 2000. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering, 27(3-4): 129-149. doi: 10.1016/S0920-4105(00)00056-5
    HU X P, ZANG A, HEIDBACH O, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005
    HUANG J S, GRIFFITHS D V, WONG S W, 2012. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 49: 59-67. doi: 10.1016/j.ijrmms.2011.11.014
    ITO T, EVANS K, KAWAI K, et al., 1999. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 36(6): 811-826. doi: 10.1016/S0148-9062(99)00053-4
    JAEGER J C, COOK N G W, 1969. Fundamentals of rock mechanics[M]. London: Methuen & Co. : 513.
    LI H B, WANG Z, XU F, et al., 2019. Shale gas reservoirs characteristics of Micang Mountain uplift in the north of the Sichuan Basin[J]. Unconventional Oil & Gas, 6(6): 1-6. (in Chinese with English abstract)
    LI Y F, FU Y Q, TANG G, 2012. Laws of the effects of earth stress patterns on wellbore stability in a directional well[J]. Natural Gas Industry, 32(3): 78-80, 130-131. (in Chinese with English abstract)
    LIU H, MENG S W, SU J, et al., 2019. Reflections and suggestions on the development and engineering management of shale gas fracturing technology in China[J]. Natural Gas Industry, 39(4): 1-7. (in Chinese with English abstract)
    LIU Y W, GAO D P, LI Q, et al., 2019. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics, 49(1): 201901. (in Chinese with English abstract)
    MA X D, ZOBACK M D, 2017. Lithology-controlled stress variations and pad-scale faults: A case study of hydraulic fracturing in the Woodford Shale, Oklahoma[J]. Geophysics, 82(6): ID35-ID44. doi: 10.1190/geo2017-0044.1
    MENG W, CHEN Q C, ZHAO Z, et al., 2015. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 656: 1-19. doi: 10.1016/j.tecto.2015.04.010
    PÖPPELREITER M, CARMEN G C, KRAAIJVELD M, 2010. Borehole image log technology: application across the exploration and production life cycle[M]//PÖPPELREITER M, GARCÍA-CARBALLIDO C, KRAAIJVELD M. Dipmeter and borehole image log technology. Denver, CO, USA: American Association of Petroleum Geologists: 81-112.
    QIN X H, CHEN Q C, ZHAO X G, et al., 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements[J]. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189-1202. (in Chinese with English abstract)
    ROSS D J K, BUSTIN R M, 2008. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin: Application of an integrated formation evaluation[J]. AAPG Bulletin, 92(1): 87-125. doi: 10.1306/09040707048
    SCHULTZ R, ATKINSON G, EATON D W, et al., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play[J]. Science, 359(6373): 304-308. doi: 10.1126/science.aao0159
    SONE H, 2012. Mechanical properties of shale gas reservoir rocks, and its relation to the in-situ stress variation observed in shale gas reservoirs[D]. Stanford: Stanford University: 97-189.
    SONE H, ZOBACK M D, 2014a. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress[J]. International Journal of Rock Mechanics and Mining Sciences, 69: 120-132. doi: 10.1016/j.ijrmms.2014.04.002
    SONE H, ZOBACK M D, 2014b. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 124: 416-431. doi: 10.1016/j.petrol.2014.09.022
    SUN D S, CHEN Q C, LI A W, 2018-10-19. A waterway switch and packer control device: CN, 106761556B[P]. (in Chinese)
    SUN D S, PANG F, LI A W, et al., 2020. In-situ stress profile prediction based on the rheological model: A case study of Well AY-1 in the Qianbei area of Guizhou province[J]. Natural Gas Industry, 40(3): 58-64. (in Chinese with English abstract)
    TIAN T, FU D L, ZHOU S X, et al., 2020. The paleo-redox conditions of the shale in Niutitang Formation and its effects on organic matter enrichment of the Micangshan-Hannan Uplift[J]. Journal of Lanzhou University: Natural Sciences, 56(1): 37-47, 55. (in Chinese with English abstract)
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.
    WANG Z Q, YAN Q R, YAN Z, et al., 2009. New division of the main tectonic units of the Qinling Orogenic belt, Central China[J]. Acta Geologica Sinica, 83(11): 1527-1546. (in Chinese with English abstract)
    WEI Z G, CHU R S, YANG X L, et al., 2019. Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas[J]. Acta Seismologica Sinica, 41(4): 445-458. (in Chinese with English abstract)
    XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract)
    XIE F R, CUI X F, 2015. Stress map of the recent tectonic stress field in China and adjacent areas[Z]. Beijing: Sino Maps Press. (in Chinese)
    XIE H P, GAO F, JU Y, et al., 2016. Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs[J]. Chinese Science Bulletin, 61(1): 34-46. (in Chinese with English abstract) doi: 10.1360/zk2016-61-1-34
    XU C C, 2012. Research progress in shale gas geological theory in China[J]. Special Oil & Gas Reservoirs, 19(1): 9-16. (in Chinese with English abstract)
    XUE H, GAO H X, 2013. Introduction to the current situation and future of shale gas in China[J]. Shanghai Energy Conservation(9): 9-13. (in Chinese)
    YANG S X, YAO R, CUI X F, et al., 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt[J]. Chinese Journal of Geophysics, 55(12): 4207-4217. (in Chinese with English abstract)
    ZANG A, STEPHANSSON O, 2010. Stress field of the Earth' s crust[M]. Dordrecht: Springer.
    ZHAI G Y, WANG Y F, LIU G H, et al., 2020. Accumulation model of the Sinian-Cambrian shale gas in western Hubei Province, China[J]. Journal of Geomechanics, 26(5): 696-713.
    ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract)
    ZHANG P, SUN Z G, WANG Q N, et al., 2017. In-situ stress measurement and stability analysis of surrounding rocks in the north section of deep buried tunnel in Muzhailing[J]. Journal of Geomechanics, 23(6): 893-903. (in Chinese with English abstract)
    ZHANG W J, QIN X Q, GAO T J, et al., 2016. Characteristics and Evolution of Middle Cenozoic Tectonics, Micangshan Uplift Belt[J]. Natural gas technology and economy, 10(2): 22-25, 33. (in Chinese with English abstract)
    ZHANG X, 2010. The dynamic mechanism and geological significance of mafic intrusion in the Ziyang-Zhenba Area, South Qinling[D]. Xi' an: Chang' an University.
    ZHANG X Q, ZHAO D C, LI Z Z X, et al., 2021. The implications of three stages of Tonian magmatism in the northwestern margin of the Yangtze Block on the breakup of the Rodinia supercontinent[J]. Journal of Northwest University (Natural Science Edition), 51(6): 1042-1056. (in Chinese with English abstract)
    ZHOU Z, JIN Y, ZENG Y J, et al., 2020. Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing[J]. Renewable Energy, 153: 301-313. doi: 10.1016/j.renene.2020.01.128
    ZOBACK M D, TOWNEND J, 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 336(1-4): 19-30. doi: 10.1016/S0040-1951(01)00091-9
    ZOBACK M D, 2007. Reservoir geomechanics[M]. New York: Cambridge University Press: 1-505.
    常利军, 丁志峰, 王椿镛, 2021. 华北中西部和青藏高原东北缘上地幔各向异性变形特征[J]. 地球物理学报, 64(1): 114-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202101008.htm
    常远, 许长海, REINERS P W, 等, 2010. 米仓山-汉南隆起白垩纪以来的剥露作用: 磷灰石(U-Th)/He年龄记录[J]. 地球物理学报, 53(4): 912-919. doi: 10.3969/j.issn.0001-5733.2010.04.016
    陈勉, 金衍, 卢运虎, 2017. 页岩气开发: 岩石力学的机遇与挑战[J]. 中国科学: 物理学 力学 天文学, 47(11): 114601. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711002.htm
    陈念, 王成虎, 陈平志, 等, 2021. 利用钻孔崩落数据再认识白鹤滩右岸地应力场特征[J]. 地质力学学报, 27(3): 430-440, doi: 10.12090/j.issn.1006-6616.2021.27.03.039.
    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
    邓明森, 1997. 米仓山区盖层褶皱构造变形分析[J]. 矿物岩石, 17(S1): 132-142. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS7S1.015.htm
    董云鹏, 查显峰, 付明庆, 等, 2008. 秦岭南缘大巴山褶皱-冲断推覆构造的特征[J]. 地质通报, 27(9): 1493-1508. doi: 10.3969/j.issn.1671-2552.2008.09.011
    丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力ps的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159. doi: 10.3969/j.issn.1000-7598.2012.07.035
    李华兵, 王喆, 许峰, 等, 2019. 四川盆地北缘米仓山隆起页岩气储层特征研究[J]. 非常规油气, 6(6): 1-6. doi: 10.3969/j.issn.2095-8471.2019.06.001
    李玉飞, 付永强, 唐庚, 等, 2012. 地应力类型影响定向井井壁稳定的规律[J]. 天然气工业, 32(3): 78-80, 130-131. doi: 10.3787/j.issn.1000-0976.2012.03.018
    刘合, 孟思炜, 苏健, 等, 2019. 对中国页岩气压裂工程技术发展和工程管理的思考与建议[J]. 天然气工业, 39(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201904002.htm
    刘曰武, 高大鹏, 李奇, 等, 2019. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 49(1): 201901. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201900001.htm
    秦向辉, 陈群策, 赵星光, 等, 2020. 水压致裂地应力测量中系统柔度影响试验研究[J]. 岩石力学与工程学报, 39(6): 1189-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006010.htm
    孙东生, 陈群策, 李阿伟, 2018-10-19. 一种水路转换开关及封隔器控制装置: 中国, 106761556B[P].
    孙东生, 庞飞, 李阿伟, 等, 2020. 基于流变模型的地应力剖面预测: 以贵州黔北地区安页1井为例[J]. 天然气工业, 40(3): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003010.htm
    田涛, 付德亮, 周世新, 等, 2020. 米仓山-汉南隆起区牛蹄塘组页岩古氧相及其与有机质富集的关系[J]. 兰州大学学报: 自然科学版, 56(1): 37-47, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202001005.htm
    王宗起, 闫全人, 闫臻, 等, 2009. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 83(11): 1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
    危自根, 储日升, 杨小林, 等, 2019. 汉中盆地及邻区地壳结构和地震活动性研究[J]. 地震学报, 41(4): 445-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201904004.htm
    谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 47(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016
    谢富仁, 崔效锋, 2015. 中国及邻区现代构造应力场图[Z]. 北京: 中国地图出版社.
    谢和平, 高峰, 鞠杨, 等, 2016. 页岩气储层改造的体破裂理论与技术构想[J]. 科学通报, 61(1): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201601007.htm
    许长春, 2012. 国内页岩气地质理论研究进展[J]. 特种油气藏, 19(1): 9-16. doi: 10.3969/j.issn.1006-6535.2012.01.002
    薛浩, 高华新, 2013. 中国页岩气现状和未来简介[J]. 上海节能(9): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJL201309005.htm
    杨树新, 姚瑞, 崔效锋, 等, 2012. 中国大陆与各活动地块、南北地震带实测应力特征分析[J]. 地球物理学报, 55(12): 4207-4217. doi: 10.6038/j.issn.0001-5733.2012.12.032
    翟刚毅, 王玉芳, 刘国恒, 等, 2020. 鄂西地区震旦系—寒武系页岩气成藏模式[J]. 地质力学学报, 26(5): 696-713, doi: 10.12090/j.issn.1006-6616.2020.26.05.058.
    张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
    张鹏, 孙治国, 王秋宁, 等, 2017. 木寨岭深埋隧道北段地应力测量与围岩稳定性分析[J]. 地质力学学报, 23(6): 893-903. https://journal.geomech.ac.cn/article/id/0febae11-4b7b-4e07-a1a7-24791d29026a
    张欣, 2010. 南秦岭紫阳-镇巴地区基性侵入体动力学机制及地质意义讨论[D]. 西安: 长安大学.
    张晓琪, 赵达成, 李章志贤, 等, 2021. 扬子陆块西北缘拉伸纪三期岩浆作用对Rodinia超大陆裂解的指示意义[J]. 西北大学学报(自然科学版), 51(6): 1042-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202106011.htm
    张文军, 秦绪乾, 郜瑭珺, 等, 2016. 米仓山隆起中新生代构造特征与形成演化探讨[J]. 天然气技术与经济, 10(2): 22-25, 33. doi: 10.3969/j.issn.2095-1132.2016.02.006
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  137
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-06-27

目录

    /

    返回文章
    返回