Seismic response analysis of the subway station structure under the coupling action of P and S seismic waves with the time difference
-
摘要: 以北京实测地震波作为输入,运用二维显示有限差分程序对北京地区常见的3层3跨矩形断面结构地铁车站进行了动力模拟分析,探讨了纵横波时差耦合作用下车站结构加速度、位移放大效应及动应力变化规律。计算结果表明地震纵横波时差耦合作用导致浅埋地铁车站结构受力变形过程为:首先纵波作用使得结构产生较大的竖向加速度,导致结构产生一定的正应力;继而纵横波时差耦合作用使得结构产生较大的水平加速度,此时结构内力达到最大,容易使得结构产生较大的拉应力;最终随着地震动力作用逐渐减小至消失,结构内力减小,恢复稳定。在地震动力作用下,地铁车站侧墙、中柱等结构的加速度自下而上均发生放大效应,且竖向加速度的放大程度远高于水平加速度。因地震纵波产生较大的竖向加速度,并且具有较强的放大效应,需重视距离震源较近地区的地下结构竖向抗震性能;而纵横波时差耦合作用下,结构的内力往往能达到最大值,是地下结构发生破坏的主控因素。Abstract: Ground motion records of Beijing from the Tangshan earthquake was selected as the seismic input, and then the seismic simulation of a three-layer and three-span subway station with a rectangle cross-section in Beijing was carried out using the finite difference procedure. The variation law of dynamic acceleration, displacement amplification effect and dynamic stress of the subway station structure under the coupling action of P and S seismic waves with time difference was discussed. It is shown that, the process of impact on dynamic response and stress of the typical subway structure could be clear, which is, firstly, the P wave makes the station structure gain the largest vertical acceleration, and then, the structure gains the largest horizontal acceleration and stress through the coupling action of P and S seismic waves with the time difference, and finally, as the seismic force gradually reduces to disappear, the structure restore stability. The amplification effect of parameters in the dynamic response of the structure showed that the amplification coefficient of the side wall and column structures increases gradually from bottom to top and the amplification coefficient of the vertical acceleration is much larger than that of the horizontal acceleration. As the P wave can cause a large vertical acceleration and strong amplification effect, particular emphasis should be placed on the vertical anti-seismic performance of underground structures near the source. The structure gains the largest horizontal acceleration and tension stress under the coupling action of P and S seismic waves with the time difference, which is the key factor in structure destruction.
-
表 1 土层参数
Table 1. Soil parameters
名称 厚度/m 重度/(kN·m-3) 剪切波速/(m·s-1) 泊松比 黏聚力/kPa 内摩擦角/(°) 杂填土 3.0 1.81 200 0.30 10.00 10 圆砾卵石 4.0 2.10 363 0.31 20.00 23 卵石 7.0 1.93 405 0.30 0.00 35 卵石 9.0 2.10 523 0.30 0.00 40 卵石 8.0 2.13 623 0.30 0.00 42 卵石 19.0 2.16 666 0.30 0.00 42 表 2 结构参数
Table 2. Structural parameters
部位 重度/(kN·m-3) 弹性模量/GPa 几何尺寸/m 柱 25.0 34.5 直径:0.7 梁、板 24.0 33.5 上中下长度:9.55、2、9.55
单位宽度:1.0
厚度:0.4车站结构框架 25.0 30.0 长度:24.1
单位宽度:1.0
厚度:0.7 -
CHEN W B, ZHUANG H Y, LI S, et al., 2021. Seismic performance of the three-layer three-span subway underground station structure with seismic isolation bearings fixed on the top of columns[J]. Technology for Earthquake Disaster Prevention, (1): 146-156. (in Chinese with English abstract) CHEN W H, Bao H Y. Influence of tunnel lining-soil interface viscoelasticity on subway vibration propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, (202): 3460-3468. (in Chinese with English abstract) CHEN X, CHEN Q J, 2021. Seismic Mitigation Effect Analysis of Subway Station Center Column Subjected to Near-Fault Ground Motions[J]. Chinese Quarterly of Mechanics, 42(1): 67-79. (in Chinese with English abstract) CHEN Z Y, LIU W B, CHEN W, 2020. Performance experiment of a multi-story subway station[J]. Journal of Tongji University(Natural Science), 48(6): 811-820. (in Chinese with English abstract) CUI F P, 2009. Study on collapsing and sliding response of slope triggered by single and combined action with time difference of P and S seismic waves[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Science. (in Chinese with English abstract) DU X L, WANG G, LU D C, 2016. Earthquake damage mechanism analysis of Dakai metro station by Kobe earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 36(2): 165-171. (in Chinese with English abstract) DU X L, MA C, LU D C, et al., 2017. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 50(1): 53-62, 69. (in Chinese with English abstract) DU X L, LI Y, XU C S, et al., 2018. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 40(2): 223-236. (in Chinese with English abstract) GAI H L, YAO S H, YANG L P, et al., 2021. Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS 7.4 Earthquake in Maduo, Qinghai, and their significance. Journal of Geomechanics, 27 (6): 899-912. (in Chinese with English abstract) GU K S, GUO M Z, TANG X W, et al., 2022. Dynamic response and spectrum characteristics of anti-dip rock slopes under earthquake[J]. China Earthquake Engineering Journal, 44(1): 62-71. (in Chinese with English abstract) GUO S B, ZHAO Y, ZHAO Y T, et al., 2002. Dynamic analysis of underground structures under vertical horizontal seismic excitations[J]. Underground Space, 22(4): 314-319. (in Chinese with English abstract) HAN X C, TAO L J, LIU C X, et al., 2020. Analysis of influencing factors of seismic response of connected parallel subway stations[J]. Journal of Beijing University of Technology, 2020, 46(8): 929-939. (in Chinese with English abstract) LI J, LI G Q, 1992. Introduction of earthquake engineering[M]. Beijing: Seismological Publishing House. (in Chinese with English abstract) LI Y, XU C S, DU X L, 2020. Causal analyses of different degree of earthquake damage occurred on Daikai subway station and its running tunnels during Kobe earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 40(3): 326-336. (in Chinese with English abstract) LIU L, LIU X L, ZHOU J X, 2018. Numerical analysis on dynamic response of the oblique metro tunnel in ground fissure area[J]. Journal of Geomechanics, 24 (2): 238-243. (in Chinese with English abstract) LIU L B, LI H B, LIU Y Q, 2017. Ground Motion Amplification Effect of High and Steep Slope[J]. Journal of Yangtze River Scientific Research Institute, 34(9): 98-103. (in Chinese with English abstract) MENG Q, GAO K, CHEN Q Z, et al., 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: Numerical simulation analysis. Journal of Geomechanics, 27 (4): 614-627. (in Chinese with English abstract) TAO L J, LIU C X, BIAN J, et al., 2017. Seismic response of subway station with large span and Y shaped column[J]. Chinese Journal of Theoretical and Applied Mechanics, 49(1): 55-64. (in Chinese with English abstract) TAO L J, LIU S, HAN X C, et al., 2019. Seismic response analysis of subway stations with above-ground high-rise structures[J]. Journal of Heilongjiang University of Science and Technology, 29(5): 569-574. (in Chinese with English abstract) WANG J H, ZHOU X J, LIU J G, et al., 2017. Numerical analysis of the transverse dynamic response of mountain tunnels subjected to an oblique incidence of earthquake waves[J]. Modern Tunnelling Technology, 54(3): 90-97. (in Chinese with English abstract) XIONG L X, LI T B, LIU Y, 2007. Numerical simulation of seismic response at the entrance of the unsymmetrical loading tunnel[J]. Journal of Geomechanics, 13(3): 255-260. (in Chinese with English abstract) XU C S, XU Z G, DU X L, et al., 2017. Comparative study of simplified methods for seismic analysis of underground structure[J]. Earthquake Engineering and Engineering Vibration, 37(2). 65-80. (in Chinese with English abstract) XU Y J, LIANG W Z, LIU X M, et al., 2017. Soil Mass Stability at the Working Face of a Rectangular Pipe-Jacking Tunnel with a Large Section[J]. Modern Tunnelling Technology, 54(5): 70-77, 85. (in Chinese with English abstract) YANG Y Q, WANG X S, WANG Y G, et al., 2016. Seismogenic fault segmentation of Tangshan earthquake sequence derived from focal mechanism solutionsl[J]. Acta Seismologica Sinica, 38(4): 632-643. (in Chinese with English abstract) YANG Y F, GUAN Q, SUN R H, et al., 2017. Numerical simulation analysis of deep foundation pit deformation by top-down construction method based on FLAC-3D[J]. Journal of Hefei University of Technology(Natural Science), 40(4): 522-527. (in Chinese with English abstract) YU Z Y, ZHANG H Z, QIU Y, et al., 2021. Shaking table tests for cross subway station structure[J]. Journal of Vibration and Shock, 2021, 40(9): 142-151. (in Chinese with English abstract) ZHANG K, LI W H, ZHAO C G, 2020. Application of equivalent linear method in underwater site analysis under oblique incidence of seismic waves[J]. Journal of Vibration and Shock, 39(22): 41-49. (in Chinese with English abstract) ZHANG W B, ZHOU H Z, ZHENG G, et al., 2021. Seismic response analysis of connection between metro station and tunnel[J]. China Earthquake Engineering Journal, 2: 438-444. (in Chinese with English abstract) ZHANG Y B, LIU J, TANG Y B, et al., 2021. Dynamic Response Analysis of Seismic Slopes Considering Topographic Effect[J]. China Earthquake Engineering Journal, 43(1): 142-153. (in Chinese with English abstract) ZHAO J, WU H G, YANG T, 2019. Research on dynamic response of highway bridge unstable slope treatment project based on FLAC3D[J]. World Earthquake Engineering, 35(3): 177-185. (in Chinese with English abstract) ZHUANG H Y, CHENG S G, CHEN G X, 2008. Numerical simulation and analysis of earthquake dam ages of Dakai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 29(1): 246-250. (in Chinese with English abstract) ZHUANG H Y, WANG X J, WANG R, et al., 2017. Characteristics of lateral deformation of soil-subway dynamic interaction system. Chinese Journal of Geotechnical Engineering, 39(10): 1761-1769. (in Chinese with English abstract) 陈文斌, 庄海洋, 李晟, 等, 2021. 基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究[J]. 震灾防御技术, (1): 146-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101015.htm 陈文化, 包汉营. 隧道衬砌-土层接触面黏-弹性对地铁空间振动传播的影响[J]. 岩石力学与工程学报, 2019, (202): 3460-3468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2021.htm 陈曦, 陈清军, 2021. 近断层地震动作用下地铁车站中柱减震效果研究[J]. 力学季刊, 42(1): 67-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX202101007.htm 陈之毅, 刘文博, 陈炜, 2020. 多层地铁车站结构性能试验研究[J]. 同济大学学报: 自然科学版, 48(6): 811-820. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202006005.htm 崔芳鹏, 2009. 地震P-S波时差耦合作用的斜坡崩滑效应研究[D]. 北京: 中国科学院地质与地球物理研究所. 杜修力, 王刚, 路德春, 2016. 日本阪神地震中大开地铁车站地震破坏机理分析[J]. 防灾减灾工程学报, 36(2): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602001.htm 杜修力, 马超, 路德春, 等, 2017. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 50(1): 53-62, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm 杜修力, 李洋, 许成顺, 等, 2018. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm 盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多"5·22"MS7.4级地震的同震地表破裂特征、成因及意义[J]. 地质力学学报, 27 (6): 899-912. doi: 10.12090/j.issn.1006-6616.2021.27.06.073 谷坤生, 郭明珠, 唐学武, 等, 2022. 地震作用下反倾岩质斜坡动力响应规律及频谱特征研究[J]. 地震工程学报, 44(1): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202201008.htm 国胜兵, 赵毅, 赵跃堂, 等, 2002. 地下结构在竖向和水平地震荷载作用下的动力分析[J]. 地下空间, 22(4): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200204007.htm 韩学川, 陶连金, 刘春晓, 等, 2020. 连体并行地铁车站结构地震响应分析[J]. 北京工业大学学报, 46(8): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202008010.htm 李杰, 李国强, 1992. 地震工程学导论[M]. 北京: 地震出版社. 李洋, 许成顺, 杜修力. 阪神地震中大开地铁车站和区间隧道破坏差异成因研究[J]. 防灾减灾工程学报, 2020, 40(3): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202003002.htm 刘蕾, 刘雪玲, 周金喜, 2018. 地裂缝与斜交地铁隧道动力响应数值分析[J]. 地质力学学报, 24 (2): 238-243. doi: 10.12090/j.issn.1006-6616.2018.24.02.025 刘立波, 李海波, 刘亚群, 2017. 高陡边坡地震动放大效应分析[J]. 长江科学院院报, 34(9): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201709021.htm 孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟. 地质力学学报, 27 (4): 614-627. doi: 10.12090/j.issn.1006-6616.2021.27.04.051 陶连金, 刘春晓, 边金, 等, 2017. 大跨度Y形柱地铁车站结构地震反应研究[J]. 力学学报, 49(1): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701007.htm 陶连金, 刘硕, 韩学川, 等, 2019. 临近地上高层结构的地铁车站地震响应[J]. 黑龙江科技大学学报, 29(5): 569-574. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201905009.htm 汪精河, 周晓军, 刘建国, 等, 2017. 地震波斜入射下山岭隧道横向动力响应数值分析[J]. 现代隧道技术, 54(3): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201703015.htm 熊良宵, 李天斌, 刘勇, 2007. 隧道地震响应数值模拟研究[J]. 地质力学学报, 13(3): 255-260. https://journal.geomech.ac.cn/article/id/dc5ec7bb-a8ac-4545-a770-dd46a379103f 许成顺, 许紫刚, 杜修力, 等, 2017. 地下结构抗震简化分析方法比较研究[J]. 地震工程与工程振动, 37(2). 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm 许有俊, 梁玮真, 刘忻梅, 等, 2017. 大断面矩形顶管隧道开挖面土体稳定性研究[J]. 现代隧道技术, 54(5): 70-77, 85. 杨雅琼, 王晓山, 万永革, 等, 2016. 由震源机制解推断唐山地震序列发震断层的分段特征[J]. 地震学报, 38(4): 632-643. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201604009.htm 杨益飞, 关群, 孙若晗, 等, 2017. 基于FLAC-3D数值模拟分析逆作法的深基坑变形[J]. 合肥工业大学学报(自然科学版), 40(4): 522-527. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201704018.htm 于仲洋, 张鸿儒, 邱滟佳, 等, 2021. 十字交叉型地铁车站结构的振动台试验研究[J]. 振动与冲击, 40(9): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109020.htm 张奎, 李伟华, 赵成刚, 2020. 地震波斜入射下水下地基场地的等效线性化分析方法及应用[J]. 振动与冲击, 39(22): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202022008.htm 张文彬, 周海祚, 郑刚, 等, 2021. 地铁车站与隧道连接处地震响应分析[J]. 地震工程学报, 2: 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202102024.htm 张迎宾, 柳静, 唐云波, 等, 2021. 考虑边坡地形效应的地震动力响应分析[J]. 地震工程学报, 43(1): 142-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202101018.htm 赵金, 吴红刚, 杨涛, 2019. 基于FLAC3D路桥不稳定边坡治理工程的动力响应研究[J]. 世界地震工程, 35(3): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201903021.htm 庄海洋, 程绍革, 陈国兴, 2008. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 29(1): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm 庄海洋, 王雪剑, 王瑞, 等, 2017. 土-地铁动力相互作用体系侧向变形特征研究[J]. 岩土工程学报, 39(10): 1761-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710003.htm